mfd: Calibrate ab8500 gpadc using OTP values

The GPADC found in the AB8500 needs to be calibrated to work
properly. This is done by writing a number of special OTP
(one-time-programmable) registers at production. This patch
makes sure that these values are used to calibrate the returned
value from the GPADC so that it is correct.

Signed-off-by: Johan Palsson <johan.palsson@stericsson.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This commit is contained in:
Johan Palsson 2011-03-05 11:46:37 +01:00 коммит произвёл Samuel Ortiz
Родитель 633e0fa590
Коммит 586f3318ad
1 изменённых файлов: 281 добавлений и 5 удалений

Просмотреть файл

@ -4,6 +4,7 @@
* License Terms: GNU General Public License v2
* Author: Arun R Murthy <arun.murthy@stericsson.com>
* Author: Daniel Willerud <daniel.willerud@stericsson.com>
* Author: Johan Palsson <johan.palsson@stericsson.com>
*/
#include <linux/init.h>
#include <linux/module.h>
@ -36,6 +37,18 @@
#define AB8500_GPADC_AUTODATAH_REG 0x08
#define AB8500_GPADC_MUX_CTRL_REG 0x09
/*
* OTP register offsets
* Bank : 0x15
*/
#define AB8500_GPADC_CAL_1 0x0F
#define AB8500_GPADC_CAL_2 0x10
#define AB8500_GPADC_CAL_3 0x11
#define AB8500_GPADC_CAL_4 0x12
#define AB8500_GPADC_CAL_5 0x13
#define AB8500_GPADC_CAL_6 0x14
#define AB8500_GPADC_CAL_7 0x15
/* gpadc constants */
#define EN_VINTCORE12 0x04
#define EN_VTVOUT 0x02
@ -47,8 +60,46 @@
#define DIS_ZERO 0x00
#define GPADC_BUSY 0x01
/* GPADC constants from AB8500 spec, UM0836 */
#define ADC_RESOLUTION 1024
#define ADC_CH_BTEMP_MIN 0
#define ADC_CH_BTEMP_MAX 1350
#define ADC_CH_DIETEMP_MIN 0
#define ADC_CH_DIETEMP_MAX 1350
#define ADC_CH_CHG_V_MIN 0
#define ADC_CH_CHG_V_MAX 20030
#define ADC_CH_ACCDET2_MIN 0
#define ADC_CH_ACCDET2_MAX 2500
#define ADC_CH_VBAT_MIN 2300
#define ADC_CH_VBAT_MAX 4800
#define ADC_CH_CHG_I_MIN 0
#define ADC_CH_CHG_I_MAX 1500
#define ADC_CH_BKBAT_MIN 0
#define ADC_CH_BKBAT_MAX 3200
/* This is used to not lose precision when dividing to get gain and offset */
#define CALIB_SCALE 1000
enum cal_channels {
ADC_INPUT_VMAIN = 0,
ADC_INPUT_BTEMP,
ADC_INPUT_VBAT,
NBR_CAL_INPUTS,
};
/**
* struct ab8500_gpadc - ab8500 GPADC device information
* struct adc_cal_data - Table for storing gain and offset for the calibrated
* ADC channels
* @gain: Gain of the ADC channel
* @offset: Offset of the ADC channel
*/
struct adc_cal_data {
u64 gain;
u64 offset;
};
/**
* struct ab8500_gpadc - AB8500 GPADC device information
* @dev: pointer to the struct device
* @node: a list of AB8500 GPADCs, hence prepared for
reentrance
@ -57,6 +108,7 @@
* @ab8500_gpadc_lock: structure of type mutex
* @regu: pointer to the struct regulator
* @irq: interrupt number that is used by gpadc
* @cal_data array of ADC calibration data structs
*/
struct ab8500_gpadc {
struct device *dev;
@ -65,6 +117,7 @@ struct ab8500_gpadc {
struct mutex ab8500_gpadc_lock;
struct regulator *regu;
int irq;
struct adc_cal_data cal_data[NBR_CAL_INPUTS];
};
static LIST_HEAD(ab8500_gpadc_list);
@ -86,13 +139,102 @@ struct ab8500_gpadc *ab8500_gpadc_get(char *name)
}
EXPORT_SYMBOL(ab8500_gpadc_get);
static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 input,
int ad_value)
{
int res;
switch (input) {
case MAIN_CHARGER_V:
/* For some reason we don't have calibrated data */
if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
ADC_CH_CHG_V_MIN) * ad_value /
ADC_RESOLUTION;
break;
}
/* Here we can use the calibrated data */
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
break;
case BAT_CTRL:
case BTEMP_BALL:
case ACC_DETECT1:
case ADC_AUX1:
case ADC_AUX2:
/* For some reason we don't have calibrated data */
if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
ADC_CH_BTEMP_MIN) * ad_value /
ADC_RESOLUTION;
break;
}
/* Here we can use the calibrated data */
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
break;
case MAIN_BAT_V:
/* For some reason we don't have calibrated data */
if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
ADC_CH_VBAT_MIN) * ad_value /
ADC_RESOLUTION;
break;
}
/* Here we can use the calibrated data */
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
break;
case DIE_TEMP:
res = ADC_CH_DIETEMP_MIN +
(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
ADC_RESOLUTION;
break;
case ACC_DETECT2:
res = ADC_CH_ACCDET2_MIN +
(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
ADC_RESOLUTION;
break;
case VBUS_V:
res = ADC_CH_CHG_V_MIN +
(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
ADC_RESOLUTION;
break;
case MAIN_CHARGER_C:
case USB_CHARGER_C:
res = ADC_CH_CHG_I_MIN +
(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
ADC_RESOLUTION;
break;
case BK_BAT_V:
res = ADC_CH_BKBAT_MIN +
(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
ADC_RESOLUTION;
break;
default:
dev_err(gpadc->dev,
"unknown channel, not possible to convert\n");
res = -EINVAL;
break;
}
return res;
}
/**
* ab8500_gpadc_convert() - gpadc conversion
* @input: analog input to be converted to digital data
*
* This function converts the selected analog i/p to digital
* data. Thereafter calibration has to be made to obtain the
* data in the required quantity measurement.
* data.
*/
int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
{
@ -189,7 +331,8 @@ int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
/* Disable VTVout LDO this is required for GPADC */
regulator_disable(gpadc->regu);
mutex_unlock(&gpadc->ab8500_gpadc_lock);
return data;
ret = ab8500_gpadc_ad_to_voltage(gpadc, input, data);
return ret;
out:
/*
@ -227,6 +370,138 @@ static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
return IRQ_HANDLED;
}
static int otp_cal_regs[] = {
AB8500_GPADC_CAL_1,
AB8500_GPADC_CAL_2,
AB8500_GPADC_CAL_3,
AB8500_GPADC_CAL_4,
AB8500_GPADC_CAL_5,
AB8500_GPADC_CAL_6,
AB8500_GPADC_CAL_7,
};
static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
{
int i;
int ret[ARRAY_SIZE(otp_cal_regs)];
u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
int vmain_high, vmain_low;
int btemp_high, btemp_low;
int vbat_high, vbat_low;
/* First we read all OTP registers and store the error code */
for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
ret[i] = abx500_get_register_interruptible(gpadc->dev,
AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
if (ret[i] < 0)
dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
__func__, otp_cal_regs[i]);
}
/*
* The ADC calibration data is stored in OTP registers.
* The layout of the calibration data is outlined below and a more
* detailed description can be found in UM0836
*
* vm_h/l = vmain_high/low
* bt_h/l = btemp_high/low
* vb_h/l = vbat_high/low
*
* Data bits:
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | vm_h9 | vm_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
* |.......|.......|.......|.......|.......|.......|.......|.......
*
*
* Ideal output ADC codes corresponding to injected input voltages
* during manufacturing is:
*
* vmain_high: Vin = 19500mV / ADC ideal code = 997
* vmain_low: Vin = 315mV / ADC ideal code = 16
* btemp_high: Vin = 1300mV / ADC ideal code = 985
* btemp_low: Vin = 21mV / ADC ideal code = 16
* vbat_high: Vin = 4700mV / ADC ideal code = 982
* vbat_low: Vin = 2380mV / ADC ideal code = 33
*/
/* Calculate gain and offset for VMAIN if all reads succeeded */
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
((gpadc_cal[1] & 0x3F) << 2) |
((gpadc_cal[2] & 0xC0) >> 6));
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low);
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
(CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
} else {
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
}
/* Calculate gain and offset for BTEMP if all reads succeeded */
if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
(gpadc_cal[3] << 1) |
((gpadc_cal[4] & 0x80) >> 7));
btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
gpadc->cal_data[ADC_INPUT_BTEMP].gain =
CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
(CALIB_SCALE * (1300 - 21) /
(btemp_high - btemp_low)) * btemp_high;
} else {
gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
}
/* Calculate gain and offset for VBAT if all reads succeeded */
if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
(4700 - 2380) / (vbat_high - vbat_low);
gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
(CALIB_SCALE * (4700 - 2380) /
(vbat_high - vbat_low)) * vbat_high;
} else {
gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
}
dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
gpadc->cal_data[ADC_INPUT_VMAIN].gain,
gpadc->cal_data[ADC_INPUT_VMAIN].offset);
dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
gpadc->cal_data[ADC_INPUT_BTEMP].gain,
gpadc->cal_data[ADC_INPUT_BTEMP].offset);
dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
gpadc->cal_data[ADC_INPUT_VBAT].gain,
gpadc->cal_data[ADC_INPUT_VBAT].offset);
}
static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
{
int ret = 0;
@ -269,6 +544,7 @@ static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
dev_err(gpadc->dev, "failed to get vtvout LDO\n");
goto fail_irq;
}
ab8500_gpadc_read_calibration_data(gpadc);
list_add_tail(&gpadc->node, &ab8500_gpadc_list);
dev_dbg(gpadc->dev, "probe success\n");
return 0;
@ -318,6 +594,6 @@ subsys_initcall_sync(ab8500_gpadc_init);
module_exit(ab8500_gpadc_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Arun R Murthy, Daniel Willerud");
MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
MODULE_ALIAS("platform:ab8500_gpadc");
MODULE_DESCRIPTION("AB8500 GPADC driver");