diff --git a/CREDITS b/CREDITS index 9bd099d960f3..3b7a1548aaf9 100644 --- a/CREDITS +++ b/CREDITS @@ -1880,6 +1880,13 @@ S: Schlehenweg 9 S: D-91080 Uttenreuth S: Germany +N: Jaya Kumar +E: jayalk@intworks.biz +W: http://www.intworks.biz +D: Arc monochrome LCD framebuffer driver, x86 reboot fixups +S: Gurgaon, India +S: Kuala Lumpur, Malaysia + N: Gabor Kuti M: seasons@falcon.sch.bme.hu M: seasons@makosteszta.sote.hu @@ -2373,9 +2380,10 @@ E: tmolina@cablespeed.com D: bug fixes, documentation, minor hackery N: James Morris -E: jmorris@intercode.com.au +E: jmorris@redhat.com W: http://www.intercode.com.au/jmorris/ -D: Netfilter, Linux Security Modules (LSM). +D: Netfilter, Linux Security Modules (LSM), SELinux, IPSec, +D: Crypto API, general networking, miscellaneous. S: PO Box 707 S: Spit Junction NSW 2088 S: Australia @@ -2475,13 +2483,9 @@ S: Potsdam, New York 13676 S: USA N: Dave Neuer -E: dneuer@innovation-charter.com -E: mr_fred_smoothie@yahoo.com +E: dave.neuer@pobox.com D: Helped implement support for Compaq's H31xx series iPAQs D: Other mostly minor tweaks & bugfixes -S: 325 E. Main St., Suite 3 -S: Carnegie, PA 15105 -S: USA N: Michael Neuffer E: mike@i-Connect.Net diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index 8de8a01a2474..f28a24e0279b 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -138,6 +138,8 @@ java.txt - info on the in-kernel binary support for Java(tm). kbuild/ - directory with info about the kernel build process. +kdumpt.txt + - mini HowTo on getting the crash dump code to work. kernel-doc-nano-HOWTO.txt - mini HowTo on generation and location of kernel documentation files. kernel-docs.txt diff --git a/Documentation/Changes b/Documentation/Changes index 57542bc25edd..b37600754762 100644 --- a/Documentation/Changes +++ b/Documentation/Changes @@ -63,7 +63,7 @@ o PPP 2.4.0 # pppd --version o isdn4k-utils 3.1pre1 # isdnctrl 2>&1|grep version o nfs-utils 1.0.5 # showmount --version o procps 3.2.0 # ps --version -o oprofile 0.5.3 # oprofiled --version +o oprofile 0.9 # oprofiled --version Kernel compilation ================== diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index e69b3d2e7884..fa3e29ad8a46 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -8,7 +8,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \ kernel-hacking.xml kernel-locking.xml deviceiobook.xml \ - procfs-guide.xml writing_usb_driver.xml scsidrivers.xml \ + procfs-guide.xml writing_usb_driver.xml \ sis900.xml kernel-api.xml journal-api.xml lsm.xml usb.xml \ gadget.xml libata.xml mtdnand.xml librs.xml @@ -49,7 +49,7 @@ installmandocs: mandocs KERNELDOC = scripts/kernel-doc DOCPROC = scripts/basic/docproc -XMLTOFLAGS = -m Documentation/DocBook/stylesheet.xsl +XMLTOFLAGS = -m $(srctree)/Documentation/DocBook/stylesheet.xsl #XMLTOFLAGS += --skip-validation ### diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index 757cef8f8491..d650ce36485f 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -266,7 +266,7 @@ X!Ekernel/module.c Hardware Interfaces Interrupt Handling -!Iarch/i386/kernel/irq.c +!Ikernel/irq/manage.c Resources Management @@ -338,7 +338,6 @@ X!Earch/i386/kernel/mca.c X!Iinclude/linux/device.h --> !Edrivers/base/driver.c -!Edrivers/base/class_simple.c !Edrivers/base/core.c !Edrivers/base/firmware_class.c !Edrivers/base/transport_class.c diff --git a/Documentation/DocBook/libata.tmpl b/Documentation/DocBook/libata.tmpl index cf2fce7707da..6df1dfd18b65 100644 --- a/Documentation/DocBook/libata.tmpl +++ b/Documentation/DocBook/libata.tmpl @@ -14,7 +14,7 @@ - 2003 + 2003-2005 Jeff Garzik @@ -44,30 +44,38 @@ - - Thanks + + Introduction - The bulk of the ATA knowledge comes thanks to long conversations with - Andre Hedrick (www.linux-ide.org). + libATA is a library used inside the Linux kernel to support ATA host + controllers and devices. libATA provides an ATA driver API, class + transports for ATA and ATAPI devices, and SCSI<->ATA translation + for ATA devices according to the T10 SAT specification. - Thanks to Alan Cox for pointing out similarities - between SATA and SCSI, and in general for motivation to hack on - libata. - - - libata's device detection - method, ata_pio_devchk, and in general all the early probing was - based on extensive study of Hale Landis's probe/reset code in his - ATADRVR driver (www.ata-atapi.com). + This Guide documents the libATA driver API, library functions, library + internals, and a couple sample ATA low-level drivers. libata Driver API + + struct ata_port_operations is defined for every low-level libata + hardware driver, and it controls how the low-level driver + interfaces with the ATA and SCSI layers. + + + FIS-based drivers will hook into the system with ->qc_prep() and + ->qc_issue() high-level hooks. Hardware which behaves in a manner + similar to PCI IDE hardware may utilize several generic helpers, + defining at a bare minimum the bus I/O addresses of the ATA shadow + register blocks. + struct ata_port_operations + Disable ATA port void (*port_disable) (struct ata_port *); @@ -78,6 +86,9 @@ void (*port_disable) (struct ata_port *); unplug). + + + Post-IDENTIFY device configuration void (*dev_config) (struct ata_port *, struct ata_device *); @@ -88,6 +99,9 @@ void (*dev_config) (struct ata_port *, struct ata_device *); issue of SET FEATURES - XFER MODE, and prior to operation. + + + Set PIO/DMA mode void (*set_piomode) (struct ata_port *, struct ata_device *); void (*set_dmamode) (struct ata_port *, struct ata_device *); @@ -108,6 +122,9 @@ void (*post_set_mode) (struct ata_port *ap); ->set_dma_mode() is only called if DMA is possible. + + + Taskfile read/write void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf); void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); @@ -120,6 +137,9 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); taskfile register values. + + + ATA command execute void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); @@ -129,17 +149,37 @@ void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); ->tf_load(), to be initiated in hardware. + + + Per-cmd ATAPI DMA capabilities filter -u8 (*check_status)(struct ata_port *ap); -void (*dev_select)(struct ata_port *ap, unsigned int device); +int (*check_atapi_dma) (struct ata_queued_cmd *qc); - Reads the Status ATA shadow register from hardware. On some - hardware, this has the side effect of clearing the interrupt - condition. +Allow low-level driver to filter ATA PACKET commands, returning a status +indicating whether or not it is OK to use DMA for the supplied PACKET +command. + + + Read specific ATA shadow registers + +u8 (*check_status)(struct ata_port *ap); +u8 (*check_altstatus)(struct ata_port *ap); +u8 (*check_err)(struct ata_port *ap); + + + + Reads the Status/AltStatus/Error ATA shadow register from + hardware. On some hardware, reading the Status register has + the side effect of clearing the interrupt condition. + + + + + Select ATA device on bus void (*dev_select)(struct ata_port *ap, unsigned int device); @@ -147,9 +187,13 @@ void (*dev_select)(struct ata_port *ap, unsigned int device); Issues the low-level hardware command(s) that causes one of N hardware devices to be considered 'selected' (active and - available for use) on the ATA bus. + available for use) on the ATA bus. This generally has no +meaning on FIS-based devices. + + + Reset ATA bus void (*phy_reset) (struct ata_port *ap); @@ -162,17 +206,31 @@ void (*phy_reset) (struct ata_port *ap); functions ata_bus_reset() or sata_phy_reset() for this hook. + + + Control PCI IDE BMDMA engine void (*bmdma_setup) (struct ata_queued_cmd *qc); void (*bmdma_start) (struct ata_queued_cmd *qc); +void (*bmdma_stop) (struct ata_port *ap); +u8 (*bmdma_status) (struct ata_port *ap); - When setting up an IDE BMDMA transaction, these hooks arm - (->bmdma_setup) and fire (->bmdma_start) the hardware's DMA - engine. +When setting up an IDE BMDMA transaction, these hooks arm +(->bmdma_setup), fire (->bmdma_start), and halt (->bmdma_stop) +the hardware's DMA engine. ->bmdma_status is used to read the standard +PCI IDE DMA Status register. + +These hooks are typically either no-ops, or simply not implemented, in +FIS-based drivers. + + + + + High-level taskfile hooks void (*qc_prep) (struct ata_queued_cmd *qc); int (*qc_issue) (struct ata_queued_cmd *qc); @@ -190,20 +248,26 @@ int (*qc_issue) (struct ata_queued_cmd *qc); ->qc_issue is used to make a command active, once the hardware and S/G tables have been prepared. IDE BMDMA drivers use the helper function ata_qc_issue_prot() for taskfile protocol-based - dispatch. More advanced drivers roll their own ->qc_issue - implementation, using this as the "issue new ATA command to - hardware" hook. + dispatch. More advanced drivers implement their own ->qc_issue. + + + Timeout (error) handling void (*eng_timeout) (struct ata_port *ap); - This is a high level error handling function, called from the - error handling thread, when a command times out. +This is a high level error handling function, called from the +error handling thread, when a command times out. Most newer +hardware will implement its own error handling code here. IDE BMDMA +drivers may use the helper function ata_eng_timeout(). + + + Hardware interrupt handling irqreturn_t (*irq_handler)(int, void *, struct pt_regs *); void (*irq_clear) (struct ata_port *); @@ -216,6 +280,9 @@ void (*irq_clear) (struct ata_port *); is quiet. + + + SATA phy read/write u32 (*scr_read) (struct ata_port *ap, unsigned int sc_reg); void (*scr_write) (struct ata_port *ap, unsigned int sc_reg, @@ -227,6 +294,9 @@ void (*scr_write) (struct ata_port *ap, unsigned int sc_reg, if ->phy_reset hook called the sata_phy_reset() helper function. + + + Init and shutdown int (*port_start) (struct ata_port *ap); void (*port_stop) (struct ata_port *ap); @@ -240,15 +310,17 @@ void (*host_stop) (struct ata_host_set *host_set); tasks. - ->host_stop() is called when the rmmod or hot unplug process - begins. The hook must stop all hardware interrupts, DMA - engines, etc. - - ->port_stop() is called after ->host_stop(). It's sole function is to release DMA/memory resources, now that they are no longer actively being used. + + ->host_stop() is called after all ->port_stop() calls +have completed. The hook must finalize hardware shutdown, release DMA +and other resources, etc. + + + @@ -279,4 +351,24 @@ void (*host_stop) (struct ata_host_set *host_set); !Idrivers/scsi/sata_sil.c + + Thanks + + The bulk of the ATA knowledge comes thanks to long conversations with + Andre Hedrick (www.linux-ide.org), and long hours pondering the ATA + and SCSI specifications. + + + Thanks to Alan Cox for pointing out similarities + between SATA and SCSI, and in general for motivation to hack on + libata. + + + libata's device detection + method, ata_pio_devchk, and in general all the early probing was + based on extensive study of Hale Landis's probe/reset code in his + ATADRVR driver (www.ata-atapi.com). + + + diff --git a/Documentation/DocBook/scsidrivers.tmpl b/Documentation/DocBook/scsidrivers.tmpl deleted file mode 100644 index d058e65daf19..000000000000 --- a/Documentation/DocBook/scsidrivers.tmpl +++ /dev/null @@ -1,193 +0,0 @@ - - - - - - SCSI Subsystem Interfaces - - - - Douglas - Gilbert - -
- dgilbert@interlog.com -
-
-
-
- 2003-08-11 - - - 2002 - 2003 - Douglas Gilbert - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later - version. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - - - - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - - - - For more details see the file COPYING in the source - distribution of Linux. - - - -
- - - - - Introduction - -This document outlines the interface between the Linux scsi mid level -and lower level drivers. Lower level drivers are variously called HBA -(host bus adapter) drivers, host drivers (HD) or pseudo adapter drivers. -The latter alludes to the fact that a lower level driver may be a -bridge to another IO subsystem (and the "ide-scsi" driver is an example -of this). There can be many lower level drivers active in a running -system, but only one per hardware type. For example, the aic7xxx driver -controls adaptec controllers based on the 7xxx chip series. Most lower -level drivers can control one or more scsi hosts (a.k.a. scsi initiators). - - -This document can been found in an ASCII text file in the linux kernel -source: Documentation/scsi/scsi_mid_low_api.txt . -It currently hold a little more information than this document. The -drivers/scsi/hosts.h and -drivers/scsi/scsi.h headers contain descriptions of members -of important structures for the scsi subsystem. - - - - - Driver structure - -Traditionally a lower level driver for the scsi subsystem has been -at least two files in the drivers/scsi directory. For example, a -driver called "xyz" has a header file "xyz.h" and a source file -"xyz.c". [Actually there is no good reason why this couldn't all -be in one file.] Some drivers that have been ported to several operating -systems (e.g. aic7xxx which has separate files for generic and -OS-specific code) have more than two files. Such drivers tend to have -their own directory under the drivers/scsi directory. - - -scsi_module.c is normally included at the end of a lower -level driver. For it to work a declaration like this is needed before -it is included: - - static Scsi_Host_Template driver_template = DRIVER_TEMPLATE; - /* DRIVER_TEMPLATE should contain pointers to supported interface - functions. Scsi_Host_Template is defined hosts.h */ - #include "scsi_module.c" - - - -The scsi_module.c assumes the name "driver_template" is appropriately -defined. It contains 2 functions: - - - init_this_scsi_driver() called during builtin and module driver - initialization: invokes mid level's scsi_register_host() - - - exit_this_scsi_driver() called during closedown: invokes - mid level's scsi_unregister_host() - - - - -When a new, lower level driver is being added to Linux, the following -files (all found in the drivers/scsi directory) will need some attention: -Makefile, Config.help and Config.in . It is probably best to look at what -an existing lower level driver does in this regard. - - - - - Interface Functions -!EDocumentation/scsi/scsi_mid_low_api.txt - - - - Locks - -Each Scsi_Host instance has a spin_lock called Scsi_Host::default_lock -which is initialized in scsi_register() [found in hosts.c]. Within the -same function the Scsi_Host::host_lock pointer is initialized to point -at default_lock with the scsi_assign_lock() function. Thereafter -lock and unlock operations performed by the mid level use the -Scsi_Host::host_lock pointer. - - -Lower level drivers can override the use of Scsi_Host::default_lock by -using scsi_assign_lock(). The earliest opportunity to do this would -be in the detect() function after it has invoked scsi_register(). It -could be replaced by a coarser grain lock (e.g. per driver) or a -lock of equal granularity (i.e. per host). Using finer grain locks -(e.g. per scsi device) may be possible by juggling locks in -queuecommand(). - - - - - Changes since lk 2.4 series - -io_request_lock has been replaced by several finer grained locks. The lock -relevant to lower level drivers is Scsi_Host::host_lock and there is one -per scsi host. - - -The older error handling mechanism has been removed. This means the -lower level interface functions abort() and reset() have been removed. - - -In the 2.4 series the scsi subsystem configuration descriptions were -aggregated with the configuration descriptions from all other Linux -subsystems in the Documentation/Configure.help file. In the 2.5 series, -the scsi subsystem now has its own (much smaller) drivers/scsi/Config.help -file. - - - - - Credits - -The following people have contributed to this document: - - -Mike Anderson andmike@us.ibm.com - - -James Bottomley James.Bottomley@steeleye.com - - -Patrick Mansfield patmans@us.ibm.com - - - - - -
diff --git a/Documentation/DocBook/stylesheet.xsl b/Documentation/DocBook/stylesheet.xsl index e14c21dda403..64be9f7ee3bb 100644 --- a/Documentation/DocBook/stylesheet.xsl +++ b/Documentation/DocBook/stylesheet.xsl @@ -2,4 +2,5 @@ 1 ansi +80 diff --git a/Documentation/IPMI.txt b/Documentation/IPMI.txt index 90d10e708ca3..84d3d4d10c17 100644 --- a/Documentation/IPMI.txt +++ b/Documentation/IPMI.txt @@ -25,9 +25,10 @@ subject and I can't cover it all here! Configuration ------------- -The LinuxIPMI driver is modular, which means you have to pick several +The Linux IPMI driver is modular, which means you have to pick several things to have it work right depending on your hardware. Most of -these are available in the 'Character Devices' menu. +these are available in the 'Character Devices' menu then the IPMI +menu. No matter what, you must pick 'IPMI top-level message handler' to use IPMI. What you do beyond that depends on your needs and hardware. @@ -35,33 +36,30 @@ IPMI. What you do beyond that depends on your needs and hardware. The message handler does not provide any user-level interfaces. Kernel code (like the watchdog) can still use it. If you need access from userland, you need to select 'Device interface for IPMI' if you -want access through a device driver. Another interface is also -available, you may select 'IPMI sockets' in the 'Networking Support' -main menu. This provides a socket interface to IPMI. You may select -both of these at the same time, they will both work together. +want access through a device driver. -The driver interface depends on your hardware. If you have a board -with a standard interface (These will generally be either "KCS", -"SMIC", or "BT", consult your hardware manual), choose the 'IPMI SI -handler' option. A driver also exists for direct I2C access to the -IPMI management controller. Some boards support this, but it is -unknown if it will work on every board. For this, choose 'IPMI SMBus -handler', but be ready to try to do some figuring to see if it will -work. - -There is also a KCS-only driver interface supplied, but it is -depracated in favor of the SI interface. +The driver interface depends on your hardware. If your system +properly provides the SMBIOS info for IPMI, the driver will detect it +and just work. If you have a board with a standard interface (These +will generally be either "KCS", "SMIC", or "BT", consult your hardware +manual), choose the 'IPMI SI handler' option. A driver also exists +for direct I2C access to the IPMI management controller. Some boards +support this, but it is unknown if it will work on every board. For +this, choose 'IPMI SMBus handler', but be ready to try to do some +figuring to see if it will work on your system if the SMBIOS/APCI +information is wrong or not present. It is fairly safe to have both +these enabled and let the drivers auto-detect what is present. You should generally enable ACPI on your system, as systems with IPMI -should have ACPI tables describing them. +can have ACPI tables describing them. If you have a standard interface and the board manufacturer has done their job correctly, the IPMI controller should be automatically -detect (via ACPI or SMBIOS tables) and should just work. Sadly, many -boards do not have this information. The driver attempts standard -defaults, but they may not work. If you fall into this situation, you -need to read the section below named 'The SI Driver' on how to -hand-configure your system. +detected (via ACPI or SMBIOS tables) and should just work. Sadly, +many boards do not have this information. The driver attempts +standard defaults, but they may not work. If you fall into this +situation, you need to read the section below named 'The SI Driver' or +"The SMBus Driver" on how to hand-configure your system. IPMI defines a standard watchdog timer. You can enable this with the 'IPMI Watchdog Timer' config option. If you compile the driver into @@ -73,6 +71,18 @@ closed (by default it is disabled on close). Go into the 'Watchdog Cards' menu, enable 'Watchdog Timer Support', and enable the option 'Disable watchdog shutdown on close'. +IPMI systems can often be powered off using IPMI commands. Select +'IPMI Poweroff' to do this. The driver will auto-detect if the system +can be powered off by IPMI. It is safe to enable this even if your +system doesn't support this option. This works on ATCA systems, the +Radisys CPI1 card, and any IPMI system that supports standard chassis +management commands. + +If you want the driver to put an event into the event log on a panic, +enable the 'Generate a panic event to all BMCs on a panic' option. If +you want the whole panic string put into the event log using OEM +events, enable the 'Generate OEM events containing the panic string' +option. Basic Design ------------ @@ -80,7 +90,7 @@ Basic Design The Linux IPMI driver is designed to be very modular and flexible, you only need to take the pieces you need and you can use it in many different ways. Because of that, it's broken into many chunks of -code. These chunks are: +code. These chunks (by module name) are: ipmi_msghandler - This is the central piece of software for the IPMI system. It handles all messages, message timing, and responses. The @@ -93,18 +103,26 @@ ipmi_devintf - This provides a userland IOCTL interface for the IPMI driver, each open file for this device ties in to the message handler as an IPMI user. -ipmi_si - A driver for various system interfaces. This supports -KCS, SMIC, and may support BT in the future. Unless you have your own -custom interface, you probably need to use this. +ipmi_si - A driver for various system interfaces. This supports KCS, +SMIC, and BT interfaces. Unless you have an SMBus interface or your +own custom interface, you probably need to use this. ipmi_smb - A driver for accessing BMCs on the SMBus. It uses the I2C kernel driver's SMBus interfaces to send and receive IPMI messages over the SMBus. -af_ipmi - A network socket interface to IPMI. This doesn't take up -a character device in your system. +ipmi_watchdog - IPMI requires systems to have a very capable watchdog +timer. This driver implements the standard Linux watchdog timer +interface on top of the IPMI message handler. -Note that the KCS-only interface ahs been removed. +ipmi_poweroff - Some systems support the ability to be turned off via +IPMI commands. + +These are all individually selectable via configuration options. + +Note that the KCS-only interface has been removed. The af_ipmi driver +is no longer supported and has been removed because it was impossible +to do 32 bit emulation on 64-bit kernels with it. Much documentation for the interface is in the include files. The IPMI include files are: @@ -424,7 +442,7 @@ at module load time (for a module) with: modprobe ipmi_smb.o addr=,[,,[,...]] dbg=,... - [defaultprobe=0] [dbg_probe=1] + [defaultprobe=1] [dbg_probe=1] The addresses are specified in pairs, the first is the adapter ID and the second is the I2C address on that adapter. @@ -532,3 +550,67 @@ Once you open the watchdog timer, you must write a 'V' character to the device to close it, or the timer will not stop. This is a new semantic for the driver, but makes it consistent with the rest of the watchdog drivers in Linux. + + +Panic Timeouts +-------------- + +The OpenIPMI driver supports the ability to put semi-custom and custom +events in the system event log if a panic occurs. if you enable the +'Generate a panic event to all BMCs on a panic' option, you will get +one event on a panic in a standard IPMI event format. If you enable +the 'Generate OEM events containing the panic string' option, you will +also get a bunch of OEM events holding the panic string. + + +The field settings of the events are: +* Generator ID: 0x21 (kernel) +* EvM Rev: 0x03 (this event is formatting in IPMI 1.0 format) +* Sensor Type: 0x20 (OS critical stop sensor) +* Sensor #: The first byte of the panic string (0 if no panic string) +* Event Dir | Event Type: 0x6f (Assertion, sensor-specific event info) +* Event Data 1: 0xa1 (Runtime stop in OEM bytes 2 and 3) +* Event data 2: second byte of panic string +* Event data 3: third byte of panic string +See the IPMI spec for the details of the event layout. This event is +always sent to the local management controller. It will handle routing +the message to the right place + +Other OEM events have the following format: +Record ID (bytes 0-1): Set by the SEL. +Record type (byte 2): 0xf0 (OEM non-timestamped) +byte 3: The slave address of the card saving the panic +byte 4: A sequence number (starting at zero) +The rest of the bytes (11 bytes) are the panic string. If the panic string +is longer than 11 bytes, multiple messages will be sent with increasing +sequence numbers. + +Because you cannot send OEM events using the standard interface, this +function will attempt to find an SEL and add the events there. It +will first query the capabilities of the local management controller. +If it has an SEL, then they will be stored in the SEL of the local +management controller. If not, and the local management controller is +an event generator, the event receiver from the local management +controller will be queried and the events sent to the SEL on that +device. Otherwise, the events go nowhere since there is nowhere to +send them. + + +Poweroff +-------- + +If the poweroff capability is selected, the IPMI driver will install +a shutdown function into the standard poweroff function pointer. This +is in the ipmi_poweroff module. When the system requests a powerdown, +it will send the proper IPMI commands to do this. This is supported on +several platforms. + +There is a module parameter named "poweroff_control" that may either be zero +(do a power down) or 2 (do a power cycle, power the system off, then power +it on in a few seconds). Setting ipmi_poweroff.poweroff_control=x will do +the same thing on the kernel command line. The parameter is also available +via the proc filesystem in /proc/ipmi/poweroff_control. Note that if the +system does not support power cycling, it will always to the power off. + +Note that if you have ACPI enabled, the system will prefer using ACPI to +power off. diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches index 9838d32b2fe7..4d1f41b84ebc 100644 --- a/Documentation/SubmittingPatches +++ b/Documentation/SubmittingPatches @@ -132,21 +132,6 @@ which require discussion or do not have a clear advantage should usually be sent first to linux-kernel. Only after the patch is discussed should the patch then be submitted to Linus. -For small patches you may want to CC the Trivial Patch Monkey -trivial@rustcorp.com.au set up by Rusty Russell; which collects "trivial" -patches. Trivial patches must qualify for one of the following rules: - Spelling fixes in documentation - Spelling fixes which could break grep(1). - Warning fixes (cluttering with useless warnings is bad) - Compilation fixes (only if they are actually correct) - Runtime fixes (only if they actually fix things) - Removing use of deprecated functions/macros (eg. check_region). - Contact detail and documentation fixes - Non-portable code replaced by portable code (even in arch-specific, - since people copy, as long as it's trivial) - Any fix by the author/maintainer of the file. (ie. patch monkey - in re-transmission mode) - 5) Select your CC (e-mail carbon copy) list. @@ -271,7 +256,7 @@ patch, which certifies that you wrote it or otherwise have the right to pass it on as a open-source patch. The rules are pretty simple: if you can certify the below: - Developer's Certificate of Origin 1.0 + Developer's Certificate of Origin 1.1 By making a contribution to this project, I certify that: @@ -291,9 +276,15 @@ can certify the below: person who certified (a), (b) or (c) and I have not modified it. + (d) I understand and agree that this project and the contribution + are public and that a record of the contribution (including all + personal information I submit with it, including my sign-off) is + maintained indefinitely and may be redistributed consistent with + this project or the open source license(s) involved. + then you just add a line saying - Signed-off-by: Random J Developer + Signed-off-by: Random J Developer Some people also put extra tags at the end. They'll just be ignored for now, but you can do this to mark internal company procedures or just diff --git a/Documentation/basic_profiling.txt b/Documentation/basic_profiling.txt index 65e3dc2d4437..8764e9f70821 100644 --- a/Documentation/basic_profiling.txt +++ b/Documentation/basic_profiling.txt @@ -27,9 +27,13 @@ dump output readprofile -m /boot/System.map > captured_profile Oprofile -------- -Get the source (I use 0.8) from http://oprofile.sourceforge.net/ -and add "idle=poll" to the kernel command line + +Get the source (see Changes for required version) from +http://oprofile.sourceforge.net/ and add "idle=poll" to the kernel command +line. + Configure with CONFIG_PROFILING=y and CONFIG_OPROFILE=y & reboot on new kernel + ./configure --with-kernel-support make install @@ -46,7 +50,7 @@ start opcontrol --start stop opcontrol --stop dump output opreport > output_file -To only report on the kernel, run opreport /boot/vmlinux > output_file +To only report on the kernel, run opreport -l /boot/vmlinux > output_file A reset is needed to clear old statistics, which survive a reboot. diff --git a/Documentation/cdrom/sbpcd b/Documentation/cdrom/sbpcd index d1825dffca34..b3ba63f4ce3e 100644 --- a/Documentation/cdrom/sbpcd +++ b/Documentation/cdrom/sbpcd @@ -419,6 +419,7 @@ into the file "track01": */ #include #include +#include #include static struct cdrom_tochdr hdr; @@ -429,7 +430,7 @@ static int datafile, drive; static int i, j, limit, track, err; static char filename[32]; -main(int argc, char *argv[]) +int main(int argc, char *argv[]) { /* * open /dev/cdrom @@ -516,6 +517,7 @@ entry[track+1].cdte_addr.lba=entry[track].cdte_addr.lba+300; } arg.addr.lba++; } + return 0; } /*===================== end program ========================================*/ @@ -564,15 +566,16 @@ Appendix -- the "cdtester" utility: #include #include #include +#include #include #ifdef AZT_PRIVATE_IOCTLS #include -#endif AZT_PRIVATE_IOCTLS +#endif /* AZT_PRIVATE_IOCTLS */ #ifdef SBP_PRIVATE_IOCTLS #include #include -#endif SBP_PRIVATE_IOCTLS +#endif /* SBP_PRIVATE_IOCTLS */ struct cdrom_tochdr hdr; struct cdrom_tochdr tocHdr; @@ -590,7 +593,7 @@ union struct cdrom_msf msf; unsigned char buf[CD_FRAMESIZE_RAW]; } azt; -#endif AZT_PRIVATE_IOCTLS +#endif /* AZT_PRIVATE_IOCTLS */ int i, i1, i2, i3, j, k; unsigned char sequence=0; unsigned char command[80]; @@ -738,7 +741,7 @@ void display(int size,unsigned char *buffer) } } -main(int argc, char *argv[]) +int main(int argc, char *argv[]) { printf("\nTesting tool for a CDROM driver's audio functions V0.1\n"); printf("(C) 1995 Eberhard Moenkeberg \n"); @@ -1046,12 +1049,13 @@ main(int argc, char *argv[]) rc=ioctl(drive,CDROMAUDIOBUFSIZ,j); printf("%d frames granted.\n",rc); break; -#endif SBP_PRIVATE_IOCTLS +#endif /* SBP_PRIVATE_IOCTLS */ default: printf("unknown command: \"%s\".\n",command); break; } } + return 0; } /*==========================================================================*/ diff --git a/Documentation/cpu-freq/cpufreq-stats.txt b/Documentation/cpu-freq/cpufreq-stats.txt new file mode 100644 index 000000000000..e2d1e760b4ba --- /dev/null +++ b/Documentation/cpu-freq/cpufreq-stats.txt @@ -0,0 +1,128 @@ + + CPU frequency and voltage scaling statictics in the Linux(TM) kernel + + + L i n u x c p u f r e q - s t a t s d r i v e r + + - information for users - + + + Venkatesh Pallipadi + +Contents +1. Introduction +2. Statistics Provided (with example) +3. Configuring cpufreq-stats + + +1. Introduction + +cpufreq-stats is a driver that provices CPU frequency statistics for each CPU. +This statistics is provided in /sysfs as a bunch of read_only interfaces. This +interface (when configured) will appear in a seperate directory under cpufreq +in /sysfs (/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU. +Various statistics will form read_only files under this directory. + +This driver is designed to be independent of any particular cpufreq_driver +that may be running on your CPU. So, it will work with any cpufreq_driver. + + +2. Statistics Provided (with example) + +cpufreq stats provides following statistics (explained in detail below). +- time_in_state +- total_trans +- trans_table + +All the statistics will be from the time the stats driver has been inserted +to the time when a read of a particular statistic is done. Obviously, stats +driver will not have any information about the the frequcny transitions before +the stats driver insertion. + +-------------------------------------------------------------------------------- +:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l +total 0 +drwxr-xr-x 2 root root 0 May 14 16:06 . +drwxr-xr-x 3 root root 0 May 14 15:58 .. +-r--r--r-- 1 root root 4096 May 14 16:06 time_in_state +-r--r--r-- 1 root root 4096 May 14 16:06 total_trans +-r--r--r-- 1 root root 4096 May 14 16:06 trans_table +-------------------------------------------------------------------------------- + +- time_in_state +This gives the amount of time spent in each of the frequencies supported by +this CPU. The cat output will have "