staging: crypto: skein: cleanup >80 character lines

Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Jason Cooper 2014-03-24 01:49:11 +00:00 коммит произвёл Greg Kroah-Hartman
Родитель 06a620f09e
Коммит 60eb817520
10 изменённых файлов: 8836 добавлений и 2625 удалений

Просмотреть файл

@ -39,12 +39,12 @@
enum
{
SKEIN_SUCCESS = 0, /* return codes from Skein calls */
SKEIN_SUCCESS = 0, /* return codes from Skein calls */
SKEIN_FAIL = 1,
SKEIN_BAD_HASHLEN = 2
};
#define SKEIN_MODIFIER_WORDS (2) /* number of modifier (tweak) words */
#define SKEIN_MODIFIER_WORDS (2) /* number of modifier (tweak) words */
#define SKEIN_256_STATE_WORDS (4)
#define SKEIN_512_STATE_WORDS (8)
@ -65,30 +65,30 @@ enum
struct skein_ctx_hdr
{
size_t hashBitLen; /* size of hash result, in bits */
size_t bCnt; /* current byte count in buffer b[] */
u64 T[SKEIN_MODIFIER_WORDS]; /* tweak words: T[0]=byte cnt, T[1]=flags */
size_t hashBitLen; /* size of hash result, in bits */
size_t bCnt; /* current byte count in buffer b[] */
u64 T[SKEIN_MODIFIER_WORDS]; /* tweak: T[0]=byte cnt, T[1]=flags */
};
struct skein_256_ctx /* 256-bit Skein hash context structure */
struct skein_256_ctx /* 256-bit Skein hash context structure */
{
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN_256_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN_256_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN_256_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN_256_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
struct skein_512_ctx /* 512-bit Skein hash context structure */
struct skein_512_ctx /* 512-bit Skein hash context structure */
{
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN_512_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN_512_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN_512_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN_512_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
struct skein1024_ctx /* 1024-bit Skein hash context structure */
struct skein1024_ctx /* 1024-bit Skein hash context structure */
{
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN1024_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN1024_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
struct skein_ctx_hdr h; /* common header context variables */
u64 X[SKEIN1024_STATE_WORDS]; /* chaining variables */
u8 b[SKEIN1024_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
/* Skein APIs for (incremental) "straight hashing" */
@ -96,9 +96,12 @@ int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen);
int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen);
int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen);
int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg,
size_t msgByteCnt);
int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg,
size_t msgByteCnt);
int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg,
size_t msgByteCnt);
int Skein_256_Final(struct skein_256_ctx *ctx, u8 *hashVal);
int Skein_512_Final(struct skein_512_ctx *ctx, u8 *hashVal);
@ -118,9 +121,12 @@ int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal);
** to precompute the MAC IV, then a copy of the context saved and
** reused for each new MAC computation.
**/
int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes);
int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes);
int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes);
int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes);
int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes);
int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes);
/*
** Skein APIs for MAC and tree hash:
@ -149,13 +155,13 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
******************************************************************/
/* tweak word T[1]: bit field starting positions */
#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* offset 64 because it's the second word */
#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* second word */
#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* bits 112..118: level in hash tree */
#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* bit 119 : partial final input byte */
#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* bits 120..125: type field */
#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* bits 126 : first block flag */
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* 112..118 hash tree level */
#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* 119 part. final in byte */
#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* 120..125 type field `*/
#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* 126 first blk flag */
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* 127 final blk flag */
/* tweak word T[1]: flag bit definition(s) */
#define SKEIN_T1_FLAG_FIRST (((u64) 1) << SKEIN_T1_POS_FIRST)
@ -167,34 +173,37 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
#define SKEIN_T1_TREE_LEVEL(n) (((u64) (n)) << SKEIN_T1_POS_TREE_LVL)
/* tweak word T[1]: block type field */
#define SKEIN_BLK_TYPE_KEY (0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG (4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS (8) /* personalization string */
#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
#define SKEIN_BLK_TYPE_KEY (0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG (4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS (8) /* personalization string */
#define SKEIN_BLK_TYPE_PK (12) /* pubkey (for digital sigs) */
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
#define SKEIN_T1_BLK_TYPE(T) (((u64) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* key, for MAC and KDF */
#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* configuration block */
#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* public key (for digital signature hashing) */
#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key identifier for KDF */
#define SKEIN_T1_BLK_TYPE(T) (((u64) (SKEIN_BLK_TYPE_##T)) << \
SKEIN_T1_POS_BLK_TYPE)
#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* for MAC and KDF */
#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* config block */
#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization */
#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* pubkey (for sigs) */
#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key ident for KDF */
#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG) /* message processing */
#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT) /* output stage */
#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | \
SKEIN_T1_FLAG_FINAL)
#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | \
SKEIN_T1_FLAG_FINAL)
#define SKEIN_VERSION (1)
#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
#endif
#define SKEIN_MK_64(hi32, lo32) ((lo32) + (((u64) (hi32)) << 32))
@ -208,23 +217,29 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
#define SKEIN_CFG_TREE_NODE_SIZE_POS (8)
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64)0xFF) << \
SKEIN_CFG_TREE_LEAF_SIZE_POS)
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64)0xFF) << \
SKEIN_CFG_TREE_NODE_SIZE_POS)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64)0xFF) << \
SKEIN_CFG_TREE_MAX_LEVEL_POS)
#define SKEIN_CFG_TREE_INFO(leaf, node, maxLvl) \
((((u64)(leaf)) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64)(node)) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
(((u64)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS))
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0, 0, 0) /* use as treeInfo in InitExt() call for sequential processing */
/* use as treeInfo in InitExt() call for sequential processing */
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0, 0, 0)
/*
** Skein macros for getting/setting tweak words, etc.
** These are useful for partial input bytes, hash tree init/update, etc.
**/
#define Skein_Get_Tweak(ctxPtr, TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
#define Skein_Set_Tweak(ctxPtr, TWK_NUM, tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal); }
#define Skein_Set_Tweak(ctxPtr, TWK_NUM, tVal) { \
(ctxPtr)->h.T[TWK_NUM] = (tVal); \
}
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr, 0)
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr, 1)
@ -241,14 +256,26 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
#define Skein_Set_Type(ctxPtr, BLK_TYPE) \
Skein_Set_T1(ctxPtr, SKEIN_T1_BLK_TYPE_##BLK_TYPE)
/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
#define Skein_Start_New_Type(ctxPtr, BLK_TYPE) \
{ Skein_Set_T0_T1(ctxPtr, 0, SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt = 0; }
/*
* setup for starting with a new type:
* h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0;
*/
#define Skein_Start_New_Type(ctxPtr, BLK_TYPE) { \
Skein_Set_T0_T1(ctxPtr, 0, SKEIN_T1_FLAG_FIRST | \
SKEIN_T1_BLK_TYPE_##BLK_TYPE); \
(ctxPtr)->h.bCnt = 0; \
}
#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
#define Skein_Clear_First_Flag(hdr) { \
(hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; \
}
#define Skein_Set_Bit_Pad_Flag(hdr) { \
(hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; \
}
#define Skein_Set_Tree_Level(hdr, height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height); }
#define Skein_Set_Tree_Level(hdr, height) { \
(hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height); \
}
/*****************************************************************
** "Internal" Skein definitions for debugging and error checking
@ -263,7 +290,7 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
#define Skein_Show_Key(bits, ctx, key, keyBytes)
#endif
#define Skein_Assert(x, retCode)/* default: ignore all Asserts, for performance */
#define Skein_Assert(x, retCode)/* ignore all Asserts, for performance */
#define Skein_assert(x)
/*****************************************************************
@ -292,21 +319,29 @@ enum
R_512_7_0 = 8, R_512_7_1 = 35, R_512_7_2 = 56, R_512_7_3 = 22,
/* Skein1024 round rotation constants */
R1024_0_0 = 24, R1024_0_1 = 13, R1024_0_2 = 8, R1024_0_3 = 47, R1024_0_4 = 8, R1024_0_5 = 17, R1024_0_6 = 22, R1024_0_7 = 37,
R1024_1_0 = 38, R1024_1_1 = 19, R1024_1_2 = 10, R1024_1_3 = 55, R1024_1_4 = 49, R1024_1_5 = 18, R1024_1_6 = 23, R1024_1_7 = 52,
R1024_2_0 = 33, R1024_2_1 = 4, R1024_2_2 = 51, R1024_2_3 = 13, R1024_2_4 = 34, R1024_2_5 = 41, R1024_2_6 = 59, R1024_2_7 = 17,
R1024_3_0 = 5, R1024_3_1 = 20, R1024_3_2 = 48, R1024_3_3 = 41, R1024_3_4 = 47, R1024_3_5 = 28, R1024_3_6 = 16, R1024_3_7 = 25,
R1024_4_0 = 41, R1024_4_1 = 9, R1024_4_2 = 37, R1024_4_3 = 31, R1024_4_4 = 12, R1024_4_5 = 47, R1024_4_6 = 44, R1024_4_7 = 30,
R1024_5_0 = 16, R1024_5_1 = 34, R1024_5_2 = 56, R1024_5_3 = 51, R1024_5_4 = 4, R1024_5_5 = 53, R1024_5_6 = 42, R1024_5_7 = 41,
R1024_6_0 = 31, R1024_6_1 = 44, R1024_6_2 = 47, R1024_6_3 = 46, R1024_6_4 = 19, R1024_6_5 = 42, R1024_6_6 = 44, R1024_6_7 = 25,
R1024_7_0 = 9, R1024_7_1 = 48, R1024_7_2 = 35, R1024_7_3 = 52, R1024_7_4 = 23, R1024_7_5 = 31, R1024_7_6 = 37, R1024_7_7 = 20
R1024_0_0 = 24, R1024_0_1 = 13, R1024_0_2 = 8, R1024_0_3 = 47,
R1024_0_4 = 8, R1024_0_5 = 17, R1024_0_6 = 22, R1024_0_7 = 37,
R1024_1_0 = 38, R1024_1_1 = 19, R1024_1_2 = 10, R1024_1_3 = 55,
R1024_1_4 = 49, R1024_1_5 = 18, R1024_1_6 = 23, R1024_1_7 = 52,
R1024_2_0 = 33, R1024_2_1 = 4, R1024_2_2 = 51, R1024_2_3 = 13,
R1024_2_4 = 34, R1024_2_5 = 41, R1024_2_6 = 59, R1024_2_7 = 17,
R1024_3_0 = 5, R1024_3_1 = 20, R1024_3_2 = 48, R1024_3_3 = 41,
R1024_3_4 = 47, R1024_3_5 = 28, R1024_3_6 = 16, R1024_3_7 = 25,
R1024_4_0 = 41, R1024_4_1 = 9, R1024_4_2 = 37, R1024_4_3 = 31,
R1024_4_4 = 12, R1024_4_5 = 47, R1024_4_6 = 44, R1024_4_7 = 30,
R1024_5_0 = 16, R1024_5_1 = 34, R1024_5_2 = 56, R1024_5_3 = 51,
R1024_5_4 = 4, R1024_5_5 = 53, R1024_5_6 = 42, R1024_5_7 = 41,
R1024_6_0 = 31, R1024_6_1 = 44, R1024_6_2 = 47, R1024_6_3 = 46,
R1024_6_4 = 19, R1024_6_5 = 42, R1024_6_6 = 44, R1024_6_7 = 25,
R1024_7_0 = 9, R1024_7_1 = 48, R1024_7_2 = 35, R1024_7_3 = 52,
R1024_7_4 = 23, R1024_7_5 = 31, R1024_7_6 = 37, R1024_7_7 = 20
};
#ifndef SKEIN_ROUNDS
#define SKEIN_256_ROUNDS_TOTAL (72) /* number of rounds for the different block sizes */
#define SKEIN_256_ROUNDS_TOTAL (72) /* # rounds for diff block sizes */
#define SKEIN_512_ROUNDS_TOTAL (72)
#define SKEIN1024_ROUNDS_TOTAL (80)
#else /* allow command-line define in range 8*(5..14) */
#else /* allow command-line define in range 8*(5..14) */
#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/10) + 5) % 10) + 5))
#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS) + 5) % 10) + 5))

Просмотреть файл

@ -72,7 +72,9 @@ struct threefish_key {
* @param tweak
* Pointer to the two tweak words (word has 64 bits).
*/
void threefishSetKey(struct threefish_key *keyCtx, enum threefish_size stateSize, u64 *keyData, u64 *tweak);
void threefishSetKey(struct threefish_key *keyCtx,
enum threefish_size stateSize,
u64 *keyData, u64 *tweak);
/**
* Encrypt Threefisch block (bytes).
@ -108,7 +110,8 @@ void threefishEncryptBlockBytes(struct threefish_key *keyCtx, u8 *in, u8 *out);
* @param out
* Pointer to cipher buffer.
*/
void threefishEncryptBlockWords(struct threefish_key *keyCtx, u64 *in, u64 *out);
void threefishEncryptBlockWords(struct threefish_key *keyCtx, u64 *in,
u64 *out);
/**
* Decrypt Threefisch block (bytes).
@ -144,14 +147,17 @@ void threefishDecryptBlockBytes(struct threefish_key *keyCtx, u8 *in, u8 *out);
* @param out
* Pointer to plaintext buffer.
*/
void threefishDecryptBlockWords(struct threefish_key *keyCtx, u64 *in, u64 *out);
void threefishDecryptBlockWords(struct threefish_key *keyCtx, u64 *in,
u64 *out);
void threefishEncrypt256(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishEncrypt512(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishEncrypt1024(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishEncrypt1024(struct threefish_key *keyCtx, u64 *input,
u64 *output);
void threefishDecrypt256(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishDecrypt512(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishDecrypt1024(struct threefish_key *keyCtx, u64 *input, u64 *output);
void threefishDecrypt1024(struct threefish_key *keyCtx, u64 *input,
u64 *output);
/**
* @}
*/

Просмотреть файл

@ -16,9 +16,12 @@
/*****************************************************************/
/* External function to process blkCnt (nonzero) full block(s) of data. */
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr,
size_t blkCnt, size_t byteCntAdd);
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr,
size_t blkCnt, size_t byteCntAdd);
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr,
size_t blkCnt, size_t byteCntAdd);
/*****************************************************************/
/* 256-bit Skein */
@ -53,20 +56,28 @@ int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen)
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
/*
* build/process the config block, type == CONFIG (could be
* precomputed)
*/
/* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL);
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
/* compute the initial chaining values from config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
/* zero the chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* The chaining vars ctx->X are now initialized for hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
@ -75,42 +86,58 @@ int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
/* [identical to Skein_256_Init() when keyBytes == 0 && \
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
u8 b[SKEIN_256_STATE_BYTES];
u64 w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
} cfg; /* config block */
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
}
else /* here to pre-process a key */
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_256_Update(ctx, key, keyBytes); /* hash the key */
Skein_256_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
/* set output hash bit count = state size */
ctx->h.hashBitLen = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
Skein_256_Update(ctx, key, keyBytes);
/* put result into cfg.b[] */
Skein_256_Final_Pad(ctx, cfg.b);
/* copy over into ctx->X[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b));
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
/*
* build/process the config block, type == CONFIG (could be
* precomputed for each key)
*/
/* output hash bit count */
ctx->h.hashBitLen = hashBitLen;
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
cfg.w[2] = Skein_Swap64(treeInfo);
Skein_Show_Key(256, &ctx->h, key, keyBytes);
@ -126,35 +153,46 @@ int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen, u64 treeInfo
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt)
int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg,
size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
/* finish up any buffered message data */
if (ctx->h.bCnt)
{
n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
/* # bytes free in buffer b[] */
n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
/* check on our logic here */
Skein_assert(n < msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx, ctx->b, 1, SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx, ctx->b, 1,
SKEIN_256_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
/*
* now process any remaining full blocks, directly from input
* message data
*/
if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES; /* number of full blocks to process */
Skein_256_Process_Block(ctx, msg, n, SKEIN_256_BLOCK_BYTES);
/* number of full blocks to process */
n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES;
Skein_256_Process_Block(ctx, msg, n,
SKEIN_256_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
msg += n * SKEIN_256_BLOCK_BYTES;
}
@ -178,31 +216,46 @@ int Skein_256_Final(struct skein_256_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* process the final block */
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES;
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
hashVal+i*SKEIN_256_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}
@ -240,21 +293,32 @@ int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen)
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
/*
* build/process the config block, type == CONFIG (could be
* precomputed)
*/
/* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL);
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
/* compute the initial chaining values from config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
/* zero the chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/*
* The chaining vars ctx->X are now initialized for the given
* hashBitLen.
*/
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
@ -263,8 +327,10 @@ int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
/* [identical to Skein_512_Init() when keyBytes == 0 && \
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
@ -278,27 +344,40 @@ int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen, u64 treeInfo
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
}
else /* here to pre-process a key */
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_512_Update(ctx, key, keyBytes); /* hash the key */
Skein_512_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
/* set output hash bit count = state size */
ctx->h.hashBitLen = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
Skein_512_Update(ctx, key, keyBytes);
/* put result into cfg.b[] */
Skein_512_Final_Pad(ctx, cfg.b);
/* copy over into ctx->X[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b));
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
/*
* build/process the config block, type == CONFIG (could be
* precomputed for each key)
*/
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
cfg.w[2] = Skein_Swap64(treeInfo);
Skein_Show_Key(512, &ctx->h, key, keyBytes);
@ -314,35 +393,46 @@ int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen, u64 treeInfo
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt)
int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg,
size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
/* finish up any buffered message data */
if (ctx->h.bCnt)
{
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
/* # bytes free in buffer b[] */
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
/* check on our logic here */
Skein_assert(n < msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx, ctx->b, 1, SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx, ctx->b, 1,
SKEIN_512_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
/*
* now process any remaining full blocks, directly from input
* message data
*/
if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
Skein_512_Process_Block(ctx, msg, n, SKEIN_512_BLOCK_BYTES);
/* number of full blocks to process */
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES;
Skein_512_Process_Block(ctx, msg, n,
SKEIN_512_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
msg += n * SKEIN_512_BLOCK_BYTES;
}
@ -366,31 +456,46 @@ int Skein_512_Final(struct skein_512_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* process the final block */
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES;
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(512, &ctx->h, n, hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(512, &ctx->h, n,
hashVal+i*SKEIN_512_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}
@ -425,21 +530,29 @@ int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen)
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
/*
* build/process the config block, type == CONFIG
* (could be precomputed)
*/
/* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL);
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
/* compute the initial chaining values from config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
/* zero the chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* The chaining vars ctx->X are now initialized for the hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
@ -448,8 +561,10 @@ int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
/* [identical to Skein1024_Init() when keyBytes == 0 && \
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen,
u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
@ -463,27 +578,41 @@ int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen, u64 treeInfo
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
}
else /* here to pre-process a key */
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein1024_Update(ctx, key, keyBytes); /* hash the key */
Skein1024_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
/* set output hash bit count = state size */
ctx->h.hashBitLen = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
Skein1024_Update(ctx, key, keyBytes);
/* put result into cfg.b[] */
Skein1024_Final_Pad(ctx, cfg.b);
/* copy over into ctx->X[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b));
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
/*
* build/process the config block, type == CONFIG (could be
* precomputed for each key)
*/
/* output hash bit count */
ctx->h.hashBitLen = hashBitLen;
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
/* hash result length in bits */
cfg.w[1] = Skein_Swap64(hashBitLen);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
cfg.w[2] = Skein_Swap64(treeInfo);
Skein_Show_Key(1024, &ctx->h, key, keyBytes);
@ -499,35 +628,46 @@ int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen, u64 treeInfo
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt)
int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg,
size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
/* finish up any buffered message data */
if (ctx->h.bCnt)
{
n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
/* # bytes free in buffer b[] */
n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
/* check on our logic here */
Skein_assert(n < msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx, ctx->b, 1, SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx, ctx->b, 1,
SKEIN1024_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
/*
* now process any remaining full blocks, directly from input
* message data
*/
if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES; /* number of full blocks to process */
Skein1024_Process_Block(ctx, msg, n, SKEIN1024_BLOCK_BYTES);
/* number of full blocks to process */
n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES;
Skein1024_Process_Block(ctx, msg, n,
SKEIN1024_BLOCK_BYTES);
msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
msg += n * SKEIN1024_BLOCK_BYTES;
}
@ -551,31 +691,46 @@ int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* process the final block */
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES;
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(1024, &ctx->h, n, hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(1024, &ctx->h, n,
hashVal+i*SKEIN1024_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}
@ -587,14 +742,20 @@ int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein_256_Final_Pad(struct skein_256_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
/* process the final block */
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
/* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
@ -603,14 +764,20 @@ int Skein_256_Final_Pad(struct skein_256_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein_512_Final_Pad(struct skein_512_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
/* process the final block */
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
/* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
@ -619,14 +786,20 @@ int Skein_512_Final_Pad(struct skein_512_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein1024_Final_Pad(struct skein1024_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
memset(&ctx->b[ctx->h.bCnt], 0,
SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
/* process the final block */
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
/* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
@ -638,25 +811,36 @@ int Skein_256_Output(struct skein_256_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES;
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
hashVal+i*SKEIN_256_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}
@ -667,25 +851,36 @@ int Skein_512_Output(struct skein_512_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES;
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
hashVal+i*SKEIN_512_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}
@ -696,25 +891,36 @@ int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal)
{
size_t i, n, byteCnt;
u64 X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* total number of output bytes */
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
/* run "counter mode" */
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES;
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
/* "output" the ctr mode bytes */
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
hashVal+i*SKEIN1024_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
return SKEIN_SUCCESS;
}

Просмотреть файл

@ -46,9 +46,9 @@ int skeinInit(struct skein_ctx *ctx, size_t hashBitLen)
Skein_Assert(ctx, SKEIN_FAIL);
/*
* The following two lines rely of the fact that the real Skein contexts are
* a union in out context and thus have tha maximum memory available.
* The beauty of C :-) .
* The following two lines rely of the fact that the real Skein
* contexts are a union in out context and thus have tha maximum
* memory available. The beauty of C :-) .
*/
X = ctx->m.s256.X;
Xlen = ctx->skeinSize/8;
@ -72,7 +72,10 @@ int skeinInit(struct skein_ctx *ctx, size_t hashBitLen)
}
if (ret == SKEIN_SUCCESS) {
/* Save chaining variables for this combination of size and hashBitLen */
/*
* Save chaining variables for this combination of size and
* hashBitLen
*/
memcpy(ctx->XSave, X, Xlen);
}
return ret;
@ -113,7 +116,10 @@ int skeinMacInit(struct skein_ctx *ctx, const u8 *key, size_t keyLen,
break;
}
if (ret == SKEIN_SUCCESS) {
/* Save chaining variables for this combination of key, keyLen, hashBitLen */
/*
* Save chaining variables for this combination of key,
* keyLen, hashBitLen
*/
memcpy(ctx->XSave, X, Xlen);
}
return ret;
@ -125,9 +131,9 @@ void skeinReset(struct skein_ctx *ctx)
u64 *X = NULL;
/*
* The following two lines rely of the fact that the real Skein contexts are
* a union in out context and thus have tha maximum memory available.
* The beautiy of C :-) .
* The following two lines rely of the fact that the real Skein
* contexts are a union in out context and thus have tha maximum
* memory available. The beautiy of C :-) .
*/
X = ctx->m.s256.X;
Xlen = ctx->skeinSize/8;
@ -146,13 +152,16 @@ int skeinUpdate(struct skein_ctx *ctx, const u8 *msg,
switch (ctx->skeinSize) {
case Skein256:
ret = Skein_256_Update(&ctx->m.s256, (const u8 *)msg, msgByteCnt);
ret = Skein_256_Update(&ctx->m.s256, (const u8 *)msg,
msgByteCnt);
break;
case Skein512:
ret = Skein_512_Update(&ctx->m.s512, (const u8 *)msg, msgByteCnt);
ret = Skein_512_Update(&ctx->m.s512, (const u8 *)msg,
msgByteCnt);
break;
case Skein1024:
ret = Skein1024_Update(&ctx->m.s1024, (const u8 *)msg, msgByteCnt);
ret = Skein1024_Update(&ctx->m.s1024, (const u8 *)msg,
msgByteCnt);
break;
}
return ret;
@ -164,15 +173,19 @@ int skeinUpdateBits(struct skein_ctx *ctx, const u8 *msg,
{
/*
* I've used the bit pad implementation from skein_test.c (see NIST CD)
* and modified it to use the convenience functions and added some pointer
* arithmetic.
* and modified it to use the convenience functions and added some
* pointer arithmetic.
*/
size_t length;
u8 mask;
u8 *up;
/* only the final Update() call is allowed do partial bytes, else assert an error */
Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || msgBitCnt == 0, SKEIN_FAIL);
/*
* only the final Update() call is allowed do partial bytes, else
* assert an error
*/
Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 ||
msgBitCnt == 0, SKEIN_FAIL);
/* if number of bits is a multiple of bytes - that's easy */
if ((msgBitCnt & 0x7) == 0) {
@ -188,13 +201,18 @@ int skeinUpdateBits(struct skein_ctx *ctx, const u8 *msg,
*/
up = (u8 *)ctx->m.s256.X + ctx->skeinSize / 8;
Skein_Set_Bit_Pad_Flag(ctx->m.h); /* set tweak flag for the skeinFinal call */
/* set tweak flag for the skeinFinal call */
Skein_Set_Bit_Pad_Flag(ctx->m.h);
/* now "pad" the final partial byte the way NIST likes */
length = ctx->m.h.bCnt; /* get the bCnt value (same location for all block sizes) */
Skein_assert(length != 0); /* internal sanity check: there IS a partial byte in the buffer! */
mask = (u8) (1u << (7 - (msgBitCnt & 7))); /* partial byte bit mask */
up[length-1] = (u8)((up[length-1] & (0-mask))|mask); /* apply bit padding on final byte (in the buffer) */
/* get the bCnt value (same location for all block sizes) */
length = ctx->m.h.bCnt;
/* internal sanity check: there IS a partial byte in the buffer! */
Skein_assert(length != 0);
/* partial byte bit mask */
mask = (u8) (1u << (7 - (msgBitCnt & 7)));
/* apply bit padding on final byte (in the buffer) */
up[length-1] = (u8)((up[length-1] & (0-mask))|mask);
return SKEIN_SUCCESS;
}

Просмотреть файл

@ -11,10 +11,10 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr,
struct threefish_key key;
u64 tweak[2];
int i;
u64 w[SKEIN_256_STATE_WORDS]; /* local copy of input block */
u64 w[SKEIN_256_STATE_WORDS]; /* local copy of input block */
u64 words[3];
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
@ -36,13 +36,14 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr,
threefishSetKey(&key, Threefish256, ctx->X, tweak);
Skein_Get64_LSB_First(w, blkPtr, SKEIN_256_STATE_WORDS); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, SKEIN_256_STATE_WORDS);
threefishEncryptBlockWords(&key, w, ctx->X);
blkPtr += SKEIN_256_BLOCK_BYTES;
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[1] = ctx->X[1] ^ w[1];
ctx->X[2] = ctx->X[2] ^ w[2];
@ -62,9 +63,9 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr,
u64 tweak[2];
int i;
u64 words[3];
u64 w[SKEIN_512_STATE_WORDS]; /* local copy of input block */
u64 w[SKEIN_512_STATE_WORDS]; /* local copy of input block */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
@ -86,13 +87,14 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr,
threefishSetKey(&key, Threefish512, ctx->X, tweak);
Skein_Get64_LSB_First(w, blkPtr, SKEIN_512_STATE_WORDS); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, SKEIN_512_STATE_WORDS);
threefishEncryptBlockWords(&key, w, ctx->X);
blkPtr += SKEIN_512_BLOCK_BYTES;
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[1] = ctx->X[1] ^ w[1];
ctx->X[2] = ctx->X[2] ^ w[2];
@ -116,9 +118,9 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr,
u64 tweak[2];
int i;
u64 words[3];
u64 w[SKEIN1024_STATE_WORDS]; /* local copy of input block */
u64 w[SKEIN1024_STATE_WORDS]; /* local copy of input block */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
@ -140,13 +142,14 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr,
threefishSetKey(&key, Threefish1024, ctx->X, tweak);
Skein_Get64_LSB_First(w, blkPtr, SKEIN1024_STATE_WORDS); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, SKEIN1024_STATE_WORDS);
threefishEncryptBlockWords(&key, w, ctx->X);
blkPtr += SKEIN1024_BLOCK_BYTES;
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[1] = ctx->X[1] ^ w[1];
ctx->X[2] = ctx->X[2] ^ w[2];

Просмотреть файл

@ -18,14 +18,14 @@
#include <skein.h>
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
@ -39,7 +39,8 @@
/***************************** Skein_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr,
size_t blkCnt, size_t byteCntAdd)
{ /* do it in C */
enum {
WCNT = SKEIN_256_STATE_WORDS
@ -47,7 +48,7 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
@ -55,25 +56,28 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
size_t r;
u64 kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
u64 kw[WCNT+4+RCNT*2]; /* key schedule: chaining vars + tweak + "rot"*/
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
u64 w[WCNT]; /* local copy of input block */
u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
const u64 *Xptr[4]; /* use for debugging (help cc put Xn in regs) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
@ -84,16 +88,19 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr); /* show starting state values */
/* show starting state values */
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr);
blkPtr += SKEIN_256_BLOCK_BYTES;
@ -104,31 +111,34 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
#if SKEIN_UNROLL_256 == 0
#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
Round256(p0, p1, p2, p3, ROT, rNum) \
#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I256(R) \
X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
#define I256(R) \
/* inject the key schedule value */ \
X0 += ks[((R)+1) % 5]; \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R256(p0, p1, p2, p3, ROT, rNum) \
Round256(p0, p1, p2, p3, ROT, rNum) \
#else /* looping version */
#define R256(p0, p1, p2, p3, ROT, rNum) \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I256(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
X3 += ks[r+(R)+3] + r+(R); \
ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R) + 2] = ts[r + (R) - 1]; \
#define I256(R) \
/* inject the key schedule value */ \
X0 += ks[r+(R)+0]; \
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
X3 += ks[r+(R)+3] + r+(R); \
/* rotate key schedule */ \
ks[r + (R) + 4] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256) /* loop thru it */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
#endif
{
#define R256_8_rounds(R) \
@ -145,7 +155,10 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
R256_8_rounds(0);
#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
#define R256_Unroll_R(NN) \
((SKEIN_UNROLL_256 == 0 && \
SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_256 > (NN)))
#if R256_Unroll_R(1)
R256_8_rounds(1);
@ -193,7 +206,7 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t
#error "need more unrolling in Skein_256_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update context chaining */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
@ -223,7 +236,8 @@ unsigned int Skein_256_Unroll_Cnt(void)
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr,
size_t blkCnt, size_t byteCntAdd)
{ /* do it in C */
enum {
WCNT = SKEIN_512_STATE_WORDS
@ -231,7 +245,7 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
@ -239,27 +253,30 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
size_t r;
u64 kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copy of vars, for speed */
u64 w[WCNT]; /* local copy of input block */
u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
const u64 *Xptr[8]; /* use for debugging (help cc put Xn in regs) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
@ -275,11 +292,12 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
@ -290,65 +308,72 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr);
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr);
/* run the rounds */
#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
#if SKEIN_UNROLL_512 == 0
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I512(R) \
X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R) + 2) % 9]; \
X2 += ks[((R) + 3) % 9]; \
X3 += ks[((R) + 4) % 9]; \
X4 += ks[((R) + 5) % 9]; \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I512(R) \
/* inject the key schedule value */ \
X0 += ks[((R) + 1) % 9]; \
X1 += ks[((R) + 2) % 9]; \
X2 += ks[((R) + 3) % 9]; \
X3 += ks[((R) + 4) % 9]; \
X4 += ks[((R) + 5) % 9]; \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I512(R) \
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X1 += ks[r + (R) + 1]; \
X2 += ks[r + (R) + 2]; \
X3 += ks[r + (R) + 3]; \
X4 += ks[r + (R) + 4]; \
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
X7 += ks[r + (R) + 7] + r + (R); \
ks[r + (R) + 8] = ks[r + (R) - 1]; /* rotate key schedule */ \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#define I512(R) \
/* inject the key schedule value */ \
X0 += ks[r + (R) + 0]; \
X1 += ks[r + (R) + 1]; \
X2 += ks[r + (R) + 2]; \
X3 += ks[r + (R) + 3]; \
X4 += ks[r + (R) + 4]; \
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
X7 += ks[r + (R) + 7] + r + (R); \
/* rotate key schedule */ \
ks[r + (R) + 8] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512) /* loop thru it */
#endif /* end of looped code definitions */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
I512(2 * (R)); \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
I512(2 * (R) + 1); /* and key injection */
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
I512(2 * (R)); \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
I512(2 * (R) + 1); /* and key injection */
R512_8_rounds(0);
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
#define R512_Unroll_R(NN) \
((SKEIN_UNROLL_512 == 0 && \
SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R(1)
R512_8_rounds(1);
@ -397,7 +422,7 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update context chaining */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
@ -430,7 +455,8 @@ unsigned int Skein_512_Unroll_Cnt(void)
/***************************** Skein1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, \
size_t blkCnt, size_t byteCntAdd)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum {
WCNT = SKEIN1024_STATE_WORDS
@ -438,7 +464,7 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t
#undef RCNT
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
@ -446,31 +472,35 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t
#if (SKEIN_UNROLL_1024 != 0)
#if (RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#endif
size_t r;
u64 kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X00, X01, X02, X03, X04, X05, X06, X07, /* local copy of vars, for speed */
X08, X09, X10, X11, X12, X13, X14, X15;
u64 w[WCNT]; /* local copy of input block */
/* local copy of vars, for speed */
u64 X00, X01, X02, X03, X04, X05, X06, X07,
X08, X09, X10, X11, X12, X13, X14, X15;
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
const u64 *Xptr[16]; /* use for debugging (help cc put Xn in regs) */
Xptr[0] = &X00; Xptr[1] = &X01; Xptr[2] = &X02; Xptr[3] = &X03;
Xptr[4] = &X04; Xptr[5] = &X05; Xptr[6] = &X06; Xptr[7] = &X07;
Xptr[8] = &X08; Xptr[9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
@ -496,11 +526,12 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
/* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT);
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X00 = w[0] + ks[0]; /* do the first full key injection */
X00 = w[0] + ks[0]; /* do the first full key injection */
X01 = w[1] + ks[1];
X02 = w[2] + ks[2];
X03 = w[3] + ks[3];
@ -517,85 +548,105 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr);
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
Xptr);
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE; \
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE; \
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
#define I1024(R) \
X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */ \
X01 += ks[((R) + 2) % 17]; \
X02 += ks[((R) + 3) % 17]; \
X03 += ks[((R) + 4) % 17]; \
X04 += ks[((R) + 5) % 17]; \
X05 += ks[((R) + 6) % 17]; \
X06 += ks[((R) + 7) % 17]; \
X07 += ks[((R) + 8) % 17]; \
X08 += ks[((R) + 9) % 17]; \
X09 += ks[((R) + 10) % 17]; \
X10 += ks[((R) + 11) % 17]; \
X11 += ks[((R) + 12) % 17]; \
X12 += ks[((R) + 13) % 17]; \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
#define I1024(R) \
/* inject the key schedule value */ \
X00 += ks[((R) + 1) % 17]; \
X01 += ks[((R) + 2) % 17]; \
X02 += ks[((R) + 3) % 17]; \
X03 += ks[((R) + 4) % 17]; \
X04 += ks[((R) + 5) % 17]; \
X05 += ks[((R) + 6) % 17]; \
X06 += ks[((R) + 7) % 17]; \
X07 += ks[((R) + 8) % 17]; \
X08 += ks[((R) + 9) % 17]; \
X09 += ks[((R) + 10) % 17]; \
X10 += ks[((R) + 11) % 17]; \
X11 += ks[((R) + 12) % 17]; \
X12 += ks[((R) + 13) % 17]; \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
#define I1024(R) \
X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X01 += ks[r + (R) + 1]; \
X02 += ks[r + (R) + 2]; \
X03 += ks[r + (R) + 3]; \
X04 += ks[r + (R) + 4]; \
X05 += ks[r + (R) + 5]; \
X06 += ks[r + (R) + 6]; \
X07 += ks[r + (R) + 7]; \
X08 += ks[r + (R) + 8]; \
X09 += ks[r + (R) + 9]; \
X10 += ks[r + (R) + 10]; \
X11 += ks[r + (R) + 11]; \
X12 += ks[r + (R) + 12]; \
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
X15 += ks[r + (R) + 15] + r + (R); \
ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#define I1024(R) \
/* inject the key schedule value */ \
X00 += ks[r + (R) + 0]; \
X01 += ks[r + (R) + 1]; \
X02 += ks[r + (R) + 2]; \
X03 += ks[r + (R) + 3]; \
X04 += ks[r + (R) + 4]; \
X05 += ks[r + (R) + 5]; \
X06 += ks[r + (R) + 6]; \
X07 += ks[r + (R) + 7]; \
X08 += ks[r + (R) + 8]; \
X09 += ks[r + (R) + 9]; \
X10 += ks[r + (R) + 10]; \
X11 += ks[r + (R) + 11]; \
X12 += ks[r + (R) + 12]; \
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
X15 += ks[r + (R) + 15] + r + (R); \
/* rotate key schedule */ \
ks[r + (R) + 16] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024) /* loop thru it */
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
#endif
{
#define R1024_8_rounds(R) /* do 8 full rounds */ \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, R1024_0, 8*(R) + 1); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, R1024_1, 8*(R) + 2); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, R1024_2, 8*(R) + 3); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, R1024_3, 8*(R) + 4); \
I1024(2*(R)); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, R1024_4, 8*(R) + 5); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, R1024_5, 8*(R) + 6); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, R1024_6, 8*(R) + 7); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, R1024_7, 8*(R) + 8); \
I1024(2*(R)+1);
#define R1024_8_rounds(R) \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
R1024_0, 8*(R) + 1); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
R1024_1, 8*(R) + 2); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
R1024_2, 8*(R) + 3); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
R1024_3, 8*(R) + 4); \
I1024(2*(R)); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
R1024_4, 8*(R) + 5); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
R1024_5, 8*(R) + 6); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
R1024_6, 8*(R) + 7); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
R1024_7, 8*(R) + 8); \
I1024(2*(R)+1);
R1024_8_rounds(0);
#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
#define R1024_Unroll_R(NN) \
((SKEIN_UNROLL_1024 == 0 && \
SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_1024 > (NN)))
#if R1024_Unroll_R(1)
R1024_8_rounds(1);
@ -643,7 +694,7 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t
#error "need more unrolling in Skein_1024_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
/* do the final "feedforward" xor, update context chaining */
ctx->X[0] = X00 ^ w[0];
ctx->X[1] = X01 ^ w[1];

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -3,8 +3,9 @@
#include <linux/string.h>
#include <threefishApi.h>
void threefishSetKey(struct threefish_key *keyCtx, enum threefish_size stateSize,
u64 *keyData, u64 *tweak)
void threefishSetKey(struct threefish_key *keyCtx,
enum threefish_size stateSize,
u64 *keyData, u64 *tweak)
{
int keyWords = stateSize / 64;
int i;
@ -28,9 +29,9 @@ void threefishEncryptBlockBytes(struct threefish_key *keyCtx, u8 *in,
u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/
u64 cipher[SKEIN_MAX_STATE_WORDS];
Skein_Get64_LSB_First(plain, in, keyCtx->stateSize / 64); /* bytes to words */
Skein_Get64_LSB_First(plain, in, keyCtx->stateSize / 64);
threefishEncryptBlockWords(keyCtx, plain, cipher);
Skein_Put64_LSB_First(out, cipher, keyCtx->stateSize / 8); /* words to bytes */
Skein_Put64_LSB_First(out, cipher, keyCtx->stateSize / 8);
}
void threefishEncryptBlockWords(struct threefish_key *keyCtx, u64 *in,
@ -55,9 +56,9 @@ void threefishDecryptBlockBytes(struct threefish_key *keyCtx, u8 *in,
u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/
u64 cipher[SKEIN_MAX_STATE_WORDS];
Skein_Get64_LSB_First(cipher, in, keyCtx->stateSize / 64); /* bytes to words */
Skein_Get64_LSB_First(cipher, in, keyCtx->stateSize / 64);
threefishDecryptBlockWords(keyCtx, cipher, plain);
Skein_Put64_LSB_First(out, plain, keyCtx->stateSize / 8); /* words to bytes */
Skein_Put64_LSB_First(out, plain, keyCtx->stateSize / 8);
}
void threefishDecryptBlockWords(struct threefish_key *keyCtx, u64 *in,