[PATCH] powerpc: Split out PCI address cache to its own file
25-pci-address-cache.patch The core EEH file is rather large. This patch splits out a self-contained chunk of it into its own file. This is the chunk that performes the caching and lookup of pci devices based on the i/o addresses of thier resoures. This code is almos architecture-independent and could be used by any system that wanted to find a pci device based only on the i/o address used by the device. Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> (cherry picked from b0b291d59906d4a9a89ed9e34d9fd684c7188924 commit)
This commit is contained in:
Родитель
77bd741561
Коммит
5d5a0936b3
|
@ -4,7 +4,7 @@ obj-$(CONFIG_SMP) += smp.o
|
|||
obj-$(CONFIG_IBMVIO) += vio.o
|
||||
obj-$(CONFIG_XICS) += xics.o
|
||||
obj-$(CONFIG_SCANLOG) += scanlog.o
|
||||
obj-$(CONFIG_EEH) += eeh.o eeh_driver.o eeh_event.o
|
||||
obj-$(CONFIG_EEH) += eeh.o eeh_cache.o eeh_driver.o eeh_event.o
|
||||
|
||||
obj-$(CONFIG_HVC_CONSOLE) += hvconsole.o
|
||||
obj-$(CONFIG_HVCS) += hvcserver.o
|
||||
|
|
|
@ -76,9 +76,6 @@
|
|||
*/
|
||||
#define EEH_MAX_FAILS 100000
|
||||
|
||||
/* Misc forward declaraions */
|
||||
static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
|
||||
|
||||
/* RTAS tokens */
|
||||
static int ibm_set_eeh_option;
|
||||
static int ibm_set_slot_reset;
|
||||
|
@ -107,296 +104,8 @@ static DEFINE_PER_CPU(unsigned long, false_positives);
|
|||
static DEFINE_PER_CPU(unsigned long, ignored_failures);
|
||||
static DEFINE_PER_CPU(unsigned long, slot_resets);
|
||||
|
||||
/**
|
||||
* The pci address cache subsystem. This subsystem places
|
||||
* PCI device address resources into a red-black tree, sorted
|
||||
* according to the address range, so that given only an i/o
|
||||
* address, the corresponding PCI device can be **quickly**
|
||||
* found. It is safe to perform an address lookup in an interrupt
|
||||
* context; this ability is an important feature.
|
||||
*
|
||||
* Currently, the only customer of this code is the EEH subsystem;
|
||||
* thus, this code has been somewhat tailored to suit EEH better.
|
||||
* In particular, the cache does *not* hold the addresses of devices
|
||||
* for which EEH is not enabled.
|
||||
*
|
||||
* (Implementation Note: The RB tree seems to be better/faster
|
||||
* than any hash algo I could think of for this problem, even
|
||||
* with the penalty of slow pointer chases for d-cache misses).
|
||||
*/
|
||||
struct pci_io_addr_range
|
||||
{
|
||||
struct rb_node rb_node;
|
||||
unsigned long addr_lo;
|
||||
unsigned long addr_hi;
|
||||
struct pci_dev *pcidev;
|
||||
unsigned int flags;
|
||||
};
|
||||
|
||||
static struct pci_io_addr_cache
|
||||
{
|
||||
struct rb_root rb_root;
|
||||
spinlock_t piar_lock;
|
||||
} pci_io_addr_cache_root;
|
||||
|
||||
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
|
||||
{
|
||||
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
|
||||
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
|
||||
if (addr < piar->addr_lo) {
|
||||
n = n->rb_left;
|
||||
} else {
|
||||
if (addr > piar->addr_hi) {
|
||||
n = n->rb_right;
|
||||
} else {
|
||||
pci_dev_get(piar->pcidev);
|
||||
return piar->pcidev;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_get_device_by_addr - Get device, given only address
|
||||
* @addr: mmio (PIO) phys address or i/o port number
|
||||
*
|
||||
* Given an mmio phys address, or a port number, find a pci device
|
||||
* that implements this address. Be sure to pci_dev_put the device
|
||||
* when finished. I/O port numbers are assumed to be offset
|
||||
* from zero (that is, they do *not* have pci_io_addr added in).
|
||||
* It is safe to call this function within an interrupt.
|
||||
*/
|
||||
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
|
||||
{
|
||||
struct pci_dev *dev;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
dev = __pci_get_device_by_addr(addr);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
return dev;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
/*
|
||||
* Handy-dandy debug print routine, does nothing more
|
||||
* than print out the contents of our addr cache.
|
||||
*/
|
||||
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
|
||||
{
|
||||
struct rb_node *n;
|
||||
int cnt = 0;
|
||||
|
||||
n = rb_first(&cache->rb_root);
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
|
||||
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
|
||||
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
|
||||
cnt++;
|
||||
n = rb_next(n);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Insert address range into the rb tree. */
|
||||
static struct pci_io_addr_range *
|
||||
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
|
||||
unsigned long ahi, unsigned int flags)
|
||||
{
|
||||
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
struct pci_io_addr_range *piar;
|
||||
|
||||
/* Walk tree, find a place to insert into tree */
|
||||
while (*p) {
|
||||
parent = *p;
|
||||
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
|
||||
if (ahi < piar->addr_lo) {
|
||||
p = &parent->rb_left;
|
||||
} else if (alo > piar->addr_hi) {
|
||||
p = &parent->rb_right;
|
||||
} else {
|
||||
if (dev != piar->pcidev ||
|
||||
alo != piar->addr_lo || ahi != piar->addr_hi) {
|
||||
printk(KERN_WARNING "PIAR: overlapping address range\n");
|
||||
}
|
||||
return piar;
|
||||
}
|
||||
}
|
||||
piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
|
||||
if (!piar)
|
||||
return NULL;
|
||||
|
||||
piar->addr_lo = alo;
|
||||
piar->addr_hi = ahi;
|
||||
piar->pcidev = dev;
|
||||
piar->flags = flags;
|
||||
|
||||
#ifdef DEBUG
|
||||
printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
|
||||
alo, ahi, pci_name (dev));
|
||||
#endif
|
||||
|
||||
rb_link_node(&piar->rb_node, parent, p);
|
||||
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
|
||||
|
||||
return piar;
|
||||
}
|
||||
|
||||
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
|
||||
{
|
||||
struct device_node *dn;
|
||||
struct pci_dn *pdn;
|
||||
int i;
|
||||
int inserted = 0;
|
||||
|
||||
dn = pci_device_to_OF_node(dev);
|
||||
if (!dn) {
|
||||
printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
|
||||
return;
|
||||
}
|
||||
|
||||
/* Skip any devices for which EEH is not enabled. */
|
||||
pdn = PCI_DN(dn);
|
||||
if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
|
||||
pdn->eeh_mode & EEH_MODE_NOCHECK) {
|
||||
#ifdef DEBUG
|
||||
printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
|
||||
pci_name(dev), pdn->node->full_name);
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
/* The cache holds a reference to the device... */
|
||||
pci_dev_get(dev);
|
||||
|
||||
/* Walk resources on this device, poke them into the tree */
|
||||
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
||||
unsigned long start = pci_resource_start(dev,i);
|
||||
unsigned long end = pci_resource_end(dev,i);
|
||||
unsigned int flags = pci_resource_flags(dev,i);
|
||||
|
||||
/* We are interested only bus addresses, not dma or other stuff */
|
||||
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
|
||||
continue;
|
||||
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
|
||||
continue;
|
||||
pci_addr_cache_insert(dev, start, end, flags);
|
||||
inserted = 1;
|
||||
}
|
||||
|
||||
/* If there was nothing to add, the cache has no reference... */
|
||||
if (!inserted)
|
||||
pci_dev_put(dev);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_insert_device - Add a device to the address cache
|
||||
* @dev: PCI device whose I/O addresses we are interested in.
|
||||
*
|
||||
* In order to support the fast lookup of devices based on addresses,
|
||||
* we maintain a cache of devices that can be quickly searched.
|
||||
* This routine adds a device to that cache.
|
||||
*/
|
||||
static void pci_addr_cache_insert_device(struct pci_dev *dev)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
__pci_addr_cache_insert_device(dev);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
}
|
||||
|
||||
static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
|
||||
{
|
||||
struct rb_node *n;
|
||||
int removed = 0;
|
||||
|
||||
restart:
|
||||
n = rb_first(&pci_io_addr_cache_root.rb_root);
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
|
||||
if (piar->pcidev == dev) {
|
||||
rb_erase(n, &pci_io_addr_cache_root.rb_root);
|
||||
removed = 1;
|
||||
kfree(piar);
|
||||
goto restart;
|
||||
}
|
||||
n = rb_next(n);
|
||||
}
|
||||
|
||||
/* The cache no longer holds its reference to this device... */
|
||||
if (removed)
|
||||
pci_dev_put(dev);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_remove_device - remove pci device from addr cache
|
||||
* @dev: device to remove
|
||||
*
|
||||
* Remove a device from the addr-cache tree.
|
||||
* This is potentially expensive, since it will walk
|
||||
* the tree multiple times (once per resource).
|
||||
* But so what; device removal doesn't need to be that fast.
|
||||
*/
|
||||
static void pci_addr_cache_remove_device(struct pci_dev *dev)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
__pci_addr_cache_remove_device(dev);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_build - Build a cache of I/O addresses
|
||||
*
|
||||
* Build a cache of pci i/o addresses. This cache will be used to
|
||||
* find the pci device that corresponds to a given address.
|
||||
* This routine scans all pci busses to build the cache.
|
||||
* Must be run late in boot process, after the pci controllers
|
||||
* have been scaned for devices (after all device resources are known).
|
||||
*/
|
||||
void __init pci_addr_cache_build(void)
|
||||
{
|
||||
struct device_node *dn;
|
||||
struct pci_dev *dev = NULL;
|
||||
|
||||
if (!eeh_subsystem_enabled)
|
||||
return;
|
||||
|
||||
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
|
||||
|
||||
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
|
||||
/* Ignore PCI bridges ( XXX why ??) */
|
||||
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
|
||||
continue;
|
||||
}
|
||||
pci_addr_cache_insert_device(dev);
|
||||
|
||||
/* Save the BAR's; firmware doesn't restore these after EEH reset */
|
||||
dn = pci_device_to_OF_node(dev);
|
||||
eeh_save_bars(dev, PCI_DN(dn));
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
/* Verify tree built up above, echo back the list of addrs. */
|
||||
pci_addr_cache_print(&pci_io_addr_cache_root);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* --------------------------------------------------------------- */
|
||||
/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
|
||||
/* Below lies the EEH event infrastructure */
|
||||
|
||||
void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
|
||||
{
|
||||
|
@ -880,7 +589,7 @@ void eeh_restore_bars(struct pci_dn *pdn)
|
|||
* PCI devices are added individuallly; but, for the restore,
|
||||
* an entire slot is reset at a time.
|
||||
*/
|
||||
static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
|
||||
void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
|
||||
{
|
||||
int i;
|
||||
|
||||
|
|
|
@ -0,0 +1,317 @@
|
|||
/*
|
||||
* eeh_cache.c
|
||||
* PCI address cache; allows the lookup of PCI devices based on I/O address
|
||||
*
|
||||
* Copyright (C) 2004 Linas Vepstas <linas@austin.ibm.com> IBM Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <linux/list.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/rbtree.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <asm/atomic.h>
|
||||
#include <asm/pci-bridge.h>
|
||||
#include <asm/ppc-pci.h>
|
||||
#include <asm/systemcfg.h>
|
||||
|
||||
#undef DEBUG
|
||||
|
||||
/**
|
||||
* The pci address cache subsystem. This subsystem places
|
||||
* PCI device address resources into a red-black tree, sorted
|
||||
* according to the address range, so that given only an i/o
|
||||
* address, the corresponding PCI device can be **quickly**
|
||||
* found. It is safe to perform an address lookup in an interrupt
|
||||
* context; this ability is an important feature.
|
||||
*
|
||||
* Currently, the only customer of this code is the EEH subsystem;
|
||||
* thus, this code has been somewhat tailored to suit EEH better.
|
||||
* In particular, the cache does *not* hold the addresses of devices
|
||||
* for which EEH is not enabled.
|
||||
*
|
||||
* (Implementation Note: The RB tree seems to be better/faster
|
||||
* than any hash algo I could think of for this problem, even
|
||||
* with the penalty of slow pointer chases for d-cache misses).
|
||||
*/
|
||||
struct pci_io_addr_range
|
||||
{
|
||||
struct rb_node rb_node;
|
||||
unsigned long addr_lo;
|
||||
unsigned long addr_hi;
|
||||
struct pci_dev *pcidev;
|
||||
unsigned int flags;
|
||||
};
|
||||
|
||||
static struct pci_io_addr_cache
|
||||
{
|
||||
struct rb_root rb_root;
|
||||
spinlock_t piar_lock;
|
||||
} pci_io_addr_cache_root;
|
||||
|
||||
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
|
||||
{
|
||||
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
|
||||
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
|
||||
if (addr < piar->addr_lo) {
|
||||
n = n->rb_left;
|
||||
} else {
|
||||
if (addr > piar->addr_hi) {
|
||||
n = n->rb_right;
|
||||
} else {
|
||||
pci_dev_get(piar->pcidev);
|
||||
return piar->pcidev;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_get_device_by_addr - Get device, given only address
|
||||
* @addr: mmio (PIO) phys address or i/o port number
|
||||
*
|
||||
* Given an mmio phys address, or a port number, find a pci device
|
||||
* that implements this address. Be sure to pci_dev_put the device
|
||||
* when finished. I/O port numbers are assumed to be offset
|
||||
* from zero (that is, they do *not* have pci_io_addr added in).
|
||||
* It is safe to call this function within an interrupt.
|
||||
*/
|
||||
struct pci_dev *pci_get_device_by_addr(unsigned long addr)
|
||||
{
|
||||
struct pci_dev *dev;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
dev = __pci_get_device_by_addr(addr);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
return dev;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
/*
|
||||
* Handy-dandy debug print routine, does nothing more
|
||||
* than print out the contents of our addr cache.
|
||||
*/
|
||||
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
|
||||
{
|
||||
struct rb_node *n;
|
||||
int cnt = 0;
|
||||
|
||||
n = rb_first(&cache->rb_root);
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
|
||||
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
|
||||
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
|
||||
cnt++;
|
||||
n = rb_next(n);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Insert address range into the rb tree. */
|
||||
static struct pci_io_addr_range *
|
||||
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
|
||||
unsigned long ahi, unsigned int flags)
|
||||
{
|
||||
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
struct pci_io_addr_range *piar;
|
||||
|
||||
/* Walk tree, find a place to insert into tree */
|
||||
while (*p) {
|
||||
parent = *p;
|
||||
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
|
||||
if (ahi < piar->addr_lo) {
|
||||
p = &parent->rb_left;
|
||||
} else if (alo > piar->addr_hi) {
|
||||
p = &parent->rb_right;
|
||||
} else {
|
||||
if (dev != piar->pcidev ||
|
||||
alo != piar->addr_lo || ahi != piar->addr_hi) {
|
||||
printk(KERN_WARNING "PIAR: overlapping address range\n");
|
||||
}
|
||||
return piar;
|
||||
}
|
||||
}
|
||||
piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
|
||||
if (!piar)
|
||||
return NULL;
|
||||
|
||||
piar->addr_lo = alo;
|
||||
piar->addr_hi = ahi;
|
||||
piar->pcidev = dev;
|
||||
piar->flags = flags;
|
||||
|
||||
#ifdef DEBUG
|
||||
printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
|
||||
alo, ahi, pci_name (dev));
|
||||
#endif
|
||||
|
||||
rb_link_node(&piar->rb_node, parent, p);
|
||||
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
|
||||
|
||||
return piar;
|
||||
}
|
||||
|
||||
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
|
||||
{
|
||||
struct device_node *dn;
|
||||
struct pci_dn *pdn;
|
||||
int i;
|
||||
int inserted = 0;
|
||||
|
||||
dn = pci_device_to_OF_node(dev);
|
||||
if (!dn) {
|
||||
printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
|
||||
return;
|
||||
}
|
||||
|
||||
/* Skip any devices for which EEH is not enabled. */
|
||||
pdn = PCI_DN(dn);
|
||||
if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
|
||||
pdn->eeh_mode & EEH_MODE_NOCHECK) {
|
||||
#ifdef DEBUG
|
||||
printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
|
||||
pci_name(dev), pdn->node->full_name);
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
/* The cache holds a reference to the device... */
|
||||
pci_dev_get(dev);
|
||||
|
||||
/* Walk resources on this device, poke them into the tree */
|
||||
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
||||
unsigned long start = pci_resource_start(dev,i);
|
||||
unsigned long end = pci_resource_end(dev,i);
|
||||
unsigned int flags = pci_resource_flags(dev,i);
|
||||
|
||||
/* We are interested only bus addresses, not dma or other stuff */
|
||||
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
|
||||
continue;
|
||||
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
|
||||
continue;
|
||||
pci_addr_cache_insert(dev, start, end, flags);
|
||||
inserted = 1;
|
||||
}
|
||||
|
||||
/* If there was nothing to add, the cache has no reference... */
|
||||
if (!inserted)
|
||||
pci_dev_put(dev);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_insert_device - Add a device to the address cache
|
||||
* @dev: PCI device whose I/O addresses we are interested in.
|
||||
*
|
||||
* In order to support the fast lookup of devices based on addresses,
|
||||
* we maintain a cache of devices that can be quickly searched.
|
||||
* This routine adds a device to that cache.
|
||||
*/
|
||||
void pci_addr_cache_insert_device(struct pci_dev *dev)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
__pci_addr_cache_insert_device(dev);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
}
|
||||
|
||||
static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
|
||||
{
|
||||
struct rb_node *n;
|
||||
int removed = 0;
|
||||
|
||||
restart:
|
||||
n = rb_first(&pci_io_addr_cache_root.rb_root);
|
||||
while (n) {
|
||||
struct pci_io_addr_range *piar;
|
||||
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
||||
|
||||
if (piar->pcidev == dev) {
|
||||
rb_erase(n, &pci_io_addr_cache_root.rb_root);
|
||||
removed = 1;
|
||||
kfree(piar);
|
||||
goto restart;
|
||||
}
|
||||
n = rb_next(n);
|
||||
}
|
||||
|
||||
/* The cache no longer holds its reference to this device... */
|
||||
if (removed)
|
||||
pci_dev_put(dev);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_remove_device - remove pci device from addr cache
|
||||
* @dev: device to remove
|
||||
*
|
||||
* Remove a device from the addr-cache tree.
|
||||
* This is potentially expensive, since it will walk
|
||||
* the tree multiple times (once per resource).
|
||||
* But so what; device removal doesn't need to be that fast.
|
||||
*/
|
||||
void pci_addr_cache_remove_device(struct pci_dev *dev)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
__pci_addr_cache_remove_device(dev);
|
||||
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* pci_addr_cache_build - Build a cache of I/O addresses
|
||||
*
|
||||
* Build a cache of pci i/o addresses. This cache will be used to
|
||||
* find the pci device that corresponds to a given address.
|
||||
* This routine scans all pci busses to build the cache.
|
||||
* Must be run late in boot process, after the pci controllers
|
||||
* have been scaned for devices (after all device resources are known).
|
||||
*/
|
||||
void __init pci_addr_cache_build(void)
|
||||
{
|
||||
struct device_node *dn;
|
||||
struct pci_dev *dev = NULL;
|
||||
|
||||
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
|
||||
|
||||
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
|
||||
/* Ignore PCI bridges */
|
||||
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
|
||||
continue;
|
||||
|
||||
pci_addr_cache_insert_device(dev);
|
||||
|
||||
/* Save the BAR's; firmware doesn't restore these after EEH reset */
|
||||
dn = pci_device_to_OF_node(dev);
|
||||
eeh_save_bars(dev, PCI_DN(dn));
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
/* Verify tree built up above, echo back the list of addrs. */
|
||||
pci_addr_cache_print(&pci_io_addr_cache_root);
|
||||
#endif
|
||||
}
|
||||
|
|
@ -52,6 +52,14 @@ extern unsigned long pci_probe_only;
|
|||
|
||||
/* ---- EEH internal-use-only related routines ---- */
|
||||
#ifdef CONFIG_EEH
|
||||
|
||||
void pci_addr_cache_insert_device(struct pci_dev *dev);
|
||||
void pci_addr_cache_remove_device(struct pci_dev *dev);
|
||||
void pci_addr_cache_build(void);
|
||||
struct pci_dev *pci_get_device_by_addr(unsigned long addr);
|
||||
|
||||
void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
|
||||
|
||||
/**
|
||||
* eeh_slot_error_detail -- record and EEH error condition to the log
|
||||
* @severity: 1 if temporary, 2 if permanent failure.
|
||||
|
|
Загрузка…
Ссылка в новой задаче