Merge branch 'xfs-dio-extend-fix' into for-next
Conflicts: fs/xfs/xfs_file.c
This commit is contained in:
Коммит
542c311813
|
@ -1233,6 +1233,117 @@ xfs_vm_releasepage(
|
||||||
return try_to_free_buffers(page);
|
return try_to_free_buffers(page);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* When we map a DIO buffer, we may need to attach an ioend that describes the
|
||||||
|
* type of write IO we are doing. This passes to the completion function the
|
||||||
|
* operations it needs to perform. If the mapping is for an overwrite wholly
|
||||||
|
* within the EOF then we don't need an ioend and so we don't allocate one.
|
||||||
|
* This avoids the unnecessary overhead of allocating and freeing ioends for
|
||||||
|
* workloads that don't require transactions on IO completion.
|
||||||
|
*
|
||||||
|
* If we get multiple mappings in a single IO, we might be mapping different
|
||||||
|
* types. But because the direct IO can only have a single private pointer, we
|
||||||
|
* need to ensure that:
|
||||||
|
*
|
||||||
|
* a) i) the ioend spans the entire region of unwritten mappings; or
|
||||||
|
* ii) the ioend spans all the mappings that cross or are beyond EOF; and
|
||||||
|
* b) if it contains unwritten extents, it is *permanently* marked as such
|
||||||
|
*
|
||||||
|
* We could do this by chaining ioends like buffered IO does, but we only
|
||||||
|
* actually get one IO completion callback from the direct IO, and that spans
|
||||||
|
* the entire IO regardless of how many mappings and IOs are needed to complete
|
||||||
|
* the DIO. There is only going to be one reference to the ioend and its life
|
||||||
|
* cycle is constrained by the DIO completion code. hence we don't need
|
||||||
|
* reference counting here.
|
||||||
|
*/
|
||||||
|
static void
|
||||||
|
xfs_map_direct(
|
||||||
|
struct inode *inode,
|
||||||
|
struct buffer_head *bh_result,
|
||||||
|
struct xfs_bmbt_irec *imap,
|
||||||
|
xfs_off_t offset)
|
||||||
|
{
|
||||||
|
struct xfs_ioend *ioend;
|
||||||
|
xfs_off_t size = bh_result->b_size;
|
||||||
|
int type;
|
||||||
|
|
||||||
|
if (ISUNWRITTEN(imap))
|
||||||
|
type = XFS_IO_UNWRITTEN;
|
||||||
|
else
|
||||||
|
type = XFS_IO_OVERWRITE;
|
||||||
|
|
||||||
|
trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
|
||||||
|
|
||||||
|
if (bh_result->b_private) {
|
||||||
|
ioend = bh_result->b_private;
|
||||||
|
ASSERT(ioend->io_size > 0);
|
||||||
|
ASSERT(offset >= ioend->io_offset);
|
||||||
|
if (offset + size > ioend->io_offset + ioend->io_size)
|
||||||
|
ioend->io_size = offset - ioend->io_offset + size;
|
||||||
|
|
||||||
|
if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
|
||||||
|
ioend->io_type = XFS_IO_UNWRITTEN;
|
||||||
|
|
||||||
|
trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
|
||||||
|
ioend->io_size, ioend->io_type,
|
||||||
|
imap);
|
||||||
|
} else if (type == XFS_IO_UNWRITTEN ||
|
||||||
|
offset + size > i_size_read(inode)) {
|
||||||
|
ioend = xfs_alloc_ioend(inode, type);
|
||||||
|
ioend->io_offset = offset;
|
||||||
|
ioend->io_size = size;
|
||||||
|
|
||||||
|
bh_result->b_private = ioend;
|
||||||
|
set_buffer_defer_completion(bh_result);
|
||||||
|
|
||||||
|
trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
|
||||||
|
imap);
|
||||||
|
} else {
|
||||||
|
trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
|
||||||
|
imap);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
|
||||||
|
* is, so that we can avoid repeated get_blocks calls.
|
||||||
|
*
|
||||||
|
* If the mapping spans EOF, then we have to break the mapping up as the mapping
|
||||||
|
* for blocks beyond EOF must be marked new so that sub block regions can be
|
||||||
|
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
|
||||||
|
* was just allocated or is unwritten, otherwise the callers would overwrite
|
||||||
|
* existing data with zeros. Hence we have to split the mapping into a range up
|
||||||
|
* to and including EOF, and a second mapping for beyond EOF.
|
||||||
|
*/
|
||||||
|
static void
|
||||||
|
xfs_map_trim_size(
|
||||||
|
struct inode *inode,
|
||||||
|
sector_t iblock,
|
||||||
|
struct buffer_head *bh_result,
|
||||||
|
struct xfs_bmbt_irec *imap,
|
||||||
|
xfs_off_t offset,
|
||||||
|
ssize_t size)
|
||||||
|
{
|
||||||
|
xfs_off_t mapping_size;
|
||||||
|
|
||||||
|
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
|
||||||
|
mapping_size <<= inode->i_blkbits;
|
||||||
|
|
||||||
|
ASSERT(mapping_size > 0);
|
||||||
|
if (mapping_size > size)
|
||||||
|
mapping_size = size;
|
||||||
|
if (offset < i_size_read(inode) &&
|
||||||
|
offset + mapping_size >= i_size_read(inode)) {
|
||||||
|
/* limit mapping to block that spans EOF */
|
||||||
|
mapping_size = roundup_64(i_size_read(inode) - offset,
|
||||||
|
1 << inode->i_blkbits);
|
||||||
|
}
|
||||||
|
if (mapping_size > LONG_MAX)
|
||||||
|
mapping_size = LONG_MAX;
|
||||||
|
|
||||||
|
bh_result->b_size = mapping_size;
|
||||||
|
}
|
||||||
|
|
||||||
STATIC int
|
STATIC int
|
||||||
__xfs_get_blocks(
|
__xfs_get_blocks(
|
||||||
struct inode *inode,
|
struct inode *inode,
|
||||||
|
@ -1321,31 +1432,37 @@ __xfs_get_blocks(
|
||||||
|
|
||||||
xfs_iunlock(ip, lockmode);
|
xfs_iunlock(ip, lockmode);
|
||||||
}
|
}
|
||||||
|
trace_xfs_get_blocks_alloc(ip, offset, size,
|
||||||
trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
||||||
|
: XFS_IO_DELALLOC, &imap);
|
||||||
} else if (nimaps) {
|
} else if (nimaps) {
|
||||||
trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
|
trace_xfs_get_blocks_found(ip, offset, size,
|
||||||
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
||||||
|
: XFS_IO_OVERWRITE, &imap);
|
||||||
xfs_iunlock(ip, lockmode);
|
xfs_iunlock(ip, lockmode);
|
||||||
} else {
|
} else {
|
||||||
trace_xfs_get_blocks_notfound(ip, offset, size);
|
trace_xfs_get_blocks_notfound(ip, offset, size);
|
||||||
goto out_unlock;
|
goto out_unlock;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* trim mapping down to size requested */
|
||||||
|
if (direct || size > (1 << inode->i_blkbits))
|
||||||
|
xfs_map_trim_size(inode, iblock, bh_result,
|
||||||
|
&imap, offset, size);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* For unwritten extents do not report a disk address in the buffered
|
||||||
|
* read case (treat as if we're reading into a hole).
|
||||||
|
*/
|
||||||
if (imap.br_startblock != HOLESTARTBLOCK &&
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
||||||
imap.br_startblock != DELAYSTARTBLOCK) {
|
imap.br_startblock != DELAYSTARTBLOCK &&
|
||||||
/*
|
(create || !ISUNWRITTEN(&imap))) {
|
||||||
* For unwritten extents do not report a disk address on
|
xfs_map_buffer(inode, bh_result, &imap, offset);
|
||||||
* the read case (treat as if we're reading into a hole).
|
if (ISUNWRITTEN(&imap))
|
||||||
*/
|
|
||||||
if (create || !ISUNWRITTEN(&imap))
|
|
||||||
xfs_map_buffer(inode, bh_result, &imap, offset);
|
|
||||||
if (create && ISUNWRITTEN(&imap)) {
|
|
||||||
if (direct) {
|
|
||||||
bh_result->b_private = inode;
|
|
||||||
set_buffer_defer_completion(bh_result);
|
|
||||||
}
|
|
||||||
set_buffer_unwritten(bh_result);
|
set_buffer_unwritten(bh_result);
|
||||||
}
|
/* direct IO needs special help */
|
||||||
|
if (create && direct)
|
||||||
|
xfs_map_direct(inode, bh_result, &imap, offset);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -1378,39 +1495,6 @@ __xfs_get_blocks(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
* If this is O_DIRECT or the mpage code calling tell them how large
|
|
||||||
* the mapping is, so that we can avoid repeated get_blocks calls.
|
|
||||||
*
|
|
||||||
* If the mapping spans EOF, then we have to break the mapping up as the
|
|
||||||
* mapping for blocks beyond EOF must be marked new so that sub block
|
|
||||||
* regions can be correctly zeroed. We can't do this for mappings within
|
|
||||||
* EOF unless the mapping was just allocated or is unwritten, otherwise
|
|
||||||
* the callers would overwrite existing data with zeros. Hence we have
|
|
||||||
* to split the mapping into a range up to and including EOF, and a
|
|
||||||
* second mapping for beyond EOF.
|
|
||||||
*/
|
|
||||||
if (direct || size > (1 << inode->i_blkbits)) {
|
|
||||||
xfs_off_t mapping_size;
|
|
||||||
|
|
||||||
mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
|
|
||||||
mapping_size <<= inode->i_blkbits;
|
|
||||||
|
|
||||||
ASSERT(mapping_size > 0);
|
|
||||||
if (mapping_size > size)
|
|
||||||
mapping_size = size;
|
|
||||||
if (offset < i_size_read(inode) &&
|
|
||||||
offset + mapping_size >= i_size_read(inode)) {
|
|
||||||
/* limit mapping to block that spans EOF */
|
|
||||||
mapping_size = roundup_64(i_size_read(inode) - offset,
|
|
||||||
1 << inode->i_blkbits);
|
|
||||||
}
|
|
||||||
if (mapping_size > LONG_MAX)
|
|
||||||
mapping_size = LONG_MAX;
|
|
||||||
|
|
||||||
bh_result->b_size = mapping_size;
|
|
||||||
}
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
out_unlock:
|
out_unlock:
|
||||||
|
@ -1441,9 +1525,11 @@ xfs_get_blocks_direct(
|
||||||
/*
|
/*
|
||||||
* Complete a direct I/O write request.
|
* Complete a direct I/O write request.
|
||||||
*
|
*
|
||||||
* If the private argument is non-NULL __xfs_get_blocks signals us that we
|
* The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
|
||||||
* need to issue a transaction to convert the range from unwritten to written
|
* If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
|
||||||
* extents.
|
* wholly within the EOF and so there is nothing for us to do. Note that in this
|
||||||
|
* case the completion can be called in interrupt context, whereas if we have an
|
||||||
|
* ioend we will always be called in task context (i.e. from a workqueue).
|
||||||
*/
|
*/
|
||||||
STATIC void
|
STATIC void
|
||||||
xfs_end_io_direct_write(
|
xfs_end_io_direct_write(
|
||||||
|
@ -1455,43 +1541,71 @@ xfs_end_io_direct_write(
|
||||||
struct inode *inode = file_inode(iocb->ki_filp);
|
struct inode *inode = file_inode(iocb->ki_filp);
|
||||||
struct xfs_inode *ip = XFS_I(inode);
|
struct xfs_inode *ip = XFS_I(inode);
|
||||||
struct xfs_mount *mp = ip->i_mount;
|
struct xfs_mount *mp = ip->i_mount;
|
||||||
|
struct xfs_ioend *ioend = private;
|
||||||
|
|
||||||
|
trace_xfs_gbmap_direct_endio(ip, offset, size,
|
||||||
|
ioend ? ioend->io_type : 0, NULL);
|
||||||
|
|
||||||
|
if (!ioend) {
|
||||||
|
ASSERT(offset + size <= i_size_read(inode));
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if (XFS_FORCED_SHUTDOWN(mp))
|
if (XFS_FORCED_SHUTDOWN(mp))
|
||||||
return;
|
goto out_end_io;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* While the generic direct I/O code updates the inode size, it does
|
* dio completion end_io functions are only called on writes if more
|
||||||
* so only after the end_io handler is called, which means our
|
* than 0 bytes was written.
|
||||||
* end_io handler thinks the on-disk size is outside the in-core
|
|
||||||
* size. To prevent this just update it a little bit earlier here.
|
|
||||||
*/
|
*/
|
||||||
|
ASSERT(size > 0);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The ioend only maps whole blocks, while the IO may be sector aligned.
|
||||||
|
* Hence the ioend offset/size may not match the IO offset/size exactly.
|
||||||
|
* Because we don't map overwrites within EOF into the ioend, the offset
|
||||||
|
* may not match, but only if the endio spans EOF. Either way, write
|
||||||
|
* the IO sizes into the ioend so that completion processing does the
|
||||||
|
* right thing.
|
||||||
|
*/
|
||||||
|
ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
|
||||||
|
ioend->io_size = size;
|
||||||
|
ioend->io_offset = offset;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The ioend tells us whether we are doing unwritten extent conversion
|
||||||
|
* or an append transaction that updates the on-disk file size. These
|
||||||
|
* cases are the only cases where we should *potentially* be needing
|
||||||
|
* to update the VFS inode size.
|
||||||
|
*
|
||||||
|
* We need to update the in-core inode size here so that we don't end up
|
||||||
|
* with the on-disk inode size being outside the in-core inode size. We
|
||||||
|
* have no other method of updating EOF for AIO, so always do it here
|
||||||
|
* if necessary.
|
||||||
|
*
|
||||||
|
* We need to lock the test/set EOF update as we can be racing with
|
||||||
|
* other IO completions here to update the EOF. Failing to serialise
|
||||||
|
* here can result in EOF moving backwards and Bad Things Happen when
|
||||||
|
* that occurs.
|
||||||
|
*/
|
||||||
|
spin_lock(&ip->i_flags_lock);
|
||||||
if (offset + size > i_size_read(inode))
|
if (offset + size > i_size_read(inode))
|
||||||
i_size_write(inode, offset + size);
|
i_size_write(inode, offset + size);
|
||||||
|
spin_unlock(&ip->i_flags_lock);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* For direct I/O we do not know if we need to allocate blocks or not,
|
* If we are doing an append IO that needs to update the EOF on disk,
|
||||||
* so we can't preallocate an append transaction, as that results in
|
* do the transaction reserve now so we can use common end io
|
||||||
* nested reservations and log space deadlocks. Hence allocate the
|
* processing. Stashing the error (if there is one) in the ioend will
|
||||||
* transaction here. While this is sub-optimal and can block IO
|
* result in the ioend processing passing on the error if it is
|
||||||
* completion for some time, we're stuck with doing it this way until
|
* possible as we can't return it from here.
|
||||||
* we can pass the ioend to the direct IO allocation callbacks and
|
|
||||||
* avoid nesting that way.
|
|
||||||
*/
|
*/
|
||||||
if (private && size > 0) {
|
if (ioend->io_type == XFS_IO_OVERWRITE)
|
||||||
xfs_iomap_write_unwritten(ip, offset, size);
|
ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
|
||||||
} else if (offset + size > ip->i_d.di_size) {
|
|
||||||
struct xfs_trans *tp;
|
|
||||||
int error;
|
|
||||||
|
|
||||||
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
|
out_end_io:
|
||||||
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
|
xfs_end_io(&ioend->io_work);
|
||||||
if (error) {
|
return;
|
||||||
xfs_trans_cancel(tp, 0);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
xfs_setfilesize(ip, tp, offset, size);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
STATIC ssize_t
|
STATIC ssize_t
|
||||||
|
|
|
@ -569,20 +569,41 @@ restart:
|
||||||
* write. If zeroing is needed and we are currently holding the
|
* write. If zeroing is needed and we are currently holding the
|
||||||
* iolock shared, we need to update it to exclusive which implies
|
* iolock shared, we need to update it to exclusive which implies
|
||||||
* having to redo all checks before.
|
* having to redo all checks before.
|
||||||
|
*
|
||||||
|
* We need to serialise against EOF updates that occur in IO
|
||||||
|
* completions here. We want to make sure that nobody is changing the
|
||||||
|
* size while we do this check until we have placed an IO barrier (i.e.
|
||||||
|
* hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
|
||||||
|
* The spinlock effectively forms a memory barrier once we have the
|
||||||
|
* XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
|
||||||
|
* and hence be able to correctly determine if we need to run zeroing.
|
||||||
*/
|
*/
|
||||||
|
spin_lock(&ip->i_flags_lock);
|
||||||
if (*pos > i_size_read(inode)) {
|
if (*pos > i_size_read(inode)) {
|
||||||
bool zero = false;
|
bool zero = false;
|
||||||
|
|
||||||
|
spin_unlock(&ip->i_flags_lock);
|
||||||
if (*iolock == XFS_IOLOCK_SHARED) {
|
if (*iolock == XFS_IOLOCK_SHARED) {
|
||||||
xfs_rw_iunlock(ip, *iolock);
|
xfs_rw_iunlock(ip, *iolock);
|
||||||
*iolock = XFS_IOLOCK_EXCL;
|
*iolock = XFS_IOLOCK_EXCL;
|
||||||
xfs_rw_ilock(ip, *iolock);
|
xfs_rw_ilock(ip, *iolock);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We now have an IO submission barrier in place, but
|
||||||
|
* AIO can do EOF updates during IO completion and hence
|
||||||
|
* we now need to wait for all of them to drain. Non-AIO
|
||||||
|
* DIO will have drained before we are given the
|
||||||
|
* XFS_IOLOCK_EXCL, and so for most cases this wait is a
|
||||||
|
* no-op.
|
||||||
|
*/
|
||||||
|
inode_dio_wait(inode);
|
||||||
goto restart;
|
goto restart;
|
||||||
}
|
}
|
||||||
error = xfs_zero_eof(ip, *pos, i_size_read(inode), &zero);
|
error = xfs_zero_eof(ip, *pos, i_size_read(inode), &zero);
|
||||||
if (error)
|
if (error)
|
||||||
return error;
|
return error;
|
||||||
}
|
} else
|
||||||
|
spin_unlock(&ip->i_flags_lock);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Updating the timestamps will grab the ilock again from
|
* Updating the timestamps will grab the ilock again from
|
||||||
|
@ -644,6 +665,8 @@ xfs_file_dio_aio_write(
|
||||||
int iolock;
|
int iolock;
|
||||||
size_t count = iov_iter_count(from);
|
size_t count = iov_iter_count(from);
|
||||||
loff_t pos = iocb->ki_pos;
|
loff_t pos = iocb->ki_pos;
|
||||||
|
loff_t end;
|
||||||
|
struct iov_iter data;
|
||||||
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
|
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
|
||||||
mp->m_rtdev_targp : mp->m_ddev_targp;
|
mp->m_rtdev_targp : mp->m_ddev_targp;
|
||||||
|
|
||||||
|
@ -683,10 +706,11 @@ xfs_file_dio_aio_write(
|
||||||
if (ret)
|
if (ret)
|
||||||
goto out;
|
goto out;
|
||||||
iov_iter_truncate(from, count);
|
iov_iter_truncate(from, count);
|
||||||
|
end = pos + count - 1;
|
||||||
|
|
||||||
if (mapping->nrpages) {
|
if (mapping->nrpages) {
|
||||||
ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
|
ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
|
||||||
pos, pos + count - 1);
|
pos, end);
|
||||||
if (ret)
|
if (ret)
|
||||||
goto out;
|
goto out;
|
||||||
/*
|
/*
|
||||||
|
@ -696,7 +720,7 @@ xfs_file_dio_aio_write(
|
||||||
*/
|
*/
|
||||||
ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
|
ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
|
||||||
pos >> PAGE_CACHE_SHIFT,
|
pos >> PAGE_CACHE_SHIFT,
|
||||||
(pos + count - 1) >> PAGE_CACHE_SHIFT);
|
end >> PAGE_CACHE_SHIFT);
|
||||||
WARN_ON_ONCE(ret);
|
WARN_ON_ONCE(ret);
|
||||||
ret = 0;
|
ret = 0;
|
||||||
}
|
}
|
||||||
|
@ -713,8 +737,22 @@ xfs_file_dio_aio_write(
|
||||||
}
|
}
|
||||||
|
|
||||||
trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
|
trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
|
||||||
ret = generic_file_direct_write(iocb, from, pos);
|
|
||||||
|
|
||||||
|
data = *from;
|
||||||
|
ret = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
|
||||||
|
|
||||||
|
/* see generic_file_direct_write() for why this is necessary */
|
||||||
|
if (mapping->nrpages) {
|
||||||
|
invalidate_inode_pages2_range(mapping,
|
||||||
|
pos >> PAGE_CACHE_SHIFT,
|
||||||
|
end >> PAGE_CACHE_SHIFT);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ret > 0) {
|
||||||
|
pos += ret;
|
||||||
|
iov_iter_advance(from, ret);
|
||||||
|
iocb->ki_pos = pos;
|
||||||
|
}
|
||||||
out:
|
out:
|
||||||
xfs_rw_iunlock(ip, iolock);
|
xfs_rw_iunlock(ip, iolock);
|
||||||
|
|
||||||
|
|
|
@ -1221,6 +1221,11 @@ DEFINE_IOMAP_EVENT(xfs_map_blocks_found);
|
||||||
DEFINE_IOMAP_EVENT(xfs_map_blocks_alloc);
|
DEFINE_IOMAP_EVENT(xfs_map_blocks_alloc);
|
||||||
DEFINE_IOMAP_EVENT(xfs_get_blocks_found);
|
DEFINE_IOMAP_EVENT(xfs_get_blocks_found);
|
||||||
DEFINE_IOMAP_EVENT(xfs_get_blocks_alloc);
|
DEFINE_IOMAP_EVENT(xfs_get_blocks_alloc);
|
||||||
|
DEFINE_IOMAP_EVENT(xfs_gbmap_direct);
|
||||||
|
DEFINE_IOMAP_EVENT(xfs_gbmap_direct_new);
|
||||||
|
DEFINE_IOMAP_EVENT(xfs_gbmap_direct_update);
|
||||||
|
DEFINE_IOMAP_EVENT(xfs_gbmap_direct_none);
|
||||||
|
DEFINE_IOMAP_EVENT(xfs_gbmap_direct_endio);
|
||||||
|
|
||||||
DECLARE_EVENT_CLASS(xfs_simple_io_class,
|
DECLARE_EVENT_CLASS(xfs_simple_io_class,
|
||||||
TP_PROTO(struct xfs_inode *ip, xfs_off_t offset, ssize_t count),
|
TP_PROTO(struct xfs_inode *ip, xfs_off_t offset, ssize_t count),
|
||||||
|
|
Загрузка…
Ссылка в новой задаче