Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

Pull crypto update from Herbert Xu:
 "Here is the crypto update for 3.12:

   - Added MODULE_SOFTDEP to allow pre-loading of modules.
   - Reinstated crct10dif driver using the module softdep feature.
   - Allow via rng driver to be auto-loaded.

   - Split large input data when necessary in nx.
   - Handle zero length messages correctly for GCM/XCBC in nx.
   - Handle SHA-2 chunks bigger than block size properly in nx.

   - Handle unaligned lengths in omap-aes.
   - Added SHA384/SHA512 to omap-sham.
   - Added OMAP5/AM43XX SHAM support.
   - Added OMAP4 TRNG support.

   - Misc fixes"

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (66 commits)
  Reinstate "crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework"
  hwrng: via - Add MODULE_DEVICE_TABLE
  crypto: fcrypt - Fix bitoperation for compilation with clang
  crypto: nx - fix SHA-2 for chunks bigger than block size
  crypto: nx - fix GCM for zero length messages
  crypto: nx - fix XCBC for zero length messages
  crypto: nx - fix limits to sg lists for AES-CCM
  crypto: nx - fix limits to sg lists for AES-XCBC
  crypto: nx - fix limits to sg lists for AES-GCM
  crypto: nx - fix limits to sg lists for AES-CTR
  crypto: nx - fix limits to sg lists for AES-CBC
  crypto: nx - fix limits to sg lists for AES-ECB
  crypto: nx - add offset to nx_build_sg_lists()
  padata - Register hotcpu notifier after initialization
  padata - share code between CPU_ONLINE and CPU_DOWN_FAILED, same to CPU_DOWN_PREPARE and CPU_UP_CANCELED
  hwrng: omap - reorder OMAP TRNG driver code
  crypto: omap-sham - correct dma burst size
  crypto: omap-sham - Enable Polling mode if DMA fails
  crypto: tegra-aes - bitwise vs logical and
  crypto: sahara - checking the wrong variable
  ...
This commit is contained in:
Linus Torvalds 2013-09-07 14:31:18 -07:00
Родитель 0ffb01d9de 68411521cc
Коммит 6be48f2940
56 изменённых файлов: 3406 добавлений и 1365 удалений

Просмотреть файл

@ -530,12 +530,12 @@ static int __init omap2_init_devices(void)
omap_init_mcspi();
omap_init_sham();
omap_init_aes();
omap_init_rng();
} else {
/* These can be removed when bindings are done */
omap_init_wl12xx_of();
}
omap_init_sti();
omap_init_rng();
omap_init_vout();
return 0;

Просмотреть файл

@ -27,6 +27,7 @@ obj-$(CONFIG_CRYPTO_SHA1_SSSE3) += sha1-ssse3.o
obj-$(CONFIG_CRYPTO_CRC32_PCLMUL) += crc32-pclmul.o
obj-$(CONFIG_CRYPTO_SHA256_SSSE3) += sha256-ssse3.o
obj-$(CONFIG_CRYPTO_SHA512_SSSE3) += sha512-ssse3.o
obj-$(CONFIG_CRYPTO_CRCT10DIF_PCLMUL) += crct10dif-pclmul.o
# These modules require assembler to support AVX.
ifeq ($(avx_supported),yes)
@ -81,3 +82,4 @@ crc32c-intel-$(CONFIG_64BIT) += crc32c-pcl-intel-asm_64.o
crc32-pclmul-y := crc32-pclmul_asm.o crc32-pclmul_glue.o
sha256-ssse3-y := sha256-ssse3-asm.o sha256-avx-asm.o sha256-avx2-asm.o sha256_ssse3_glue.o
sha512-ssse3-y := sha512-ssse3-asm.o sha512-avx-asm.o sha512-avx2-asm.o sha512_ssse3_glue.o
crct10dif-pclmul-y := crct10dif-pcl-asm_64.o crct10dif-pclmul_glue.o

Просмотреть файл

@ -62,7 +62,7 @@ static void camellia_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
}
/* camellia sboxes */
const u64 camellia_sp10011110[256] = {
__visible const u64 camellia_sp10011110[256] = {
0x7000007070707000ULL, 0x8200008282828200ULL, 0x2c00002c2c2c2c00ULL,
0xec0000ecececec00ULL, 0xb30000b3b3b3b300ULL, 0x2700002727272700ULL,
0xc00000c0c0c0c000ULL, 0xe50000e5e5e5e500ULL, 0xe40000e4e4e4e400ULL,
@ -151,7 +151,7 @@ const u64 camellia_sp10011110[256] = {
0x9e00009e9e9e9e00ULL,
};
const u64 camellia_sp22000222[256] = {
__visible const u64 camellia_sp22000222[256] = {
0xe0e0000000e0e0e0ULL, 0x0505000000050505ULL, 0x5858000000585858ULL,
0xd9d9000000d9d9d9ULL, 0x6767000000676767ULL, 0x4e4e0000004e4e4eULL,
0x8181000000818181ULL, 0xcbcb000000cbcbcbULL, 0xc9c9000000c9c9c9ULL,
@ -240,7 +240,7 @@ const u64 camellia_sp22000222[256] = {
0x3d3d0000003d3d3dULL,
};
const u64 camellia_sp03303033[256] = {
__visible const u64 camellia_sp03303033[256] = {
0x0038380038003838ULL, 0x0041410041004141ULL, 0x0016160016001616ULL,
0x0076760076007676ULL, 0x00d9d900d900d9d9ULL, 0x0093930093009393ULL,
0x0060600060006060ULL, 0x00f2f200f200f2f2ULL, 0x0072720072007272ULL,
@ -329,7 +329,7 @@ const u64 camellia_sp03303033[256] = {
0x004f4f004f004f4fULL,
};
const u64 camellia_sp00444404[256] = {
__visible const u64 camellia_sp00444404[256] = {
0x0000707070700070ULL, 0x00002c2c2c2c002cULL, 0x0000b3b3b3b300b3ULL,
0x0000c0c0c0c000c0ULL, 0x0000e4e4e4e400e4ULL, 0x0000575757570057ULL,
0x0000eaeaeaea00eaULL, 0x0000aeaeaeae00aeULL, 0x0000232323230023ULL,
@ -418,7 +418,7 @@ const u64 camellia_sp00444404[256] = {
0x00009e9e9e9e009eULL,
};
const u64 camellia_sp02220222[256] = {
__visible const u64 camellia_sp02220222[256] = {
0x00e0e0e000e0e0e0ULL, 0x0005050500050505ULL, 0x0058585800585858ULL,
0x00d9d9d900d9d9d9ULL, 0x0067676700676767ULL, 0x004e4e4e004e4e4eULL,
0x0081818100818181ULL, 0x00cbcbcb00cbcbcbULL, 0x00c9c9c900c9c9c9ULL,
@ -507,7 +507,7 @@ const u64 camellia_sp02220222[256] = {
0x003d3d3d003d3d3dULL,
};
const u64 camellia_sp30333033[256] = {
__visible const u64 camellia_sp30333033[256] = {
0x3800383838003838ULL, 0x4100414141004141ULL, 0x1600161616001616ULL,
0x7600767676007676ULL, 0xd900d9d9d900d9d9ULL, 0x9300939393009393ULL,
0x6000606060006060ULL, 0xf200f2f2f200f2f2ULL, 0x7200727272007272ULL,
@ -596,7 +596,7 @@ const u64 camellia_sp30333033[256] = {
0x4f004f4f4f004f4fULL,
};
const u64 camellia_sp44044404[256] = {
__visible const u64 camellia_sp44044404[256] = {
0x7070007070700070ULL, 0x2c2c002c2c2c002cULL, 0xb3b300b3b3b300b3ULL,
0xc0c000c0c0c000c0ULL, 0xe4e400e4e4e400e4ULL, 0x5757005757570057ULL,
0xeaea00eaeaea00eaULL, 0xaeae00aeaeae00aeULL, 0x2323002323230023ULL,
@ -685,7 +685,7 @@ const u64 camellia_sp44044404[256] = {
0x9e9e009e9e9e009eULL,
};
const u64 camellia_sp11101110[256] = {
__visible const u64 camellia_sp11101110[256] = {
0x7070700070707000ULL, 0x8282820082828200ULL, 0x2c2c2c002c2c2c00ULL,
0xececec00ececec00ULL, 0xb3b3b300b3b3b300ULL, 0x2727270027272700ULL,
0xc0c0c000c0c0c000ULL, 0xe5e5e500e5e5e500ULL, 0xe4e4e400e4e4e400ULL,
@ -828,8 +828,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
subRL[1] ^= (subRL[1] & ~subRL[9]) << 32;
/* modified for FLinv(kl2) */
dw = (subRL[1] & subRL[9]) >> 32,
subRL[1] ^= rol32(dw, 1);
dw = (subRL[1] & subRL[9]) >> 32;
subRL[1] ^= rol32(dw, 1);
/* round 8 */
subRL[11] ^= subRL[1];
@ -840,8 +840,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
subRL[1] ^= (subRL[1] & ~subRL[17]) << 32;
/* modified for FLinv(kl4) */
dw = (subRL[1] & subRL[17]) >> 32,
subRL[1] ^= rol32(dw, 1);
dw = (subRL[1] & subRL[17]) >> 32;
subRL[1] ^= rol32(dw, 1);
/* round 14 */
subRL[19] ^= subRL[1];
@ -859,8 +859,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
} else {
subRL[1] ^= (subRL[1] & ~subRL[25]) << 32;
/* modified for FLinv(kl6) */
dw = (subRL[1] & subRL[25]) >> 32,
subRL[1] ^= rol32(dw, 1);
dw = (subRL[1] & subRL[25]) >> 32;
subRL[1] ^= rol32(dw, 1);
/* round 20 */
subRL[27] ^= subRL[1];
@ -882,8 +882,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
kw4 ^= (kw4 & ~subRL[24]) << 32;
/* modified for FL(kl5) */
dw = (kw4 & subRL[24]) >> 32,
kw4 ^= rol32(dw, 1);
dw = (kw4 & subRL[24]) >> 32;
kw4 ^= rol32(dw, 1);
}
/* round 17 */
@ -895,8 +895,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
kw4 ^= (kw4 & ~subRL[16]) << 32;
/* modified for FL(kl3) */
dw = (kw4 & subRL[16]) >> 32,
kw4 ^= rol32(dw, 1);
dw = (kw4 & subRL[16]) >> 32;
kw4 ^= rol32(dw, 1);
/* round 11 */
subRL[14] ^= kw4;
@ -907,8 +907,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
kw4 ^= (kw4 & ~subRL[8]) << 32;
/* modified for FL(kl1) */
dw = (kw4 & subRL[8]) >> 32,
kw4 ^= rol32(dw, 1);
dw = (kw4 & subRL[8]) >> 32;
kw4 ^= rol32(dw, 1);
/* round 5 */
subRL[6] ^= kw4;
@ -928,8 +928,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(6, subRL[5] ^ subRL[7]); /* round 5 */
tl = (subRL[10] >> 32) ^ (subRL[10] & ~subRL[8]);
dw = tl & (subRL[8] >> 32), /* FL(kl1) */
tr = subRL[10] ^ rol32(dw, 1);
dw = tl & (subRL[8] >> 32); /* FL(kl1) */
tr = subRL[10] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(7, subRL[6] ^ tt); /* round 6 */
@ -937,8 +937,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(9, subRL[9]); /* FLinv(kl2) */
tl = (subRL[7] >> 32) ^ (subRL[7] & ~subRL[9]);
dw = tl & (subRL[9] >> 32), /* FLinv(kl2) */
tr = subRL[7] ^ rol32(dw, 1);
dw = tl & (subRL[9] >> 32); /* FLinv(kl2) */
tr = subRL[7] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(10, subRL[11] ^ tt); /* round 7 */
@ -948,8 +948,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(14, subRL[13] ^ subRL[15]); /* round 11 */
tl = (subRL[18] >> 32) ^ (subRL[18] & ~subRL[16]);
dw = tl & (subRL[16] >> 32), /* FL(kl3) */
tr = subRL[18] ^ rol32(dw, 1);
dw = tl & (subRL[16] >> 32); /* FL(kl3) */
tr = subRL[18] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(15, subRL[14] ^ tt); /* round 12 */
@ -957,8 +957,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(17, subRL[17]); /* FLinv(kl4) */
tl = (subRL[15] >> 32) ^ (subRL[15] & ~subRL[17]);
dw = tl & (subRL[17] >> 32), /* FLinv(kl4) */
tr = subRL[15] ^ rol32(dw, 1);
dw = tl & (subRL[17] >> 32); /* FLinv(kl4) */
tr = subRL[15] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(18, subRL[19] ^ tt); /* round 13 */
@ -972,8 +972,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(24, subRL[24] ^ subRL[23]); /* kw3 */
} else {
tl = (subRL[26] >> 32) ^ (subRL[26] & ~subRL[24]);
dw = tl & (subRL[24] >> 32), /* FL(kl5) */
tr = subRL[26] ^ rol32(dw, 1);
dw = tl & (subRL[24] >> 32); /* FL(kl5) */
tr = subRL[26] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(23, subRL[22] ^ tt); /* round 18 */
@ -981,8 +981,8 @@ static void camellia_setup_tail(u64 *subkey, u64 *subRL, int max)
SET_SUBKEY_LR(25, subRL[25]); /* FLinv(kl6) */
tl = (subRL[23] >> 32) ^ (subRL[23] & ~subRL[25]);
dw = tl & (subRL[25] >> 32), /* FLinv(kl6) */
tr = subRL[23] ^ rol32(dw, 1);
dw = tl & (subRL[25] >> 32); /* FLinv(kl6) */
tr = subRL[23] ^ rol32(dw, 1);
tt = (tr | ((u64)tl << 32));
SET_SUBKEY_LR(26, subRL[27] ^ tt); /* round 19 */

Просмотреть файл

@ -0,0 +1,643 @@
########################################################################
# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
#
# Copyright (c) 2013, Intel Corporation
#
# Authors:
# Erdinc Ozturk <erdinc.ozturk@intel.com>
# Vinodh Gopal <vinodh.gopal@intel.com>
# James Guilford <james.guilford@intel.com>
# Tim Chen <tim.c.chen@linux.intel.com>
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the
# distribution.
#
# * Neither the name of the Intel Corporation nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
#
# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
########################################################################
# Function API:
# UINT16 crc_t10dif_pcl(
# UINT16 init_crc, //initial CRC value, 16 bits
# const unsigned char *buf, //buffer pointer to calculate CRC on
# UINT64 len //buffer length in bytes (64-bit data)
# );
#
# Reference paper titled "Fast CRC Computation for Generic
# Polynomials Using PCLMULQDQ Instruction"
# URL: http://www.intel.com/content/dam/www/public/us/en/documents
# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
#
#
#include <linux/linkage.h>
.text
#define arg1 %rdi
#define arg2 %rsi
#define arg3 %rdx
#define arg1_low32 %edi
ENTRY(crc_t10dif_pcl)
.align 16
# adjust the 16-bit initial_crc value, scale it to 32 bits
shl $16, arg1_low32
# Allocate Stack Space
mov %rsp, %rcx
sub $16*2, %rsp
# align stack to 16 byte boundary
and $~(0x10 - 1), %rsp
# check if smaller than 256
cmp $256, arg3
# for sizes less than 128, we can't fold 64B at a time...
jl _less_than_128
# load the initial crc value
movd arg1_low32, %xmm10 # initial crc
# crc value does not need to be byte-reflected, but it needs
# to be moved to the high part of the register.
# because data will be byte-reflected and will align with
# initial crc at correct place.
pslldq $12, %xmm10
movdqa SHUF_MASK(%rip), %xmm11
# receive the initial 64B data, xor the initial crc value
movdqu 16*0(arg2), %xmm0
movdqu 16*1(arg2), %xmm1
movdqu 16*2(arg2), %xmm2
movdqu 16*3(arg2), %xmm3
movdqu 16*4(arg2), %xmm4
movdqu 16*5(arg2), %xmm5
movdqu 16*6(arg2), %xmm6
movdqu 16*7(arg2), %xmm7
pshufb %xmm11, %xmm0
# XOR the initial_crc value
pxor %xmm10, %xmm0
pshufb %xmm11, %xmm1
pshufb %xmm11, %xmm2
pshufb %xmm11, %xmm3
pshufb %xmm11, %xmm4
pshufb %xmm11, %xmm5
pshufb %xmm11, %xmm6
pshufb %xmm11, %xmm7
movdqa rk3(%rip), %xmm10 #xmm10 has rk3 and rk4
#imm value of pclmulqdq instruction
#will determine which constant to use
#################################################################
# we subtract 256 instead of 128 to save one instruction from the loop
sub $256, arg3
# at this section of the code, there is 64*x+y (0<=y<64) bytes of
# buffer. The _fold_64_B_loop will fold 64B at a time
# until we have 64+y Bytes of buffer
# fold 64B at a time. This section of the code folds 4 xmm
# registers in parallel
_fold_64_B_loop:
# update the buffer pointer
add $128, arg2 # buf += 64#
movdqu 16*0(arg2), %xmm9
movdqu 16*1(arg2), %xmm12
pshufb %xmm11, %xmm9
pshufb %xmm11, %xmm12
movdqa %xmm0, %xmm8
movdqa %xmm1, %xmm13
pclmulqdq $0x0 , %xmm10, %xmm0
pclmulqdq $0x11, %xmm10, %xmm8
pclmulqdq $0x0 , %xmm10, %xmm1
pclmulqdq $0x11, %xmm10, %xmm13
pxor %xmm9 , %xmm0
xorps %xmm8 , %xmm0
pxor %xmm12, %xmm1
xorps %xmm13, %xmm1
movdqu 16*2(arg2), %xmm9
movdqu 16*3(arg2), %xmm12
pshufb %xmm11, %xmm9
pshufb %xmm11, %xmm12
movdqa %xmm2, %xmm8
movdqa %xmm3, %xmm13
pclmulqdq $0x0, %xmm10, %xmm2
pclmulqdq $0x11, %xmm10, %xmm8
pclmulqdq $0x0, %xmm10, %xmm3
pclmulqdq $0x11, %xmm10, %xmm13
pxor %xmm9 , %xmm2
xorps %xmm8 , %xmm2
pxor %xmm12, %xmm3
xorps %xmm13, %xmm3
movdqu 16*4(arg2), %xmm9
movdqu 16*5(arg2), %xmm12
pshufb %xmm11, %xmm9
pshufb %xmm11, %xmm12
movdqa %xmm4, %xmm8
movdqa %xmm5, %xmm13
pclmulqdq $0x0, %xmm10, %xmm4
pclmulqdq $0x11, %xmm10, %xmm8
pclmulqdq $0x0, %xmm10, %xmm5
pclmulqdq $0x11, %xmm10, %xmm13
pxor %xmm9 , %xmm4
xorps %xmm8 , %xmm4
pxor %xmm12, %xmm5
xorps %xmm13, %xmm5
movdqu 16*6(arg2), %xmm9
movdqu 16*7(arg2), %xmm12
pshufb %xmm11, %xmm9
pshufb %xmm11, %xmm12
movdqa %xmm6 , %xmm8
movdqa %xmm7 , %xmm13
pclmulqdq $0x0 , %xmm10, %xmm6
pclmulqdq $0x11, %xmm10, %xmm8
pclmulqdq $0x0 , %xmm10, %xmm7
pclmulqdq $0x11, %xmm10, %xmm13
pxor %xmm9 , %xmm6
xorps %xmm8 , %xmm6
pxor %xmm12, %xmm7
xorps %xmm13, %xmm7
sub $128, arg3
# check if there is another 64B in the buffer to be able to fold
jge _fold_64_B_loop
##################################################################
add $128, arg2
# at this point, the buffer pointer is pointing at the last y Bytes
# of the buffer the 64B of folded data is in 4 of the xmm
# registers: xmm0, xmm1, xmm2, xmm3
# fold the 8 xmm registers to 1 xmm register with different constants
movdqa rk9(%rip), %xmm10
movdqa %xmm0, %xmm8
pclmulqdq $0x11, %xmm10, %xmm0
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
xorps %xmm0, %xmm7
movdqa rk11(%rip), %xmm10
movdqa %xmm1, %xmm8
pclmulqdq $0x11, %xmm10, %xmm1
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
xorps %xmm1, %xmm7
movdqa rk13(%rip), %xmm10
movdqa %xmm2, %xmm8
pclmulqdq $0x11, %xmm10, %xmm2
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
pxor %xmm2, %xmm7
movdqa rk15(%rip), %xmm10
movdqa %xmm3, %xmm8
pclmulqdq $0x11, %xmm10, %xmm3
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
xorps %xmm3, %xmm7
movdqa rk17(%rip), %xmm10
movdqa %xmm4, %xmm8
pclmulqdq $0x11, %xmm10, %xmm4
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
pxor %xmm4, %xmm7
movdqa rk19(%rip), %xmm10
movdqa %xmm5, %xmm8
pclmulqdq $0x11, %xmm10, %xmm5
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
xorps %xmm5, %xmm7
movdqa rk1(%rip), %xmm10 #xmm10 has rk1 and rk2
#imm value of pclmulqdq instruction
#will determine which constant to use
movdqa %xmm6, %xmm8
pclmulqdq $0x11, %xmm10, %xmm6
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
pxor %xmm6, %xmm7
# instead of 64, we add 48 to the loop counter to save 1 instruction
# from the loop instead of a cmp instruction, we use the negative
# flag with the jl instruction
add $128-16, arg3
jl _final_reduction_for_128
# now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7
# and the rest is in memory. We can fold 16 bytes at a time if y>=16
# continue folding 16B at a time
_16B_reduction_loop:
movdqa %xmm7, %xmm8
pclmulqdq $0x11, %xmm10, %xmm7
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
movdqu (arg2), %xmm0
pshufb %xmm11, %xmm0
pxor %xmm0 , %xmm7
add $16, arg2
sub $16, arg3
# instead of a cmp instruction, we utilize the flags with the
# jge instruction equivalent of: cmp arg3, 16-16
# check if there is any more 16B in the buffer to be able to fold
jge _16B_reduction_loop
#now we have 16+z bytes left to reduce, where 0<= z < 16.
#first, we reduce the data in the xmm7 register
_final_reduction_for_128:
# check if any more data to fold. If not, compute the CRC of
# the final 128 bits
add $16, arg3
je _128_done
# here we are getting data that is less than 16 bytes.
# since we know that there was data before the pointer, we can
# offset the input pointer before the actual point, to receive
# exactly 16 bytes. after that the registers need to be adjusted.
_get_last_two_xmms:
movdqa %xmm7, %xmm2
movdqu -16(arg2, arg3), %xmm1
pshufb %xmm11, %xmm1
# get rid of the extra data that was loaded before
# load the shift constant
lea pshufb_shf_table+16(%rip), %rax
sub arg3, %rax
movdqu (%rax), %xmm0
# shift xmm2 to the left by arg3 bytes
pshufb %xmm0, %xmm2
# shift xmm7 to the right by 16-arg3 bytes
pxor mask1(%rip), %xmm0
pshufb %xmm0, %xmm7
pblendvb %xmm2, %xmm1 #xmm0 is implicit
# fold 16 Bytes
movdqa %xmm1, %xmm2
movdqa %xmm7, %xmm8
pclmulqdq $0x11, %xmm10, %xmm7
pclmulqdq $0x0 , %xmm10, %xmm8
pxor %xmm8, %xmm7
pxor %xmm2, %xmm7
_128_done:
# compute crc of a 128-bit value
movdqa rk5(%rip), %xmm10 # rk5 and rk6 in xmm10
movdqa %xmm7, %xmm0
#64b fold
pclmulqdq $0x1, %xmm10, %xmm7
pslldq $8 , %xmm0
pxor %xmm0, %xmm7
#32b fold
movdqa %xmm7, %xmm0
pand mask2(%rip), %xmm0
psrldq $12, %xmm7
pclmulqdq $0x10, %xmm10, %xmm7
pxor %xmm0, %xmm7
#barrett reduction
_barrett:
movdqa rk7(%rip), %xmm10 # rk7 and rk8 in xmm10
movdqa %xmm7, %xmm0
pclmulqdq $0x01, %xmm10, %xmm7
pslldq $4, %xmm7
pclmulqdq $0x11, %xmm10, %xmm7
pslldq $4, %xmm7
pxor %xmm0, %xmm7
pextrd $1, %xmm7, %eax
_cleanup:
# scale the result back to 16 bits
shr $16, %eax
mov %rcx, %rsp
ret
########################################################################
.align 16
_less_than_128:
# check if there is enough buffer to be able to fold 16B at a time
cmp $32, arg3
jl _less_than_32
movdqa SHUF_MASK(%rip), %xmm11
# now if there is, load the constants
movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10
movd arg1_low32, %xmm0 # get the initial crc value
pslldq $12, %xmm0 # align it to its correct place
movdqu (arg2), %xmm7 # load the plaintext
pshufb %xmm11, %xmm7 # byte-reflect the plaintext
pxor %xmm0, %xmm7
# update the buffer pointer
add $16, arg2
# update the counter. subtract 32 instead of 16 to save one
# instruction from the loop
sub $32, arg3
jmp _16B_reduction_loop
.align 16
_less_than_32:
# mov initial crc to the return value. this is necessary for
# zero-length buffers.
mov arg1_low32, %eax
test arg3, arg3
je _cleanup
movdqa SHUF_MASK(%rip), %xmm11
movd arg1_low32, %xmm0 # get the initial crc value
pslldq $12, %xmm0 # align it to its correct place
cmp $16, arg3
je _exact_16_left
jl _less_than_16_left
movdqu (arg2), %xmm7 # load the plaintext
pshufb %xmm11, %xmm7 # byte-reflect the plaintext
pxor %xmm0 , %xmm7 # xor the initial crc value
add $16, arg2
sub $16, arg3
movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10
jmp _get_last_two_xmms
.align 16
_less_than_16_left:
# use stack space to load data less than 16 bytes, zero-out
# the 16B in memory first.
pxor %xmm1, %xmm1
mov %rsp, %r11
movdqa %xmm1, (%r11)
cmp $4, arg3
jl _only_less_than_4
# backup the counter value
mov arg3, %r9
cmp $8, arg3
jl _less_than_8_left
# load 8 Bytes
mov (arg2), %rax
mov %rax, (%r11)
add $8, %r11
sub $8, arg3
add $8, arg2
_less_than_8_left:
cmp $4, arg3
jl _less_than_4_left
# load 4 Bytes
mov (arg2), %eax
mov %eax, (%r11)
add $4, %r11
sub $4, arg3
add $4, arg2
_less_than_4_left:
cmp $2, arg3
jl _less_than_2_left
# load 2 Bytes
mov (arg2), %ax
mov %ax, (%r11)
add $2, %r11
sub $2, arg3
add $2, arg2
_less_than_2_left:
cmp $1, arg3
jl _zero_left
# load 1 Byte
mov (arg2), %al
mov %al, (%r11)
_zero_left:
movdqa (%rsp), %xmm7
pshufb %xmm11, %xmm7
pxor %xmm0 , %xmm7 # xor the initial crc value
# shl r9, 4
lea pshufb_shf_table+16(%rip), %rax
sub %r9, %rax
movdqu (%rax), %xmm0
pxor mask1(%rip), %xmm0
pshufb %xmm0, %xmm7
jmp _128_done
.align 16
_exact_16_left:
movdqu (arg2), %xmm7
pshufb %xmm11, %xmm7
pxor %xmm0 , %xmm7 # xor the initial crc value
jmp _128_done
_only_less_than_4:
cmp $3, arg3
jl _only_less_than_3
# load 3 Bytes
mov (arg2), %al
mov %al, (%r11)
mov 1(arg2), %al
mov %al, 1(%r11)
mov 2(arg2), %al
mov %al, 2(%r11)
movdqa (%rsp), %xmm7
pshufb %xmm11, %xmm7
pxor %xmm0 , %xmm7 # xor the initial crc value
psrldq $5, %xmm7
jmp _barrett
_only_less_than_3:
cmp $2, arg3
jl _only_less_than_2
# load 2 Bytes
mov (arg2), %al
mov %al, (%r11)
mov 1(arg2), %al
mov %al, 1(%r11)
movdqa (%rsp), %xmm7
pshufb %xmm11, %xmm7
pxor %xmm0 , %xmm7 # xor the initial crc value
psrldq $6, %xmm7
jmp _barrett
_only_less_than_2:
# load 1 Byte
mov (arg2), %al
mov %al, (%r11)
movdqa (%rsp), %xmm7
pshufb %xmm11, %xmm7
pxor %xmm0 , %xmm7 # xor the initial crc value
psrldq $7, %xmm7
jmp _barrett
ENDPROC(crc_t10dif_pcl)
.data
# precomputed constants
# these constants are precomputed from the poly:
# 0x8bb70000 (0x8bb7 scaled to 32 bits)
.align 16
# Q = 0x18BB70000
# rk1 = 2^(32*3) mod Q << 32
# rk2 = 2^(32*5) mod Q << 32
# rk3 = 2^(32*15) mod Q << 32
# rk4 = 2^(32*17) mod Q << 32
# rk5 = 2^(32*3) mod Q << 32
# rk6 = 2^(32*2) mod Q << 32
# rk7 = floor(2^64/Q)
# rk8 = Q
rk1:
.quad 0x2d56000000000000
rk2:
.quad 0x06df000000000000
rk3:
.quad 0x9d9d000000000000
rk4:
.quad 0x7cf5000000000000
rk5:
.quad 0x2d56000000000000
rk6:
.quad 0x1368000000000000
rk7:
.quad 0x00000001f65a57f8
rk8:
.quad 0x000000018bb70000
rk9:
.quad 0xceae000000000000
rk10:
.quad 0xbfd6000000000000
rk11:
.quad 0x1e16000000000000
rk12:
.quad 0x713c000000000000
rk13:
.quad 0xf7f9000000000000
rk14:
.quad 0x80a6000000000000
rk15:
.quad 0x044c000000000000
rk16:
.quad 0xe658000000000000
rk17:
.quad 0xad18000000000000
rk18:
.quad 0xa497000000000000
rk19:
.quad 0x6ee3000000000000
rk20:
.quad 0xe7b5000000000000
mask1:
.octa 0x80808080808080808080808080808080
mask2:
.octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
SHUF_MASK:
.octa 0x000102030405060708090A0B0C0D0E0F
pshufb_shf_table:
# use these values for shift constants for the pshufb instruction
# different alignments result in values as shown:
# DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1
# DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2
# DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3
# DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4
# DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5
# DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6
# DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7
# DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8
# DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9
# DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10
# DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11
# DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12
# DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13
# DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14
# DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15
.octa 0x8f8e8d8c8b8a89888786858483828100
.octa 0x000e0d0c0b0a09080706050403020100

Просмотреть файл

@ -0,0 +1,151 @@
/*
* Cryptographic API.
*
* T10 Data Integrity Field CRC16 Crypto Transform using PCLMULQDQ Instructions
*
* Copyright (C) 2013 Intel Corporation
* Author: Tim Chen <tim.c.chen@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/crc-t10dif.h>
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <asm/i387.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
asmlinkage __u16 crc_t10dif_pcl(__u16 crc, const unsigned char *buf,
size_t len);
struct chksum_desc_ctx {
__u16 crc;
};
/*
* Steps through buffer one byte at at time, calculates reflected
* crc using table.
*/
static int chksum_init(struct shash_desc *desc)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
ctx->crc = 0;
return 0;
}
static int chksum_update(struct shash_desc *desc, const u8 *data,
unsigned int length)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
if (irq_fpu_usable()) {
kernel_fpu_begin();
ctx->crc = crc_t10dif_pcl(ctx->crc, data, length);
kernel_fpu_end();
} else
ctx->crc = crc_t10dif_generic(ctx->crc, data, length);
return 0;
}
static int chksum_final(struct shash_desc *desc, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
*(__u16 *)out = ctx->crc;
return 0;
}
static int __chksum_finup(__u16 *crcp, const u8 *data, unsigned int len,
u8 *out)
{
if (irq_fpu_usable()) {
kernel_fpu_begin();
*(__u16 *)out = crc_t10dif_pcl(*crcp, data, len);
kernel_fpu_end();
} else
*(__u16 *)out = crc_t10dif_generic(*crcp, data, len);
return 0;
}
static int chksum_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
return __chksum_finup(&ctx->crc, data, len, out);
}
static int chksum_digest(struct shash_desc *desc, const u8 *data,
unsigned int length, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
return __chksum_finup(&ctx->crc, data, length, out);
}
static struct shash_alg alg = {
.digestsize = CRC_T10DIF_DIGEST_SIZE,
.init = chksum_init,
.update = chksum_update,
.final = chksum_final,
.finup = chksum_finup,
.digest = chksum_digest,
.descsize = sizeof(struct chksum_desc_ctx),
.base = {
.cra_name = "crct10dif",
.cra_driver_name = "crct10dif-pclmul",
.cra_priority = 200,
.cra_blocksize = CRC_T10DIF_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static const struct x86_cpu_id crct10dif_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_PCLMULQDQ),
{}
};
MODULE_DEVICE_TABLE(x86cpu, crct10dif_cpu_id);
static int __init crct10dif_intel_mod_init(void)
{
if (!x86_match_cpu(crct10dif_cpu_id))
return -ENODEV;
return crypto_register_shash(&alg);
}
static void __exit crct10dif_intel_mod_fini(void)
{
crypto_unregister_shash(&alg);
}
module_init(crct10dif_intel_mod_init);
module_exit(crct10dif_intel_mod_fini);
MODULE_AUTHOR("Tim Chen <tim.c.chen@linux.intel.com>");
MODULE_DESCRIPTION("T10 DIF CRC calculation accelerated with PCLMULQDQ.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("crct10dif");
MODULE_ALIAS("crct10dif-pclmul");

Просмотреть файл

@ -167,12 +167,12 @@ static struct xor_block_template xor_block_avx = {
#define AVX_XOR_SPEED \
do { \
if (cpu_has_avx) \
if (cpu_has_avx && cpu_has_osxsave) \
xor_speed(&xor_block_avx); \
} while (0)
#define AVX_SELECT(FASTEST) \
(cpu_has_avx ? &xor_block_avx : FASTEST)
(cpu_has_avx && cpu_has_osxsave ? &xor_block_avx : FASTEST)
#else

Просмотреть файл

@ -376,6 +376,25 @@ config CRYPTO_CRC32_PCLMUL
which will enable any routine to use the CRC-32-IEEE 802.3 checksum
and gain better performance as compared with the table implementation.
config CRYPTO_CRCT10DIF
tristate "CRCT10DIF algorithm"
select CRYPTO_HASH
help
CRC T10 Data Integrity Field computation is being cast as
a crypto transform. This allows for faster crc t10 diff
transforms to be used if they are available.
config CRYPTO_CRCT10DIF_PCLMUL
tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
depends on X86 && 64BIT && CRC_T10DIF
select CRYPTO_HASH
help
For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
CRC T10 DIF PCLMULQDQ computation can be hardware
accelerated PCLMULQDQ instruction. This option will create
'crct10dif-plcmul' module, which is faster when computing the
crct10dif checksum as compared with the generic table implementation.
config CRYPTO_GHASH
tristate "GHASH digest algorithm"
select CRYPTO_GF128MUL

Просмотреть файл

@ -83,6 +83,7 @@ obj-$(CONFIG_CRYPTO_ZLIB) += zlib.o
obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += michael_mic.o
obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
obj-$(CONFIG_CRYPTO_CRC32) += crc32.o
obj-$(CONFIG_CRYPTO_CRCT10DIF) += crct10dif.o
obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o authencesn.o
obj-$(CONFIG_CRYPTO_LZO) += lzo.o
obj-$(CONFIG_CRYPTO_LZ4) += lz4.o

Просмотреть файл

@ -62,7 +62,7 @@ static inline u8 byte(const u32 x, const unsigned n)
static const u32 rco_tab[10] = { 1, 2, 4, 8, 16, 32, 64, 128, 27, 54 };
const u32 crypto_ft_tab[4][256] = {
__visible const u32 crypto_ft_tab[4][256] = {
{
0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6,
0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591,
@ -326,7 +326,7 @@ const u32 crypto_ft_tab[4][256] = {
}
};
const u32 crypto_fl_tab[4][256] = {
__visible const u32 crypto_fl_tab[4][256] = {
{
0x00000063, 0x0000007c, 0x00000077, 0x0000007b,
0x000000f2, 0x0000006b, 0x0000006f, 0x000000c5,
@ -590,7 +590,7 @@ const u32 crypto_fl_tab[4][256] = {
}
};
const u32 crypto_it_tab[4][256] = {
__visible const u32 crypto_it_tab[4][256] = {
{
0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a,
0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b,
@ -854,7 +854,7 @@ const u32 crypto_it_tab[4][256] = {
}
};
const u32 crypto_il_tab[4][256] = {
__visible const u32 crypto_il_tab[4][256] = {
{
0x00000052, 0x00000009, 0x0000006a, 0x000000d5,
0x00000030, 0x00000036, 0x000000a5, 0x00000038,

Просмотреть файл

@ -388,8 +388,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
/* round 6 */
subL[7] ^= subL[1]; subR[7] ^= subR[1];
subL[1] ^= subR[1] & ~subR[9];
dw = subL[1] & subL[9],
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl2) */
dw = subL[1] & subL[9];
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl2) */
/* round 8 */
subL[11] ^= subL[1]; subR[11] ^= subR[1];
/* round 10 */
@ -397,8 +397,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
/* round 12 */
subL[15] ^= subL[1]; subR[15] ^= subR[1];
subL[1] ^= subR[1] & ~subR[17];
dw = subL[1] & subL[17],
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl4) */
dw = subL[1] & subL[17];
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl4) */
/* round 14 */
subL[19] ^= subL[1]; subR[19] ^= subR[1];
/* round 16 */
@ -413,8 +413,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
kw4l = subL[25]; kw4r = subR[25];
} else {
subL[1] ^= subR[1] & ~subR[25];
dw = subL[1] & subL[25],
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl6) */
dw = subL[1] & subL[25];
subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl6) */
/* round 20 */
subL[27] ^= subL[1]; subR[27] ^= subR[1];
/* round 22 */
@ -433,8 +433,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
/* round 19 */
subL[26] ^= kw4l; subR[26] ^= kw4r;
kw4l ^= kw4r & ~subR[24];
dw = kw4l & subL[24],
kw4r ^= rol32(dw, 1); /* modified for FL(kl5) */
dw = kw4l & subL[24];
kw4r ^= rol32(dw, 1); /* modified for FL(kl5) */
}
/* round 17 */
subL[22] ^= kw4l; subR[22] ^= kw4r;
@ -443,8 +443,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
/* round 13 */
subL[18] ^= kw4l; subR[18] ^= kw4r;
kw4l ^= kw4r & ~subR[16];
dw = kw4l & subL[16],
kw4r ^= rol32(dw, 1); /* modified for FL(kl3) */
dw = kw4l & subL[16];
kw4r ^= rol32(dw, 1); /* modified for FL(kl3) */
/* round 11 */
subL[14] ^= kw4l; subR[14] ^= kw4r;
/* round 9 */
@ -452,8 +452,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
/* round 7 */
subL[10] ^= kw4l; subR[10] ^= kw4r;
kw4l ^= kw4r & ~subR[8];
dw = kw4l & subL[8],
kw4r ^= rol32(dw, 1); /* modified for FL(kl1) */
dw = kw4l & subL[8];
kw4r ^= rol32(dw, 1); /* modified for FL(kl1) */
/* round 5 */
subL[6] ^= kw4l; subR[6] ^= kw4r;
/* round 3 */
@ -477,8 +477,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_L(6) = subL[5] ^ subL[7]; /* round 5 */
SUBKEY_R(6) = subR[5] ^ subR[7];
tl = subL[10] ^ (subR[10] & ~subR[8]);
dw = tl & subL[8], /* FL(kl1) */
tr = subR[10] ^ rol32(dw, 1);
dw = tl & subL[8]; /* FL(kl1) */
tr = subR[10] ^ rol32(dw, 1);
SUBKEY_L(7) = subL[6] ^ tl; /* round 6 */
SUBKEY_R(7) = subR[6] ^ tr;
SUBKEY_L(8) = subL[8]; /* FL(kl1) */
@ -486,8 +486,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_L(9) = subL[9]; /* FLinv(kl2) */
SUBKEY_R(9) = subR[9];
tl = subL[7] ^ (subR[7] & ~subR[9]);
dw = tl & subL[9], /* FLinv(kl2) */
tr = subR[7] ^ rol32(dw, 1);
dw = tl & subL[9]; /* FLinv(kl2) */
tr = subR[7] ^ rol32(dw, 1);
SUBKEY_L(10) = tl ^ subL[11]; /* round 7 */
SUBKEY_R(10) = tr ^ subR[11];
SUBKEY_L(11) = subL[10] ^ subL[12]; /* round 8 */
@ -499,8 +499,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_L(14) = subL[13] ^ subL[15]; /* round 11 */
SUBKEY_R(14) = subR[13] ^ subR[15];
tl = subL[18] ^ (subR[18] & ~subR[16]);
dw = tl & subL[16], /* FL(kl3) */
tr = subR[18] ^ rol32(dw, 1);
dw = tl & subL[16]; /* FL(kl3) */
tr = subR[18] ^ rol32(dw, 1);
SUBKEY_L(15) = subL[14] ^ tl; /* round 12 */
SUBKEY_R(15) = subR[14] ^ tr;
SUBKEY_L(16) = subL[16]; /* FL(kl3) */
@ -508,8 +508,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_L(17) = subL[17]; /* FLinv(kl4) */
SUBKEY_R(17) = subR[17];
tl = subL[15] ^ (subR[15] & ~subR[17]);
dw = tl & subL[17], /* FLinv(kl4) */
tr = subR[15] ^ rol32(dw, 1);
dw = tl & subL[17]; /* FLinv(kl4) */
tr = subR[15] ^ rol32(dw, 1);
SUBKEY_L(18) = tl ^ subL[19]; /* round 13 */
SUBKEY_R(18) = tr ^ subR[19];
SUBKEY_L(19) = subL[18] ^ subL[20]; /* round 14 */
@ -527,8 +527,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_R(24) = subR[24] ^ subR[23];
} else {
tl = subL[26] ^ (subR[26] & ~subR[24]);
dw = tl & subL[24], /* FL(kl5) */
tr = subR[26] ^ rol32(dw, 1);
dw = tl & subL[24]; /* FL(kl5) */
tr = subR[26] ^ rol32(dw, 1);
SUBKEY_L(23) = subL[22] ^ tl; /* round 18 */
SUBKEY_R(23) = subR[22] ^ tr;
SUBKEY_L(24) = subL[24]; /* FL(kl5) */
@ -536,8 +536,8 @@ static void camellia_setup_tail(u32 *subkey, u32 *subL, u32 *subR, int max)
SUBKEY_L(25) = subL[25]; /* FLinv(kl6) */
SUBKEY_R(25) = subR[25];
tl = subL[23] ^ (subR[23] & ~subR[25]);
dw = tl & subL[25], /* FLinv(kl6) */
tr = subR[23] ^ rol32(dw, 1);
dw = tl & subL[25]; /* FLinv(kl6) */
tr = subR[23] ^ rol32(dw, 1);
SUBKEY_L(26) = tl ^ subL[27]; /* round 19 */
SUBKEY_R(26) = tr ^ subR[27];
SUBKEY_L(27) = subL[26] ^ subL[28]; /* round 20 */

Просмотреть файл

@ -15,7 +15,7 @@
#include <linux/module.h>
#include <crypto/cast_common.h>
const u32 cast_s1[256] = {
__visible const u32 cast_s1[256] = {
0x30fb40d4, 0x9fa0ff0b, 0x6beccd2f, 0x3f258c7a, 0x1e213f2f,
0x9c004dd3, 0x6003e540, 0xcf9fc949,
0xbfd4af27, 0x88bbbdb5, 0xe2034090, 0x98d09675, 0x6e63a0e0,
@ -83,7 +83,7 @@ const u32 cast_s1[256] = {
};
EXPORT_SYMBOL_GPL(cast_s1);
const u32 cast_s2[256] = {
__visible const u32 cast_s2[256] = {
0x1f201094, 0xef0ba75b, 0x69e3cf7e, 0x393f4380, 0xfe61cf7a,
0xeec5207a, 0x55889c94, 0x72fc0651,
0xada7ef79, 0x4e1d7235, 0xd55a63ce, 0xde0436ba, 0x99c430ef,
@ -151,7 +151,7 @@ const u32 cast_s2[256] = {
};
EXPORT_SYMBOL_GPL(cast_s2);
const u32 cast_s3[256] = {
__visible const u32 cast_s3[256] = {
0x8defc240, 0x25fa5d9f, 0xeb903dbf, 0xe810c907, 0x47607fff,
0x369fe44b, 0x8c1fc644, 0xaececa90,
0xbeb1f9bf, 0xeefbcaea, 0xe8cf1950, 0x51df07ae, 0x920e8806,
@ -219,7 +219,7 @@ const u32 cast_s3[256] = {
};
EXPORT_SYMBOL_GPL(cast_s3);
const u32 cast_s4[256] = {
__visible const u32 cast_s4[256] = {
0x9db30420, 0x1fb6e9de, 0xa7be7bef, 0xd273a298, 0x4a4f7bdb,
0x64ad8c57, 0x85510443, 0xfa020ed1,
0x7e287aff, 0xe60fb663, 0x095f35a1, 0x79ebf120, 0xfd059d43,

178
crypto/crct10dif.c Normal file
Просмотреть файл

@ -0,0 +1,178 @@
/*
* Cryptographic API.
*
* T10 Data Integrity Field CRC16 Crypto Transform
*
* Copyright (c) 2007 Oracle Corporation. All rights reserved.
* Written by Martin K. Petersen <martin.petersen@oracle.com>
* Copyright (C) 2013 Intel Corporation
* Author: Tim Chen <tim.c.chen@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/crc-t10dif.h>
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/kernel.h>
struct chksum_desc_ctx {
__u16 crc;
};
/* Table generated using the following polynomium:
* x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
* gt: 0x8bb7
*/
static const __u16 t10_dif_crc_table[256] = {
0x0000, 0x8BB7, 0x9CD9, 0x176E, 0xB205, 0x39B2, 0x2EDC, 0xA56B,
0xEFBD, 0x640A, 0x7364, 0xF8D3, 0x5DB8, 0xD60F, 0xC161, 0x4AD6,
0x54CD, 0xDF7A, 0xC814, 0x43A3, 0xE6C8, 0x6D7F, 0x7A11, 0xF1A6,
0xBB70, 0x30C7, 0x27A9, 0xAC1E, 0x0975, 0x82C2, 0x95AC, 0x1E1B,
0xA99A, 0x222D, 0x3543, 0xBEF4, 0x1B9F, 0x9028, 0x8746, 0x0CF1,
0x4627, 0xCD90, 0xDAFE, 0x5149, 0xF422, 0x7F95, 0x68FB, 0xE34C,
0xFD57, 0x76E0, 0x618E, 0xEA39, 0x4F52, 0xC4E5, 0xD38B, 0x583C,
0x12EA, 0x995D, 0x8E33, 0x0584, 0xA0EF, 0x2B58, 0x3C36, 0xB781,
0xD883, 0x5334, 0x445A, 0xCFED, 0x6A86, 0xE131, 0xF65F, 0x7DE8,
0x373E, 0xBC89, 0xABE7, 0x2050, 0x853B, 0x0E8C, 0x19E2, 0x9255,
0x8C4E, 0x07F9, 0x1097, 0x9B20, 0x3E4B, 0xB5FC, 0xA292, 0x2925,
0x63F3, 0xE844, 0xFF2A, 0x749D, 0xD1F6, 0x5A41, 0x4D2F, 0xC698,
0x7119, 0xFAAE, 0xEDC0, 0x6677, 0xC31C, 0x48AB, 0x5FC5, 0xD472,
0x9EA4, 0x1513, 0x027D, 0x89CA, 0x2CA1, 0xA716, 0xB078, 0x3BCF,
0x25D4, 0xAE63, 0xB90D, 0x32BA, 0x97D1, 0x1C66, 0x0B08, 0x80BF,
0xCA69, 0x41DE, 0x56B0, 0xDD07, 0x786C, 0xF3DB, 0xE4B5, 0x6F02,
0x3AB1, 0xB106, 0xA668, 0x2DDF, 0x88B4, 0x0303, 0x146D, 0x9FDA,
0xD50C, 0x5EBB, 0x49D5, 0xC262, 0x6709, 0xECBE, 0xFBD0, 0x7067,
0x6E7C, 0xE5CB, 0xF2A5, 0x7912, 0xDC79, 0x57CE, 0x40A0, 0xCB17,
0x81C1, 0x0A76, 0x1D18, 0x96AF, 0x33C4, 0xB873, 0xAF1D, 0x24AA,
0x932B, 0x189C, 0x0FF2, 0x8445, 0x212E, 0xAA99, 0xBDF7, 0x3640,
0x7C96, 0xF721, 0xE04F, 0x6BF8, 0xCE93, 0x4524, 0x524A, 0xD9FD,
0xC7E6, 0x4C51, 0x5B3F, 0xD088, 0x75E3, 0xFE54, 0xE93A, 0x628D,
0x285B, 0xA3EC, 0xB482, 0x3F35, 0x9A5E, 0x11E9, 0x0687, 0x8D30,
0xE232, 0x6985, 0x7EEB, 0xF55C, 0x5037, 0xDB80, 0xCCEE, 0x4759,
0x0D8F, 0x8638, 0x9156, 0x1AE1, 0xBF8A, 0x343D, 0x2353, 0xA8E4,
0xB6FF, 0x3D48, 0x2A26, 0xA191, 0x04FA, 0x8F4D, 0x9823, 0x1394,
0x5942, 0xD2F5, 0xC59B, 0x4E2C, 0xEB47, 0x60F0, 0x779E, 0xFC29,
0x4BA8, 0xC01F, 0xD771, 0x5CC6, 0xF9AD, 0x721A, 0x6574, 0xEEC3,
0xA415, 0x2FA2, 0x38CC, 0xB37B, 0x1610, 0x9DA7, 0x8AC9, 0x017E,
0x1F65, 0x94D2, 0x83BC, 0x080B, 0xAD60, 0x26D7, 0x31B9, 0xBA0E,
0xF0D8, 0x7B6F, 0x6C01, 0xE7B6, 0x42DD, 0xC96A, 0xDE04, 0x55B3
};
__u16 crc_t10dif_generic(__u16 crc, const unsigned char *buffer, size_t len)
{
unsigned int i;
for (i = 0 ; i < len ; i++)
crc = (crc << 8) ^ t10_dif_crc_table[((crc >> 8) ^ buffer[i]) & 0xff];
return crc;
}
EXPORT_SYMBOL(crc_t10dif_generic);
/*
* Steps through buffer one byte at at time, calculates reflected
* crc using table.
*/
static int chksum_init(struct shash_desc *desc)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
ctx->crc = 0;
return 0;
}
static int chksum_update(struct shash_desc *desc, const u8 *data,
unsigned int length)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
ctx->crc = crc_t10dif_generic(ctx->crc, data, length);
return 0;
}
static int chksum_final(struct shash_desc *desc, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
*(__u16 *)out = ctx->crc;
return 0;
}
static int __chksum_finup(__u16 *crcp, const u8 *data, unsigned int len,
u8 *out)
{
*(__u16 *)out = crc_t10dif_generic(*crcp, data, len);
return 0;
}
static int chksum_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
return __chksum_finup(&ctx->crc, data, len, out);
}
static int chksum_digest(struct shash_desc *desc, const u8 *data,
unsigned int length, u8 *out)
{
struct chksum_desc_ctx *ctx = shash_desc_ctx(desc);
return __chksum_finup(&ctx->crc, data, length, out);
}
static struct shash_alg alg = {
.digestsize = CRC_T10DIF_DIGEST_SIZE,
.init = chksum_init,
.update = chksum_update,
.final = chksum_final,
.finup = chksum_finup,
.digest = chksum_digest,
.descsize = sizeof(struct chksum_desc_ctx),
.base = {
.cra_name = "crct10dif",
.cra_driver_name = "crct10dif-generic",
.cra_priority = 100,
.cra_blocksize = CRC_T10DIF_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int __init crct10dif_mod_init(void)
{
int ret;
ret = crypto_register_shash(&alg);
return ret;
}
static void __exit crct10dif_mod_fini(void)
{
crypto_unregister_shash(&alg);
}
module_init(crct10dif_mod_init);
module_exit(crct10dif_mod_fini);
MODULE_AUTHOR("Tim Chen <tim.c.chen@linux.intel.com>");
MODULE_DESCRIPTION("T10 DIF CRC calculation.");
MODULE_LICENSE("GPL");

Просмотреть файл

@ -110,7 +110,7 @@ static const __be32 sbox0[256] = {
};
#undef Z
#define Z(x) cpu_to_be32((x << 27) | (x >> 5))
#define Z(x) cpu_to_be32(((x & 0x1f) << 27) | (x >> 5))
static const __be32 sbox1[256] = {
Z(0x77), Z(0x14), Z(0xa6), Z(0xfe), Z(0xb2), Z(0x5e), Z(0x8c), Z(0x3e),
Z(0x67), Z(0x6c), Z(0xa1), Z(0x0d), Z(0xc2), Z(0xa2), Z(0xc1), Z(0x85),

Просмотреть файл

@ -124,3 +124,25 @@ void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg,
scatterwalk_done(&walk, out, 0);
}
EXPORT_SYMBOL_GPL(scatterwalk_map_and_copy);
int scatterwalk_bytes_sglen(struct scatterlist *sg, int num_bytes)
{
int offset = 0, n = 0;
/* num_bytes is too small */
if (num_bytes < sg->length)
return -1;
do {
offset += sg->length;
n++;
sg = scatterwalk_sg_next(sg);
/* num_bytes is too large */
if (unlikely(!sg && (num_bytes < offset)))
return -1;
} while (sg && (num_bytes > offset));
return n;
}
EXPORT_SYMBOL_GPL(scatterwalk_bytes_sglen);

Просмотреть файл

@ -1174,6 +1174,10 @@ static int do_test(int m)
ret += tcrypt_test("ghash");
break;
case 47:
ret += tcrypt_test("crct10dif");
break;
case 100:
ret += tcrypt_test("hmac(md5)");
break;
@ -1498,6 +1502,10 @@ static int do_test(int m)
test_hash_speed("crc32c", sec, generic_hash_speed_template);
if (mode > 300 && mode < 400) break;
case 320:
test_hash_speed("crct10dif", sec, generic_hash_speed_template);
if (mode > 300 && mode < 400) break;
case 399:
break;

Просмотреть файл

@ -2045,6 +2045,16 @@ static const struct alg_test_desc alg_test_descs[] = {
.count = CRC32C_TEST_VECTORS
}
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crct10dif_tv_template,
.count = CRCT10DIF_TEST_VECTORS
}
}
}, {
.alg = "cryptd(__driver-cbc-aes-aesni)",
.test = alg_test_null,
@ -3224,7 +3234,7 @@ int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0)
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);

Просмотреть файл

@ -450,6 +450,39 @@ static struct hash_testvec rmd320_tv_template[] = {
}
};
#define CRCT10DIF_TEST_VECTORS 3
static struct hash_testvec crct10dif_tv_template[] = {
{
.plaintext = "abc",
.psize = 3,
#ifdef __LITTLE_ENDIAN
.digest = "\x3b\x44",
#else
.digest = "\x44\x3b",
#endif
}, {
.plaintext = "1234567890123456789012345678901234567890"
"123456789012345678901234567890123456789",
.psize = 79,
#ifdef __LITTLE_ENDIAN
.digest = "\x70\x4b",
#else
.digest = "\x4b\x70",
#endif
}, {
.plaintext =
"abcddddddddddddddddddddddddddddddddddddddddddddddddddddd",
.psize = 56,
#ifdef __LITTLE_ENDIAN
.digest = "\xe3\x9c",
#else
.digest = "\x9c\xe3",
#endif
.np = 2,
.tap = { 28, 28 }
}
};
/*
* SHA1 test vectors from from FIPS PUB 180-1
* Long vector from CAVS 5.0

Просмотреть файл

@ -153,12 +153,12 @@ config HW_RANDOM_IXP4XX
config HW_RANDOM_OMAP
tristate "OMAP Random Number Generator support"
depends on HW_RANDOM && (ARCH_OMAP16XX || ARCH_OMAP2)
depends on HW_RANDOM && (ARCH_OMAP16XX || ARCH_OMAP2PLUS)
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on OMAP16xx and OMAP24xx multimedia
processors.
Generator hardware found on OMAP16xx, OMAP2/3/4/5 and AM33xx/AM43xx
multimedia processors.
To compile this driver as a module, choose M here: the
module will be called omap-rng.

Просмотреть файл

@ -164,7 +164,9 @@ static int __init mxc_rnga_probe(struct platform_device *pdev)
goto out;
}
clk_prepare_enable(mxc_rng->clk);
err = clk_prepare_enable(mxc_rng->clk);
if (err)
goto out;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mxc_rng->mem = devm_ioremap_resource(&pdev->dev, res);

Просмотреть файл

@ -24,57 +24,131 @@
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#define RNG_OUT_REG 0x00 /* Output register */
#define RNG_STAT_REG 0x04 /* Status register
[0] = STAT_BUSY */
#define RNG_ALARM_REG 0x24 /* Alarm register
[7:0] = ALARM_COUNTER */
#define RNG_CONFIG_REG 0x28 /* Configuration register
[11:6] = RESET_COUNT
[5:3] = RING2_DELAY
[2:0] = RING1_DELAY */
#define RNG_REV_REG 0x3c /* Revision register
[7:0] = REV_NB */
#define RNG_MASK_REG 0x40 /* Mask and reset register
[2] = IT_EN
[1] = SOFTRESET
[0] = AUTOIDLE */
#define RNG_SYSSTATUS 0x44 /* System status
[0] = RESETDONE */
#define RNG_REG_STATUS_RDY (1 << 0)
/**
* struct omap_rng_private_data - RNG IP block-specific data
* @base: virtual address of the beginning of the RNG IP block registers
* @mem_res: struct resource * for the IP block registers physical memory
*/
struct omap_rng_private_data {
void __iomem *base;
struct resource *mem_res;
#define RNG_REG_INTACK_RDY_MASK (1 << 0)
#define RNG_REG_INTACK_SHUTDOWN_OFLO_MASK (1 << 1)
#define RNG_SHUTDOWN_OFLO_MASK (1 << 1)
#define RNG_CONTROL_STARTUP_CYCLES_SHIFT 16
#define RNG_CONTROL_STARTUP_CYCLES_MASK (0xffff << 16)
#define RNG_CONTROL_ENABLE_TRNG_SHIFT 10
#define RNG_CONTROL_ENABLE_TRNG_MASK (1 << 10)
#define RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT 16
#define RNG_CONFIG_MAX_REFIL_CYCLES_MASK (0xffff << 16)
#define RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT 0
#define RNG_CONFIG_MIN_REFIL_CYCLES_MASK (0xff << 0)
#define RNG_CONTROL_STARTUP_CYCLES 0xff
#define RNG_CONFIG_MIN_REFIL_CYCLES 0x21
#define RNG_CONFIG_MAX_REFIL_CYCLES 0x22
#define RNG_ALARMCNT_ALARM_TH_SHIFT 0x0
#define RNG_ALARMCNT_ALARM_TH_MASK (0xff << 0)
#define RNG_ALARMCNT_SHUTDOWN_TH_SHIFT 16
#define RNG_ALARMCNT_SHUTDOWN_TH_MASK (0x1f << 16)
#define RNG_ALARM_THRESHOLD 0xff
#define RNG_SHUTDOWN_THRESHOLD 0x4
#define RNG_REG_FROENABLE_MASK 0xffffff
#define RNG_REG_FRODETUNE_MASK 0xffffff
#define OMAP2_RNG_OUTPUT_SIZE 0x4
#define OMAP4_RNG_OUTPUT_SIZE 0x8
enum {
RNG_OUTPUT_L_REG = 0,
RNG_OUTPUT_H_REG,
RNG_STATUS_REG,
RNG_INTMASK_REG,
RNG_INTACK_REG,
RNG_CONTROL_REG,
RNG_CONFIG_REG,
RNG_ALARMCNT_REG,
RNG_FROENABLE_REG,
RNG_FRODETUNE_REG,
RNG_ALARMMASK_REG,
RNG_ALARMSTOP_REG,
RNG_REV_REG,
RNG_SYSCONFIG_REG,
};
static inline u32 omap_rng_read_reg(struct omap_rng_private_data *priv, int reg)
static const u16 reg_map_omap2[] = {
[RNG_OUTPUT_L_REG] = 0x0,
[RNG_STATUS_REG] = 0x4,
[RNG_CONFIG_REG] = 0x28,
[RNG_REV_REG] = 0x3c,
[RNG_SYSCONFIG_REG] = 0x40,
};
static const u16 reg_map_omap4[] = {
[RNG_OUTPUT_L_REG] = 0x0,
[RNG_OUTPUT_H_REG] = 0x4,
[RNG_STATUS_REG] = 0x8,
[RNG_INTMASK_REG] = 0xc,
[RNG_INTACK_REG] = 0x10,
[RNG_CONTROL_REG] = 0x14,
[RNG_CONFIG_REG] = 0x18,
[RNG_ALARMCNT_REG] = 0x1c,
[RNG_FROENABLE_REG] = 0x20,
[RNG_FRODETUNE_REG] = 0x24,
[RNG_ALARMMASK_REG] = 0x28,
[RNG_ALARMSTOP_REG] = 0x2c,
[RNG_REV_REG] = 0x1FE0,
[RNG_SYSCONFIG_REG] = 0x1FE4,
};
struct omap_rng_dev;
/**
* struct omap_rng_pdata - RNG IP block-specific data
* @regs: Pointer to the register offsets structure.
* @data_size: No. of bytes in RNG output.
* @data_present: Callback to determine if data is available.
* @init: Callback for IP specific initialization sequence.
* @cleanup: Callback for IP specific cleanup sequence.
*/
struct omap_rng_pdata {
u16 *regs;
u32 data_size;
u32 (*data_present)(struct omap_rng_dev *priv);
int (*init)(struct omap_rng_dev *priv);
void (*cleanup)(struct omap_rng_dev *priv);
};
struct omap_rng_dev {
void __iomem *base;
struct device *dev;
const struct omap_rng_pdata *pdata;
};
static inline u32 omap_rng_read(struct omap_rng_dev *priv, u16 reg)
{
return __raw_readl(priv->base + reg);
return __raw_readl(priv->base + priv->pdata->regs[reg]);
}
static inline void omap_rng_write_reg(struct omap_rng_private_data *priv,
int reg, u32 val)
static inline void omap_rng_write(struct omap_rng_dev *priv, u16 reg,
u32 val)
{
__raw_writel(val, priv->base + reg);
__raw_writel(val, priv->base + priv->pdata->regs[reg]);
}
static int omap_rng_data_present(struct hwrng *rng, int wait)
{
struct omap_rng_private_data *priv;
struct omap_rng_dev *priv;
int data, i;
priv = (struct omap_rng_private_data *)rng->priv;
priv = (struct omap_rng_dev *)rng->priv;
for (i = 0; i < 20; i++) {
data = omap_rng_read_reg(priv, RNG_STAT_REG) ? 0 : 1;
data = priv->pdata->data_present(priv);
if (data || !wait)
break;
/* RNG produces data fast enough (2+ MBit/sec, even
@ -89,27 +163,212 @@ static int omap_rng_data_present(struct hwrng *rng, int wait)
static int omap_rng_data_read(struct hwrng *rng, u32 *data)
{
struct omap_rng_private_data *priv;
struct omap_rng_dev *priv;
u32 data_size, i;
priv = (struct omap_rng_private_data *)rng->priv;
priv = (struct omap_rng_dev *)rng->priv;
data_size = priv->pdata->data_size;
*data = omap_rng_read_reg(priv, RNG_OUT_REG);
for (i = 0; i < data_size / sizeof(u32); i++)
data[i] = omap_rng_read(priv, RNG_OUTPUT_L_REG + i);
return sizeof(u32);
if (priv->pdata->regs[RNG_INTACK_REG])
omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_RDY_MASK);
return data_size;
}
static int omap_rng_init(struct hwrng *rng)
{
struct omap_rng_dev *priv;
priv = (struct omap_rng_dev *)rng->priv;
return priv->pdata->init(priv);
}
static void omap_rng_cleanup(struct hwrng *rng)
{
struct omap_rng_dev *priv;
priv = (struct omap_rng_dev *)rng->priv;
priv->pdata->cleanup(priv);
}
static struct hwrng omap_rng_ops = {
.name = "omap",
.data_present = omap_rng_data_present,
.data_read = omap_rng_data_read,
.init = omap_rng_init,
.cleanup = omap_rng_cleanup,
};
static inline u32 omap2_rng_data_present(struct omap_rng_dev *priv)
{
return omap_rng_read(priv, RNG_STATUS_REG) ? 0 : 1;
}
static int omap2_rng_init(struct omap_rng_dev *priv)
{
omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x1);
return 0;
}
static void omap2_rng_cleanup(struct omap_rng_dev *priv)
{
omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x0);
}
static struct omap_rng_pdata omap2_rng_pdata = {
.regs = (u16 *)reg_map_omap2,
.data_size = OMAP2_RNG_OUTPUT_SIZE,
.data_present = omap2_rng_data_present,
.init = omap2_rng_init,
.cleanup = omap2_rng_cleanup,
};
#if defined(CONFIG_OF)
static inline u32 omap4_rng_data_present(struct omap_rng_dev *priv)
{
return omap_rng_read(priv, RNG_STATUS_REG) & RNG_REG_STATUS_RDY;
}
static int omap4_rng_init(struct omap_rng_dev *priv)
{
u32 val;
/* Return if RNG is already running. */
if (omap_rng_read(priv, RNG_CONFIG_REG) & RNG_CONTROL_ENABLE_TRNG_MASK)
return 0;
val = RNG_CONFIG_MIN_REFIL_CYCLES << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT;
val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT;
omap_rng_write(priv, RNG_CONFIG_REG, val);
omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0);
omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK);
val = RNG_ALARM_THRESHOLD << RNG_ALARMCNT_ALARM_TH_SHIFT;
val |= RNG_SHUTDOWN_THRESHOLD << RNG_ALARMCNT_SHUTDOWN_TH_SHIFT;
omap_rng_write(priv, RNG_ALARMCNT_REG, val);
val = RNG_CONTROL_STARTUP_CYCLES << RNG_CONTROL_STARTUP_CYCLES_SHIFT;
val |= RNG_CONTROL_ENABLE_TRNG_MASK;
omap_rng_write(priv, RNG_CONTROL_REG, val);
return 0;
}
static void omap4_rng_cleanup(struct omap_rng_dev *priv)
{
int val;
val = omap_rng_read(priv, RNG_CONTROL_REG);
val &= ~RNG_CONTROL_ENABLE_TRNG_MASK;
omap_rng_write(priv, RNG_CONFIG_REG, val);
}
static irqreturn_t omap4_rng_irq(int irq, void *dev_id)
{
struct omap_rng_dev *priv = dev_id;
u32 fro_detune, fro_enable;
/*
* Interrupt raised by a fro shutdown threshold, do the following:
* 1. Clear the alarm events.
* 2. De tune the FROs which are shutdown.
* 3. Re enable the shutdown FROs.
*/
omap_rng_write(priv, RNG_ALARMMASK_REG, 0x0);
omap_rng_write(priv, RNG_ALARMSTOP_REG, 0x0);
fro_enable = omap_rng_read(priv, RNG_FROENABLE_REG);
fro_detune = ~fro_enable & RNG_REG_FRODETUNE_MASK;
fro_detune = fro_detune | omap_rng_read(priv, RNG_FRODETUNE_REG);
fro_enable = RNG_REG_FROENABLE_MASK;
omap_rng_write(priv, RNG_FRODETUNE_REG, fro_detune);
omap_rng_write(priv, RNG_FROENABLE_REG, fro_enable);
omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_SHUTDOWN_OFLO_MASK);
return IRQ_HANDLED;
}
static struct omap_rng_pdata omap4_rng_pdata = {
.regs = (u16 *)reg_map_omap4,
.data_size = OMAP4_RNG_OUTPUT_SIZE,
.data_present = omap4_rng_data_present,
.init = omap4_rng_init,
.cleanup = omap4_rng_cleanup,
};
static const struct of_device_id omap_rng_of_match[] = {
{
.compatible = "ti,omap2-rng",
.data = &omap2_rng_pdata,
},
{
.compatible = "ti,omap4-rng",
.data = &omap4_rng_pdata,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_rng_of_match);
static int of_get_omap_rng_device_details(struct omap_rng_dev *priv,
struct platform_device *pdev)
{
const struct of_device_id *match;
struct device *dev = &pdev->dev;
int irq, err;
match = of_match_device(of_match_ptr(omap_rng_of_match), dev);
if (!match) {
dev_err(dev, "no compatible OF match\n");
return -EINVAL;
}
priv->pdata = match->data;
if (of_device_is_compatible(dev->of_node, "ti,omap4-rng")) {
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "%s: error getting IRQ resource - %d\n",
__func__, irq);
return irq;
}
err = devm_request_irq(dev, irq, omap4_rng_irq,
IRQF_TRIGGER_NONE, dev_name(dev), priv);
if (err) {
dev_err(dev, "unable to request irq %d, err = %d\n",
irq, err);
return err;
}
omap_rng_write(priv, RNG_INTMASK_REG, RNG_SHUTDOWN_OFLO_MASK);
}
return 0;
}
#else
static int of_get_omap_rng_device_details(struct omap_rng_dev *omap_rng,
struct platform_device *pdev)
{
return -EINVAL;
}
#endif
static int get_omap_rng_device_details(struct omap_rng_dev *omap_rng)
{
/* Only OMAP2/3 can be non-DT */
omap_rng->pdata = &omap2_rng_pdata;
return 0;
}
static int omap_rng_probe(struct platform_device *pdev)
{
struct omap_rng_private_data *priv;
struct omap_rng_dev *priv;
struct resource *res;
struct device *dev = &pdev->dev;
int ret;
priv = kzalloc(sizeof(struct omap_rng_private_data), GFP_KERNEL);
priv = devm_kzalloc(dev, sizeof(struct omap_rng_dev), GFP_KERNEL);
if (!priv) {
dev_err(&pdev->dev, "could not allocate memory\n");
return -ENOMEM;
@ -117,26 +376,29 @@ static int omap_rng_probe(struct platform_device *pdev)
omap_rng_ops.priv = (unsigned long)priv;
platform_set_drvdata(pdev, priv);
priv->dev = dev;
priv->mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(&pdev->dev, priv->mem_res);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto err_ioremap;
}
platform_set_drvdata(pdev, priv);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
ret = (dev->of_node) ? of_get_omap_rng_device_details(priv, pdev) :
get_omap_rng_device_details(priv);
if (ret)
goto err_ioremap;
ret = hwrng_register(&omap_rng_ops);
if (ret)
goto err_register;
dev_info(&pdev->dev, "OMAP Random Number Generator ver. %02x\n",
omap_rng_read_reg(priv, RNG_REV_REG));
omap_rng_write_reg(priv, RNG_MASK_REG, 0x1);
omap_rng_read(priv, RNG_REV_REG));
return 0;
@ -144,26 +406,21 @@ err_register:
priv->base = NULL;
pm_runtime_disable(&pdev->dev);
err_ioremap:
kfree(priv);
dev_err(dev, "initialization failed.\n");
return ret;
}
static int __exit omap_rng_remove(struct platform_device *pdev)
{
struct omap_rng_private_data *priv = platform_get_drvdata(pdev);
struct omap_rng_dev *priv = platform_get_drvdata(pdev);
hwrng_unregister(&omap_rng_ops);
omap_rng_write_reg(priv, RNG_MASK_REG, 0x0);
priv->pdata->cleanup(priv);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
release_mem_region(priv->mem_res->start, resource_size(priv->mem_res));
kfree(priv);
return 0;
}
@ -171,9 +428,9 @@ static int __exit omap_rng_remove(struct platform_device *pdev)
static int omap_rng_suspend(struct device *dev)
{
struct omap_rng_private_data *priv = dev_get_drvdata(dev);
struct omap_rng_dev *priv = dev_get_drvdata(dev);
omap_rng_write_reg(priv, RNG_MASK_REG, 0x0);
priv->pdata->cleanup(priv);
pm_runtime_put_sync(dev);
return 0;
@ -181,10 +438,10 @@ static int omap_rng_suspend(struct device *dev)
static int omap_rng_resume(struct device *dev)
{
struct omap_rng_private_data *priv = dev_get_drvdata(dev);
struct omap_rng_dev *priv = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
omap_rng_write_reg(priv, RNG_MASK_REG, 0x1);
priv->pdata->init(priv);
return 0;
}
@ -198,31 +455,18 @@ static SIMPLE_DEV_PM_OPS(omap_rng_pm, omap_rng_suspend, omap_rng_resume);
#endif
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:omap_rng");
static struct platform_driver omap_rng_driver = {
.driver = {
.name = "omap_rng",
.owner = THIS_MODULE,
.pm = OMAP_RNG_PM,
.of_match_table = of_match_ptr(omap_rng_of_match),
},
.probe = omap_rng_probe,
.remove = __exit_p(omap_rng_remove),
};
static int __init omap_rng_init(void)
{
return platform_driver_register(&omap_rng_driver);
}
static void __exit omap_rng_exit(void)
{
platform_driver_unregister(&omap_rng_driver);
}
module_init(omap_rng_init);
module_exit(omap_rng_exit);
module_platform_driver(omap_rng_driver);
MODULE_ALIAS("platform:omap_rng");
MODULE_AUTHOR("Deepak Saxena (and others)");
MODULE_LICENSE("GPL");

Просмотреть файл

@ -33,7 +33,7 @@
static void __iomem *rng_base;
static struct clk *rng_clk;
struct device *rng_dev;
static struct device *rng_dev;
static inline u32 picoxcell_trng_read_csr(void)
{

Просмотреть файл

@ -110,12 +110,10 @@ static int __init tx4939_rng_probe(struct platform_device *dev)
struct resource *r;
int i;
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (!r)
return -EBUSY;
rngdev = devm_kzalloc(&dev->dev, sizeof(*rngdev), GFP_KERNEL);
if (!rngdev)
return -ENOMEM;
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
rngdev->base = devm_ioremap_resource(&dev->dev, r);
if (IS_ERR(rngdev->base))
return PTR_ERR(rngdev->base);

Просмотреть файл

@ -29,6 +29,7 @@
#include <linux/kernel.h>
#include <linux/hw_random.h>
#include <linux/delay.h>
#include <asm/cpu_device_id.h>
#include <asm/io.h>
#include <asm/msr.h>
#include <asm/cpufeature.h>
@ -220,5 +221,11 @@ static void __exit mod_exit(void)
module_init(mod_init);
module_exit(mod_exit);
static struct x86_cpu_id via_rng_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_XSTORE),
{}
};
MODULE_DESCRIPTION("H/W RNG driver for VIA CPU with PadLock");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(x86cpu, via_rng_cpu_id);

Просмотреть файл

@ -242,17 +242,20 @@ config CRYPTO_DEV_PPC4XX
This option allows you to have support for AMCC crypto acceleration.
config CRYPTO_DEV_OMAP_SHAM
tristate "Support for OMAP SHA1/MD5 hw accelerator"
depends on ARCH_OMAP2 || ARCH_OMAP3
tristate "Support for OMAP MD5/SHA1/SHA2 hw accelerator"
depends on ARCH_OMAP2PLUS
select CRYPTO_SHA1
select CRYPTO_MD5
select CRYPTO_SHA256
select CRYPTO_SHA512
select CRYPTO_HMAC
help
OMAP processors have SHA1/MD5 hw accelerator. Select this if you
want to use the OMAP module for SHA1/MD5 algorithms.
OMAP processors have MD5/SHA1/SHA2 hw accelerator. Select this if you
want to use the OMAP module for MD5/SHA1/SHA2 algorithms.
config CRYPTO_DEV_OMAP_AES
tristate "Support for OMAP AES hw engine"
depends on ARCH_OMAP2 || ARCH_OMAP3
depends on ARCH_OMAP2 || ARCH_OMAP3 || ARCH_OMAP2PLUS
select CRYPTO_AES
select CRYPTO_BLKCIPHER2
help

Просмотреть файл

@ -32,10 +32,10 @@
#include "crypto4xx_sa.h"
#include "crypto4xx_core.h"
void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h,
u32 save_iv, u32 ld_h, u32 ld_iv, u32 hdr_proc,
u32 h, u32 c, u32 pad_type, u32 op_grp, u32 op,
u32 dir)
static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h,
u32 save_iv, u32 ld_h, u32 ld_iv,
u32 hdr_proc, u32 h, u32 c, u32 pad_type,
u32 op_grp, u32 op, u32 dir)
{
sa->sa_command_0.w = 0;
sa->sa_command_0.bf.save_hash_state = save_h;
@ -52,9 +52,10 @@ void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h,
sa->sa_command_0.bf.dir = dir;
}
void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, u32 hmac_mc,
u32 cfb, u32 esn, u32 sn_mask, u32 mute,
u32 cp_pad, u32 cp_pay, u32 cp_hdr)
static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm,
u32 hmac_mc, u32 cfb, u32 esn,
u32 sn_mask, u32 mute, u32 cp_pad,
u32 cp_pay, u32 cp_hdr)
{
sa->sa_command_1.w = 0;
sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2;

Просмотреть файл

@ -98,3 +98,11 @@ config CRYPTO_DEV_FSL_CAAM_RNG_API
To compile this as a module, choose M here: the module
will be called caamrng.
config CRYPTO_DEV_FSL_CAAM_DEBUG
bool "Enable debug output in CAAM driver"
depends on CRYPTO_DEV_FSL_CAAM
default n
help
Selecting this will enable printing of various debug
information in the CAAM driver.

Просмотреть файл

@ -1,6 +1,9 @@
#
# Makefile for the CAAM backend and dependent components
#
ifeq ($(CONFIG_CRYPTO_DEV_FSL_CAAM_DEBUG), y)
EXTRA_CFLAGS := -DDEBUG
endif
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API) += caamalg.o

Просмотреть файл

@ -65,8 +65,6 @@
#define CAAM_MAX_IV_LENGTH 16
/* length of descriptors text */
#define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
#define DESC_AEAD_BASE (4 * CAAM_CMD_SZ)
#define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 16 * CAAM_CMD_SZ)
#define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 21 * CAAM_CMD_SZ)
@ -84,8 +82,6 @@
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define xstr(s) str(s)
#define str(s) #s
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
@ -285,7 +281,7 @@ static int aead_set_sh_desc(struct crypto_aead *aead)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead enc shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -353,7 +349,7 @@ static int aead_set_sh_desc(struct crypto_aead *aead)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead dec shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -436,7 +432,7 @@ static int aead_set_sh_desc(struct crypto_aead *aead)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead givenc shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead givenc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -500,7 +496,7 @@ static int aead_setkey(struct crypto_aead *aead,
keylen, enckeylen, authkeylen);
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
ctx->split_key_len, ctx->split_key_pad_len);
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
@ -519,7 +515,7 @@ static int aead_setkey(struct crypto_aead *aead,
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len + enckeylen, 1);
#endif
@ -549,7 +545,7 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
u32 *desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
@ -598,7 +594,8 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher enc shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"ablkcipher enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -643,7 +640,8 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher dec shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"ablkcipher dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -780,13 +778,13 @@ static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
aead_unmap(jrdev, edesc, req);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "assoc @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src) - ivsize,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->cryptlen +
ctx->authsize + 4, 1);
@ -814,10 +812,10 @@ static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
offsetof(struct aead_edesc, hw_desc));
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->dst),
req->cryptlen, 1);
#endif
@ -837,7 +835,7 @@ static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
err = -EBADMSG;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "iphdrout@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4,
((char *)sg_virt(req->assoc) - sizeof(struct iphdr)),
sizeof(struct iphdr) + req->assoclen +
@ -845,7 +843,7 @@ static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
ctx->authsize + 36, 1);
if (!err && edesc->sec4_sg_bytes) {
struct scatterlist *sg = sg_last(req->src, edesc->src_nents);
print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "sglastout@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
sg->length + ctx->authsize + 16, 1);
}
@ -878,10 +876,10 @@ static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
@ -913,10 +911,10 @@ static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
@ -947,16 +945,16 @@ static void init_aead_job(u32 *sh_desc, dma_addr_t ptr,
#ifdef DEBUG
debug("assoclen %d cryptlen %d authsize %d\n",
req->assoclen, req->cryptlen, authsize);
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "assoc @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "presciv@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "src @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->cryptlen, 1);
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "shrdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
desc_bytes(sh_desc), 1);
#endif
@ -1025,15 +1023,15 @@ static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr,
#ifdef DEBUG
debug("assoclen %d cryptlen %d authsize %d\n",
req->assoclen, req->cryptlen, authsize);
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "assoc @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
req->assoclen , 1);
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "presciv@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "src @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents > 1 ? 100 : req->cryptlen, 1);
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "shrdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
desc_bytes(sh_desc), 1);
#endif
@ -1086,10 +1084,10 @@ static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
int len, sec4_sg_index = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "presciv@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "src @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
edesc->src_nents ? 100 : req->nbytes, 1);
#endif
@ -1247,7 +1245,7 @@ static int aead_encrypt(struct aead_request *req)
init_aead_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req,
all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
@ -1281,7 +1279,7 @@ static int aead_decrypt(struct aead_request *req)
return PTR_ERR(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dec src@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "dec src@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
req->cryptlen, 1);
#endif
@ -1290,7 +1288,7 @@ static int aead_decrypt(struct aead_request *req)
init_aead_job(ctx->sh_desc_dec,
ctx->sh_desc_dec_dma, edesc, req, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
@ -1437,7 +1435,7 @@ static int aead_givencrypt(struct aead_givcrypt_request *areq)
return PTR_ERR(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "giv src@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "giv src@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
req->cryptlen, 1);
#endif
@ -1446,7 +1444,7 @@ static int aead_givencrypt(struct aead_givcrypt_request *areq)
init_aead_giv_job(ctx->sh_desc_givenc,
ctx->sh_desc_givenc_dma, edesc, req, contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
@ -1546,7 +1544,7 @@ static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher sec4_sg@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ablkcipher sec4_sg@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
sec4_sg_bytes, 1);
#endif
@ -1575,7 +1573,7 @@ static int ablkcipher_encrypt(struct ablkcipher_request *req)
init_ablkcipher_job(ctx->sh_desc_enc,
ctx->sh_desc_enc_dma, edesc, req, iv_contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
@ -1613,7 +1611,7 @@ static int ablkcipher_decrypt(struct ablkcipher_request *req)
ctx->sh_desc_dec_dma, edesc, req, iv_contig);
desc = edesc->hw_desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif

Просмотреть файл

@ -72,8 +72,6 @@
#define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
/* length of descriptors text */
#define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
#define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
#define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
#define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
@ -91,8 +89,6 @@
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define xstr(s) str(s)
#define str(s) #s
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
@ -331,7 +327,8 @@ static int ahash_set_sh_desc(struct crypto_ahash *ahash)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash update shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"ahash update shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -349,7 +346,8 @@ static int ahash_set_sh_desc(struct crypto_ahash *ahash)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash update first shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"ahash update first shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -366,7 +364,7 @@ static int ahash_set_sh_desc(struct crypto_ahash *ahash)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash final shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -384,7 +382,7 @@ static int ahash_set_sh_desc(struct crypto_ahash *ahash)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash finup shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -403,7 +401,8 @@ static int ahash_set_sh_desc(struct crypto_ahash *ahash)
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ahash digest shdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"ahash digest shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -464,9 +463,9 @@ static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
LDST_SRCDST_BYTE_CONTEXT);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key_in@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -479,7 +478,8 @@ static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
wait_for_completion_interruptible(&result.completion);
ret = result.err;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "digested key@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR,
"digested key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in,
digestsize, 1);
#endif
@ -530,7 +530,7 @@ static int ahash_setkey(struct crypto_ahash *ahash,
#ifdef DEBUG
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
ctx->split_key_len, ctx->split_key_pad_len);
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
@ -545,7 +545,7 @@ static int ahash_setkey(struct crypto_ahash *ahash,
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len, 1);
#endif
@ -638,11 +638,11 @@ static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
@ -676,11 +676,11 @@ static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
@ -714,11 +714,11 @@ static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
@ -752,11 +752,11 @@ static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
kfree(edesc);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
digestsize, 1);
#endif
@ -852,7 +852,7 @@ static int ahash_update_ctx(struct ahash_request *req)
append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -871,9 +871,9 @@ static int ahash_update_ctx(struct ahash_request *req)
*next_buflen = last_buflen;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif
@ -937,7 +937,7 @@ static int ahash_final_ctx(struct ahash_request *req)
digestsize);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -1016,7 +1016,7 @@ static int ahash_finup_ctx(struct ahash_request *req)
digestsize);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -1086,7 +1086,7 @@ static int ahash_digest(struct ahash_request *req)
digestsize);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -1140,7 +1140,7 @@ static int ahash_final_no_ctx(struct ahash_request *req)
edesc->src_nents = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -1228,7 +1228,7 @@ static int ahash_update_no_ctx(struct ahash_request *req)
map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -1250,9 +1250,9 @@ static int ahash_update_no_ctx(struct ahash_request *req)
*next_buflen = 0;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif
@ -1321,7 +1321,7 @@ static int ahash_finup_no_ctx(struct ahash_request *req)
digestsize);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -1414,7 +1414,7 @@ static int ahash_update_first(struct ahash_request *req)
map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
@ -1438,7 +1438,7 @@ static int ahash_update_first(struct ahash_request *req)
sg_copy(next_buf, req->src, req->nbytes);
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
*next_buflen, 1);
#endif

Просмотреть файл

@ -75,55 +75,53 @@ static void build_instantiation_desc(u32 *desc)
OP_ALG_RNG4_SK);
}
struct instantiate_result {
struct completion completion;
int err;
};
static void rng4_init_done(struct device *dev, u32 *desc, u32 err,
void *context)
static int instantiate_rng(struct device *ctrldev)
{
struct instantiate_result *instantiation = context;
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
instantiation->err = err;
complete(&instantiation->completion);
}
static int instantiate_rng(struct device *jrdev)
{
struct instantiate_result instantiation;
dma_addr_t desc_dma;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_full __iomem *topregs;
unsigned int timeout = 100000;
u32 *desc;
int ret;
int i, ret = 0;
desc = kmalloc(CAAM_CMD_SZ * 6, GFP_KERNEL | GFP_DMA);
if (!desc) {
dev_err(jrdev, "cannot allocate RNG init descriptor memory\n");
dev_err(ctrldev, "can't allocate RNG init descriptor memory\n");
return -ENOMEM;
}
build_instantiation_desc(desc);
desc_dma = dma_map_single(jrdev, desc, desc_bytes(desc), DMA_TO_DEVICE);
init_completion(&instantiation.completion);
ret = caam_jr_enqueue(jrdev, desc, rng4_init_done, &instantiation);
if (!ret) {
wait_for_completion_interruptible(&instantiation.completion);
ret = instantiation.err;
if (ret)
dev_err(jrdev, "unable to instantiate RNG\n");
/* Set the bit to request direct access to DECO0 */
topregs = (struct caam_full __iomem *)ctrlpriv->ctrl;
setbits32(&topregs->ctrl.deco_rq, DECORR_RQD0ENABLE);
while (!(rd_reg32(&topregs->ctrl.deco_rq) & DECORR_DEN0) &&
--timeout)
cpu_relax();
if (!timeout) {
dev_err(ctrldev, "failed to acquire DECO 0\n");
ret = -EIO;
goto out;
}
dma_unmap_single(jrdev, desc_dma, desc_bytes(desc), DMA_TO_DEVICE);
for (i = 0; i < desc_len(desc); i++)
topregs->deco.descbuf[i] = *(desc + i);
wr_reg32(&topregs->deco.jr_ctl_hi, DECO_JQCR_WHL | DECO_JQCR_FOUR);
timeout = 10000000;
while ((rd_reg32(&topregs->deco.desc_dbg) & DECO_DBG_VALID) &&
--timeout)
cpu_relax();
if (!timeout) {
dev_err(ctrldev, "failed to instantiate RNG\n");
ret = -EIO;
}
clrbits32(&topregs->ctrl.deco_rq, DECORR_RQD0ENABLE);
out:
kfree(desc);
return ret;
}
@ -303,7 +301,7 @@ static int caam_probe(struct platform_device *pdev)
if ((cha_vid & CHA_ID_RNG_MASK) >> CHA_ID_RNG_SHIFT >= 4 &&
!(rd_reg32(&topregs->ctrl.r4tst[0].rdsta) & RDSTA_IF0)) {
kick_trng(pdev);
ret = instantiate_rng(ctrlpriv->jrdev[0]);
ret = instantiate_rng(dev);
if (ret) {
caam_remove(pdev);
return ret;
@ -315,9 +313,6 @@ static int caam_probe(struct platform_device *pdev)
/* NOTE: RTIC detection ought to go here, around Si time */
/* Initialize queue allocator lock */
spin_lock_init(&ctrlpriv->jr_alloc_lock);
caam_id = rd_reg64(&topregs->ctrl.perfmon.caam_id);
/* Report "alive" for developer to see */

Просмотреть файл

@ -10,6 +10,7 @@
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ sizeof(dma_addr_t)
#define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * MAX_CAAM_DESCSIZE)
#define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\

Просмотреть файл

@ -9,9 +9,6 @@
#ifndef INTERN_H
#define INTERN_H
#define JOBR_UNASSIGNED 0
#define JOBR_ASSIGNED 1
/* Currently comes from Kconfig param as a ^2 (driver-required) */
#define JOBR_DEPTH (1 << CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE)
@ -46,7 +43,6 @@ struct caam_drv_private_jr {
struct caam_job_ring __iomem *rregs; /* JobR's register space */
struct tasklet_struct irqtask;
int irq; /* One per queue */
int assign; /* busy/free */
/* Job ring info */
int ringsize; /* Size of rings (assume input = output) */
@ -68,7 +64,6 @@ struct caam_drv_private {
struct device *dev;
struct device **jrdev; /* Alloc'ed array per sub-device */
spinlock_t jr_alloc_lock;
struct platform_device *pdev;
/* Physical-presence section */

Просмотреть файл

@ -125,72 +125,6 @@ static void caam_jr_dequeue(unsigned long devarg)
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
}
/**
* caam_jr_register() - Alloc a ring for someone to use as needed. Returns
* an ordinal of the rings allocated, else returns -ENODEV if no rings
* are available.
* @ctrldev: points to the controller level dev (parent) that
* owns rings available for use.
* @dev: points to where a pointer to the newly allocated queue's
* dev can be written to if successful.
**/
int caam_jr_register(struct device *ctrldev, struct device **rdev)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_drv_private_jr *jrpriv = NULL;
int ring;
/* Lock, if free ring - assign, unlock */
spin_lock(&ctrlpriv->jr_alloc_lock);
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
if (jrpriv->assign == JOBR_UNASSIGNED) {
jrpriv->assign = JOBR_ASSIGNED;
*rdev = ctrlpriv->jrdev[ring];
spin_unlock(&ctrlpriv->jr_alloc_lock);
return ring;
}
}
/* If assigned, write dev where caller needs it */
spin_unlock(&ctrlpriv->jr_alloc_lock);
*rdev = NULL;
return -ENODEV;
}
EXPORT_SYMBOL(caam_jr_register);
/**
* caam_jr_deregister() - Deregister an API and release the queue.
* Returns 0 if OK, -EBUSY if queue still contains pending entries
* or unprocessed results at the time of the call
* @dev - points to the dev that identifies the queue to
* be released.
**/
int caam_jr_deregister(struct device *rdev)
{
struct caam_drv_private_jr *jrpriv = dev_get_drvdata(rdev);
struct caam_drv_private *ctrlpriv;
/* Get the owning controller's private space */
ctrlpriv = dev_get_drvdata(jrpriv->parentdev);
/*
* Make sure ring empty before release
*/
if (rd_reg32(&jrpriv->rregs->outring_used) ||
(rd_reg32(&jrpriv->rregs->inpring_avail) != JOBR_DEPTH))
return -EBUSY;
/* Release ring */
spin_lock(&ctrlpriv->jr_alloc_lock);
jrpriv->assign = JOBR_UNASSIGNED;
spin_unlock(&ctrlpriv->jr_alloc_lock);
return 0;
}
EXPORT_SYMBOL(caam_jr_deregister);
/**
* caam_jr_enqueue() - Enqueue a job descriptor head. Returns 0 if OK,
* -EBUSY if the queue is full, -EIO if it cannot map the caller's
@ -379,7 +313,6 @@ static int caam_jr_init(struct device *dev)
(JOBR_INTC_COUNT_THLD << JRCFG_ICDCT_SHIFT) |
(JOBR_INTC_TIME_THLD << JRCFG_ICTT_SHIFT));
jrp->assign = JOBR_UNASSIGNED;
return 0;
}

Просмотреть файл

@ -8,8 +8,6 @@
#define JR_H
/* Prototypes for backend-level services exposed to APIs */
int caam_jr_register(struct device *ctrldev, struct device **rdev);
int caam_jr_deregister(struct device *rdev);
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc, u32 status,
void *areq),

Просмотреть файл

@ -95,9 +95,9 @@ int gen_split_key(struct device *jrdev, u8 *key_out, int split_key_len,
LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in, keylen, 1);
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
@ -110,7 +110,7 @@ int gen_split_key(struct device *jrdev, u8 *key_out, int split_key_len,
wait_for_completion_interruptible(&result.completion);
ret = result.err;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_out,
split_key_pad_len, 1);
#endif

Просмотреть файл

@ -341,6 +341,8 @@ struct caam_ctrl {
#define MCFGR_DMA_RESET 0x10000000
#define MCFGR_LONG_PTR 0x00010000 /* Use >32-bit desc addressing */
#define SCFGR_RDBENABLE 0x00000400
#define DECORR_RQD0ENABLE 0x00000001 /* Enable DECO0 for direct access */
#define DECORR_DEN0 0x00010000 /* DECO0 available for access*/
/* AXI read cache control */
#define MCFGR_ARCACHE_SHIFT 12
@ -703,9 +705,16 @@ struct caam_deco {
struct deco_sg_table sctr_tbl[4]; /* DxSTR - Scatter Tables */
u32 rsvd29[48];
u32 descbuf[64]; /* DxDESB - Descriptor buffer */
u32 rsvd30[320];
u32 rscvd30[193];
u32 desc_dbg; /* DxDDR - DECO Debug Register */
u32 rsvd31[126];
};
/* DECO DBG Register Valid Bit*/
#define DECO_DBG_VALID 0x80000000
#define DECO_JQCR_WHL 0x20000000
#define DECO_JQCR_FOUR 0x10000000
/*
* Current top-level view of memory map is:
*
@ -733,6 +742,7 @@ struct caam_full {
u64 rsvd[512];
struct caam_assurance assure;
struct caam_queue_if qi;
struct caam_deco deco;
};
#endif /* REGS_H */

Просмотреть файл

@ -70,35 +70,52 @@ static int cbc_aes_nx_crypt(struct blkcipher_desc *desc,
{
struct nx_crypto_ctx *nx_ctx = crypto_blkcipher_ctx(desc->tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
unsigned long irq_flags;
unsigned int processed = 0, to_process;
u32 max_sg_len;
int rc;
if (nbytes > nx_ctx->ap->databytelen)
return -EINVAL;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
if (enc)
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, nbytes,
csbcpb->cpb.aes_cbc.iv);
if (rc)
goto out;
do {
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process,
processed, csbcpb->cpb.aes_cbc.iv);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
memcpy(desc->info, csbcpb->cpb.aes_cbc.cv, AES_BLOCK_SIZE);
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -179,13 +179,26 @@ static int generate_pat(u8 *iv,
struct nx_sg *nx_insg = nx_ctx->in_sg;
struct nx_sg *nx_outsg = nx_ctx->out_sg;
unsigned int iauth_len = 0;
struct vio_pfo_op *op = NULL;
u8 tmp[16], *b1 = NULL, *b0 = NULL, *result = NULL;
int rc;
/* zero the ctr value */
memset(iv + 15 - iv[0], 0, iv[0] + 1);
/* page 78 of nx_wb.pdf has,
* Note: RFC3610 allows the AAD data to be up to 2^64 -1 bytes
* in length. If a full message is used, the AES CCA implementation
* restricts the maximum AAD length to 2^32 -1 bytes.
* If partial messages are used, the implementation supports
* 2^64 -1 bytes maximum AAD length.
*
* However, in the cryptoapi's aead_request structure,
* assoclen is an unsigned int, thus it cannot hold a length
* value greater than 2^32 - 1.
* Thus the AAD is further constrained by this and is never
* greater than 2^32.
*/
if (!req->assoclen) {
b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0;
} else if (req->assoclen <= 14) {
@ -195,7 +208,46 @@ static int generate_pat(u8 *iv,
b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0;
b1 = nx_ctx->priv.ccm.iauth_tag;
iauth_len = req->assoclen;
} else if (req->assoclen <= 65280) {
/* if associated data is less than (2^16 - 2^8), we construct
* B1 differently and feed in the associated data to a CCA
* operation */
b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0;
b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1;
iauth_len = 14;
} else {
b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0;
b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1;
iauth_len = 10;
}
/* generate B0 */
rc = generate_b0(iv, req->assoclen, authsize, nbytes, b0);
if (rc)
return rc;
/* generate B1:
* add control info for associated data
* RFC 3610 and NIST Special Publication 800-38C
*/
if (b1) {
memset(b1, 0, 16);
if (req->assoclen <= 65280) {
*(u16 *)b1 = (u16)req->assoclen;
scatterwalk_map_and_copy(b1 + 2, req->assoc, 0,
iauth_len, SCATTERWALK_FROM_SG);
} else {
*(u16 *)b1 = (u16)(0xfffe);
*(u32 *)&b1[2] = (u32)req->assoclen;
scatterwalk_map_and_copy(b1 + 6, req->assoc, 0,
iauth_len, SCATTERWALK_FROM_SG);
}
}
/* now copy any remaining AAD to scatterlist and call nx... */
if (!req->assoclen) {
return rc;
} else if (req->assoclen <= 14) {
nx_insg = nx_build_sg_list(nx_insg, b1, 16, nx_ctx->ap->sglen);
nx_outsg = nx_build_sg_list(nx_outsg, tmp, 16,
nx_ctx->ap->sglen);
@ -210,56 +262,74 @@ static int generate_pat(u8 *iv,
NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_ENDE_ENCRYPT;
NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_INTERMEDIATE;
op = &nx_ctx->op;
result = nx_ctx->csbcpb->cpb.aes_ccm.out_pat_or_mac;
} else if (req->assoclen <= 65280) {
/* if associated data is less than (2^16 - 2^8), we construct
* B1 differently and feed in the associated data to a CCA
* operation */
b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0;
b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1;
iauth_len = 14;
/* remaining assoc data must have scatterlist built for it */
nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen,
req->assoc, iauth_len,
req->assoclen - iauth_len);
nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_insg) *
sizeof(struct nx_sg);
op = &nx_ctx->op_aead;
result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0;
} else {
/* if associated data is less than (2^32), we construct B1
* differently yet again and feed in the associated data to a
* CCA operation */
pr_err("associated data len is %u bytes (returning -EINVAL)\n",
req->assoclen);
rc = -EINVAL;
}
rc = generate_b0(iv, req->assoclen, authsize, nbytes, b0);
if (rc)
goto done;
if (b1) {
memset(b1, 0, 16);
*(u16 *)b1 = (u16)req->assoclen;
scatterwalk_map_and_copy(b1 + 2, req->assoc, 0,
iauth_len, SCATTERWALK_FROM_SG);
rc = nx_hcall_sync(nx_ctx, op,
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto done;
return rc;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(req->assoclen, &(nx_ctx->stats->aes_bytes));
memcpy(out, result, AES_BLOCK_SIZE);
} else {
u32 max_sg_len;
unsigned int processed = 0, to_process;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32,
nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
processed += iauth_len;
do {
to_process = min_t(u32, req->assoclen - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
if ((to_process + processed) < req->assoclen) {
NX_CPB_FDM(nx_ctx->csbcpb_aead) |=
NX_FDM_INTERMEDIATE;
} else {
NX_CPB_FDM(nx_ctx->csbcpb_aead) &=
~NX_FDM_INTERMEDIATE;
}
nx_insg = nx_walk_and_build(nx_ctx->in_sg,
nx_ctx->ap->sglen,
req->assoc, processed,
to_process);
nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_insg) *
sizeof(struct nx_sg);
result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
return rc;
memcpy(nx_ctx->csbcpb_aead->cpb.aes_cca.b0,
nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0,
AES_BLOCK_SIZE);
NX_CPB_FDM(nx_ctx->csbcpb_aead) |= NX_FDM_CONTINUATION;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(req->assoclen,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < req->assoclen);
result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0;
}
done:
memcpy(out, result, AES_BLOCK_SIZE);
return rc;
}
@ -271,10 +341,12 @@ static int ccm_nx_decrypt(struct aead_request *req,
unsigned int nbytes = req->cryptlen;
unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
struct nx_ccm_priv *priv = &nx_ctx->priv.ccm;
unsigned long irq_flags;
unsigned int processed = 0, to_process;
u32 max_sg_len;
int rc = -1;
if (nbytes > nx_ctx->ap->databytelen)
return -EINVAL;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
nbytes -= authsize;
@ -288,26 +360,61 @@ static int ccm_nx_decrypt(struct aead_request *req,
if (rc)
goto out;
rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src, nbytes,
csbcpb->cpb.aes_ccm.iv_or_ctr);
if (rc)
goto out;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_INTERMEDIATE;
do {
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
/* to_process: the AES_BLOCK_SIZE data chunk to process in this
* update. This value is bound by sg list limits.
*/
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
if ((to_process + processed) < nbytes)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src,
to_process, processed,
csbcpb->cpb.aes_ccm.iv_or_ctr);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
/* for partial completion, copy following for next
* entry into loop...
*/
memcpy(desc->info, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0,
csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ccm.in_s0,
csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
/* update stats */
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
rc = memcmp(csbcpb->cpb.aes_ccm.out_pat_or_mac, priv->oauth_tag,
authsize) ? -EBADMSG : 0;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -318,38 +425,76 @@ static int ccm_nx_encrypt(struct aead_request *req,
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
unsigned int nbytes = req->cryptlen;
unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
unsigned long irq_flags;
unsigned int processed = 0, to_process;
u32 max_sg_len;
int rc = -1;
if (nbytes > nx_ctx->ap->databytelen)
return -EINVAL;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
rc = generate_pat(desc->info, req, nx_ctx, authsize, nbytes,
csbcpb->cpb.aes_ccm.in_pat_or_b0);
if (rc)
goto out;
rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src, nbytes,
csbcpb->cpb.aes_ccm.iv_or_ctr);
if (rc)
goto out;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
do {
/* to process: the AES_BLOCK_SIZE data chunk to process in this
* update. This value is bound by sg list limits.
*/
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if ((to_process + processed) < nbytes)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src,
to_process, processed,
csbcpb->cpb.aes_ccm.iv_or_ctr);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
/* for partial completion, copy following for next
* entry into loop...
*/
memcpy(desc->info, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0,
csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ccm.in_s0,
csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
/* update stats */
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
/* copy out the auth tag */
scatterwalk_map_and_copy(csbcpb->cpb.aes_ccm.out_pat_or_mac,
req->dst, nbytes, authsize,
SCATTERWALK_TO_SG);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -88,30 +88,48 @@ static int ctr_aes_nx_crypt(struct blkcipher_desc *desc,
{
struct nx_crypto_ctx *nx_ctx = crypto_blkcipher_ctx(desc->tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
unsigned long irq_flags;
unsigned int processed = 0, to_process;
u32 max_sg_len;
int rc;
if (nbytes > nx_ctx->ap->databytelen)
return -EINVAL;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, nbytes,
csbcpb->cpb.aes_ctr.iv);
if (rc)
goto out;
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
do {
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process,
processed, csbcpb->cpb.aes_ctr.iv);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
memcpy(desc->info, csbcpb->cpb.aes_cbc.cv, AES_BLOCK_SIZE);
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -70,34 +70,52 @@ static int ecb_aes_nx_crypt(struct blkcipher_desc *desc,
{
struct nx_crypto_ctx *nx_ctx = crypto_blkcipher_ctx(desc->tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
unsigned long irq_flags;
unsigned int processed = 0, to_process;
u32 max_sg_len;
int rc;
if (nbytes > nx_ctx->ap->databytelen)
return -EINVAL;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
if (enc)
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, nbytes, NULL);
if (rc)
goto out;
do {
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process,
processed, NULL);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -125,38 +125,187 @@ static int nx_gca(struct nx_crypto_ctx *nx_ctx,
struct aead_request *req,
u8 *out)
{
int rc;
struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
int rc = -EINVAL;
struct scatter_walk walk;
struct nx_sg *nx_sg = nx_ctx->in_sg;
unsigned int nbytes = req->assoclen;
unsigned int processed = 0, to_process;
u32 max_sg_len;
if (req->assoclen > nx_ctx->ap->databytelen)
goto out;
if (req->assoclen <= AES_BLOCK_SIZE) {
if (nbytes <= AES_BLOCK_SIZE) {
scatterwalk_start(&walk, req->assoc);
scatterwalk_copychunks(out, &walk, req->assoclen,
SCATTERWALK_FROM_SG);
scatterwalk_copychunks(out, &walk, nbytes, SCATTERWALK_FROM_SG);
scatterwalk_done(&walk, SCATTERWALK_FROM_SG, 0);
rc = 0;
goto out;
return 0;
}
nx_sg = nx_walk_and_build(nx_sg, nx_ctx->ap->sglen, req->assoc, 0,
req->assoclen);
nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg) * sizeof(struct nx_sg);
NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_CONTINUATION;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(req->assoclen, &(nx_ctx->stats->aes_bytes));
do {
/*
* to_process: the data chunk to process in this update.
* This value is bound by sg list limits.
*/
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
if ((to_process + processed) < nbytes)
NX_CPB_FDM(csbcpb_aead) |= NX_FDM_INTERMEDIATE;
else
NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_INTERMEDIATE;
nx_sg = nx_walk_and_build(nx_ctx->in_sg, nx_ctx->ap->sglen,
req->assoc, processed, to_process);
nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg)
* sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
return rc;
memcpy(csbcpb_aead->cpb.aes_gca.in_pat,
csbcpb_aead->cpb.aes_gca.out_pat,
AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb_aead) |= NX_FDM_CONTINUATION;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(req->assoclen, &(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
memcpy(out, csbcpb_aead->cpb.aes_gca.out_pat, AES_BLOCK_SIZE);
return rc;
}
static int gmac(struct aead_request *req, struct blkcipher_desc *desc)
{
int rc;
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *nx_sg;
unsigned int nbytes = req->assoclen;
unsigned int processed = 0, to_process;
u32 max_sg_len;
/* Set GMAC mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_GMAC;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
/* Copy IV */
memcpy(csbcpb->cpb.aes_gcm.iv_or_cnt, desc->info, AES_BLOCK_SIZE);
do {
/*
* to_process: the data chunk to process in this update.
* This value is bound by sg list limits.
*/
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
if ((to_process + processed) < nbytes)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
nx_sg = nx_walk_and_build(nx_ctx->in_sg, nx_ctx->ap->sglen,
req->assoc, processed, to_process);
nx_ctx->op.inlen = (nx_ctx->in_sg - nx_sg)
* sizeof(struct nx_sg);
csbcpb->cpb.aes_gcm.bit_length_data = 0;
csbcpb->cpb.aes_gcm.bit_length_aad = 8 * nbytes;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_gcm.in_s0,
csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(req->assoclen, &(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
out:
/* Restore GCM mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
return rc;
}
static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc,
int enc)
{
int rc;
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
char out[AES_BLOCK_SIZE];
struct nx_sg *in_sg, *out_sg;
/* For scenarios where the input message is zero length, AES CTR mode
* may be used. Set the source data to be a single block (16B) of all
* zeros, and set the input IV value to be the same as the GMAC IV
* value. - nx_wb 4.8.1.3 */
/* Change to ECB mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
memcpy(csbcpb->cpb.aes_ecb.key, csbcpb->cpb.aes_gcm.key,
sizeof(csbcpb->cpb.aes_ecb.key));
if (enc)
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
/* Encrypt the counter/IV */
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) desc->info,
AES_BLOCK_SIZE, nx_ctx->ap->sglen);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, sizeof(out),
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* Copy out the auth tag */
memcpy(csbcpb->cpb.aes_gcm.out_pat_or_mac, out,
crypto_aead_authsize(crypto_aead_reqtfm(req)));
out:
/* Restore XCBC mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
/*
* ECB key uses the same region that GCM AAD and counter, so it's safe
* to just fill it with zeroes.
*/
memset(csbcpb->cpb.aes_ecb.key, 0, sizeof(csbcpb->cpb.aes_ecb.key));
return rc;
}
@ -166,88 +315,104 @@ static int gcm_aes_nx_crypt(struct aead_request *req, int enc)
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct blkcipher_desc desc;
unsigned int nbytes = req->cryptlen;
unsigned int processed = 0, to_process;
unsigned long irq_flags;
u32 max_sg_len;
int rc = -EINVAL;
if (nbytes > nx_ctx->ap->databytelen)
goto out;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
desc.info = nx_ctx->priv.gcm.iv;
/* initialize the counter */
*(u32 *)(desc.info + NX_GCM_CTR_OFFSET) = 1;
/* For scenarios where the input message is zero length, AES CTR mode
* may be used. Set the source data to be a single block (16B) of all
* zeros, and set the input IV value to be the same as the GMAC IV
* value. - nx_wb 4.8.1.3 */
if (nbytes == 0) {
char src[AES_BLOCK_SIZE] = {};
struct scatterlist sg;
desc.tfm = crypto_alloc_blkcipher("ctr(aes)", 0, 0);
if (IS_ERR(desc.tfm)) {
rc = -ENOMEM;
goto out;
}
crypto_blkcipher_setkey(desc.tfm, csbcpb->cpb.aes_gcm.key,
NX_CPB_KEY_SIZE(csbcpb) == NX_KS_AES_128 ? 16 :
NX_CPB_KEY_SIZE(csbcpb) == NX_KS_AES_192 ? 24 : 32);
sg_init_one(&sg, src, AES_BLOCK_SIZE);
if (enc)
crypto_blkcipher_encrypt_iv(&desc, req->dst, &sg,
AES_BLOCK_SIZE);
if (req->assoclen == 0)
rc = gcm_empty(req, &desc, enc);
else
crypto_blkcipher_decrypt_iv(&desc, req->dst, &sg,
AES_BLOCK_SIZE);
crypto_free_blkcipher(desc.tfm);
rc = 0;
goto out;
rc = gmac(req, &desc);
if (rc)
goto out;
else
goto mac;
}
desc.tfm = (struct crypto_blkcipher *)req->base.tfm;
/* Process associated data */
csbcpb->cpb.aes_gcm.bit_length_aad = req->assoclen * 8;
if (req->assoclen) {
rc = nx_gca(nx_ctx, req, csbcpb->cpb.aes_gcm.in_pat_or_aad);
if (rc)
goto out;
}
if (enc)
/* Set flags for encryption */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
if (enc) {
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
else
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
nbytes -= crypto_aead_authsize(crypto_aead_reqtfm(req));
}
csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8;
/* page_limit: number of sg entries that fit on one page */
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
rc = nx_build_sg_lists(nx_ctx, &desc, req->dst, req->src, nbytes,
csbcpb->cpb.aes_gcm.iv_or_cnt);
if (rc)
goto out;
do {
/*
* to_process: the data chunk to process in this update.
* This value is bound by sg list limits.
*/
to_process = min_t(u64, nbytes - processed,
nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if ((to_process + processed) < nbytes)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
else
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8;
desc.tfm = (struct crypto_blkcipher *) req->base.tfm;
rc = nx_build_sg_lists(nx_ctx, &desc, req->dst,
req->src, to_process, processed,
csbcpb->cpb.aes_gcm.iv_or_cnt);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
memcpy(desc.info, csbcpb->cpb.aes_gcm.out_cnt, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_gcm.in_s0,
csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic64_add(csbcpb->csb.processed_byte_count,
&(nx_ctx->stats->aes_bytes));
processed += to_process;
} while (processed < nbytes);
mac:
if (enc) {
/* copy out the auth tag */
scatterwalk_map_and_copy(csbcpb->cpb.aes_gcm.out_pat_or_mac,
req->dst, nbytes,
crypto_aead_authsize(crypto_aead_reqtfm(req)),
SCATTERWALK_TO_SG);
} else if (req->assoclen) {
} else {
u8 *itag = nx_ctx->priv.gcm.iauth_tag;
u8 *otag = csbcpb->cpb.aes_gcm.out_pat_or_mac;
scatterwalk_map_and_copy(itag, req->dst, nbytes,
scatterwalk_map_and_copy(itag, req->src, nbytes,
crypto_aead_authsize(crypto_aead_reqtfm(req)),
SCATTERWALK_FROM_SG);
rc = memcmp(itag, otag,
@ -255,6 +420,7 @@ static int gcm_aes_nx_crypt(struct aead_request *req, int enc)
-EBADMSG : 0;
}
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -56,6 +56,77 @@ static int nx_xcbc_set_key(struct crypto_shash *desc,
return 0;
}
/*
* Based on RFC 3566, for a zero-length message:
*
* n = 1
* K1 = E(K, 0x01010101010101010101010101010101)
* K3 = E(K, 0x03030303030303030303030303030303)
* E[0] = 0x00000000000000000000000000000000
* M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
* E[1] = (K1, M[1] ^ E[0] ^ K3)
* Tag = M[1]
*/
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u8 keys[2][AES_BLOCK_SIZE];
u8 key[32];
int rc = 0;
/* Change to ECB mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
/* K1 and K3 base patterns */
memset(keys[0], 0x01, sizeof(keys[0]));
memset(keys[1], 0x03, sizeof(keys[1]));
/* Generate K1 and K3 encrypting the patterns */
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, sizeof(keys),
nx_ctx->ap->sglen);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, sizeof(keys),
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* XOr K3 with the padding for a 0 length message */
keys[1][0] ^= 0x80;
/* Encrypt the final result */
memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], sizeof(keys[1]),
nx_ctx->ap->sglen);
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
out:
/* Restore XCBC mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
return rc;
}
static int nx_xcbc_init(struct shash_desc *desc)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
@ -88,76 +159,99 @@ static int nx_xcbc_update(struct shash_desc *desc,
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg;
u32 to_process, leftover;
u32 to_process, leftover, total;
u32 max_sg_len;
unsigned long irq_flags;
int rc = 0;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
}
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
total = sctx->count + len;
/* 2 cases for total data len:
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
*/
if (len + sctx->count <= AES_BLOCK_SIZE) {
if (total <= AES_BLOCK_SIZE) {
memcpy(sctx->buffer + sctx->count, data, len);
sctx->count += len;
goto out;
}
/* to_process: the AES_BLOCK_SIZE data chunk to process in this
* update */
to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
/* the hardware will not accept a 0 byte operation for this algorithm
* and the operation MUST be finalized to be correct. So if we happen
* to get an update that falls on a block sized boundary, we must
* save off the last block to finalize with later. */
if (!leftover) {
to_process -= AES_BLOCK_SIZE;
leftover = AES_BLOCK_SIZE;
}
do {
if (sctx->count) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
sctx->count, nx_ctx->ap->sglen);
in_sg = nx_build_sg_list(in_sg, (u8 *)data,
to_process - sctx->count,
nx_ctx->ap->sglen);
/* to_process: the AES_BLOCK_SIZE data chunk to process in this
* update */
to_process = min_t(u64, total, nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
leftover = total - to_process;
/* the hardware will not accept a 0 byte operation for this
* algorithm and the operation MUST be finalized to be correct.
* So if we happen to get an update that falls on a block sized
* boundary, we must save off the last block to finalize with
* later. */
if (!leftover) {
to_process -= AES_BLOCK_SIZE;
leftover = AES_BLOCK_SIZE;
}
if (sctx->count) {
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buffer,
sctx->count,
max_sg_len);
}
in_sg = nx_build_sg_list(in_sg,
(u8 *) data,
to_process - sctx->count,
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
} else {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac,
AES_BLOCK_SIZE);
}
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
atomic_inc(&(nx_ctx->stats->aes_ops));
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count;
sctx->count = 0;
in_sg = nx_ctx->in_sg;
} while (leftover > AES_BLOCK_SIZE);
/* copy the leftover back into the state struct */
memcpy(sctx->buffer, data + len - leftover, leftover);
memcpy(sctx->buffer, data, leftover);
sctx->count = leftover;
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -167,21 +261,23 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
unsigned long irq_flags;
int rc = 0;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
} else if (sctx->count == 0) {
/* we've never seen an update, so this is a 0 byte op. The
* hardware cannot handle a 0 byte op, so just copy out the
* known 0 byte result. This is cheaper than allocating a
* software context to do a 0 byte op */
u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
memcpy(out, data, sizeof(data));
/*
* we've never seen an update, so this is a 0 byte op. The
* hardware cannot handle a 0 byte op, so just ECB to
* generate the hash.
*/
rc = nx_xcbc_empty(desc, out);
goto out;
}
@ -211,6 +307,7 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}

Просмотреть файл

@ -55,71 +55,91 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg;
u64 to_process, leftover;
u64 to_process, leftover, total;
u32 max_sg_len;
unsigned long irq_flags;
int rc = 0;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
}
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: <= SHA256_BLOCK_SIZE: copy into state, return 0
* 2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover
* 1: < SHA256_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
*/
if (len + sctx->count < SHA256_BLOCK_SIZE) {
total = sctx->count + len;
if (total < SHA256_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count, data, len);
sctx->count += len;
goto out;
}
/* to_process: the SHA256_BLOCK_SIZE data chunk to process in this
* update */
to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1);
leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1);
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
if (sctx->count) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
sctx->count, nx_ctx->ap->sglen);
in_sg = nx_build_sg_list(in_sg, (u8 *)data,
do {
/*
* to_process: the SHA256_BLOCK_SIZE data chunk to process in
* this update. This value is also restricted by the sg list
* limits.
*/
to_process = min_t(u64, total, nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
leftover = total - to_process;
if (sctx->count) {
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buf,
sctx->count, max_sg_len);
}
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
to_process - sctx->count,
nx_ctx->ap->sglen);
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
} else {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data,
to_process, nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE);
}
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
atomic_inc(&(nx_ctx->stats->sha256_ops));
csbcpb->cpb.sha256.message_bit_length += (u64)
(csbcpb->cpb.sha256.spbc * 8);
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count;
sctx->count = 0;
in_sg = nx_ctx->in_sg;
} while (leftover >= SHA256_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data + len - leftover, leftover);
memcpy(sctx->buf, data, leftover);
sctx->count = leftover;
csbcpb->cpb.sha256.message_bit_length += (u64)
(csbcpb->cpb.sha256.spbc * 8);
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -129,8 +149,13 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
unsigned long irq_flags;
int rc;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
@ -146,9 +171,9 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
sctx->count, nx_ctx->ap->sglen);
sctx->count, max_sg_len);
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
nx_ctx->ap->sglen);
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
@ -168,6 +193,7 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
&(nx_ctx->stats->sha256_bytes));
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -177,6 +203,9 @@ static int nx_sha256_export(struct shash_desc *desc, void *out)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha256_state *octx = out;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
octx->count = sctx->count +
(csbcpb->cpb.sha256.message_bit_length / 8);
@ -199,6 +228,7 @@ static int nx_sha256_export(struct shash_desc *desc, void *out)
octx->state[7] = SHA256_H7;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}
@ -208,6 +238,9 @@ static int nx_sha256_import(struct shash_desc *desc, const void *in)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha256_state *ictx = in;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
@ -222,6 +255,7 @@ static int nx_sha256_import(struct shash_desc *desc, const void *in)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}

Просмотреть файл

@ -55,73 +55,93 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg;
u64 to_process, leftover, spbc_bits;
u64 to_process, leftover, total, spbc_bits;
u32 max_sg_len;
unsigned long irq_flags;
int rc = 0;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
}
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: <= SHA512_BLOCK_SIZE: copy into state, return 0
* 2: > SHA512_BLOCK_SIZE: process X blocks, copy in leftover
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
*/
if ((u64)len + sctx->count[0] < SHA512_BLOCK_SIZE) {
total = sctx->count[0] + len;
if (total < SHA512_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count[0], data, len);
sctx->count[0] += len;
goto out;
}
/* to_process: the SHA512_BLOCK_SIZE data chunk to process in this
* update */
to_process = (sctx->count[0] + len) & ~(SHA512_BLOCK_SIZE - 1);
leftover = (sctx->count[0] + len) & (SHA512_BLOCK_SIZE - 1);
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
if (sctx->count[0]) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
sctx->count[0], nx_ctx->ap->sglen);
in_sg = nx_build_sg_list(in_sg, (u8 *)data,
do {
/*
* to_process: the SHA512_BLOCK_SIZE data chunk to process in
* this update. This value is also restricted by the sg list
* limits.
*/
to_process = min_t(u64, total, nx_ctx->ap->databytelen);
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
leftover = total - to_process;
if (sctx->count[0]) {
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buf,
sctx->count[0], max_sg_len);
}
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
to_process - sctx->count[0],
nx_ctx->ap->sglen);
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
} else {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data,
to_process, nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
}
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
atomic_inc(&(nx_ctx->stats->sha512_ops));
spbc_bits = csbcpb->cpb.sha512.spbc * 8;
csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits;
if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits)
csbcpb->cpb.sha512.message_bit_length_hi++;
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count[0];
sctx->count[0] = 0;
in_sg = nx_ctx->in_sg;
} while (leftover >= SHA512_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data + len - leftover, leftover);
memcpy(sctx->buf, data, leftover);
sctx->count[0] = leftover;
spbc_bits = csbcpb->cpb.sha512.spbc * 8;
csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits;
if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits)
csbcpb->cpb.sha512.message_bit_length_hi++;
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -131,9 +151,15 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
u64 count0;
unsigned long irq_flags;
int rc;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
@ -152,9 +178,9 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
csbcpb->cpb.sha512.message_bit_length_hi++;
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, sctx->count[0],
nx_ctx->ap->sglen);
max_sg_len);
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA512_DIGEST_SIZE,
nx_ctx->ap->sglen);
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
@ -174,6 +200,7 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
@ -183,6 +210,9 @@ static int nx_sha512_export(struct shash_desc *desc, void *out)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha512_state *octx = out;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* move message_bit_length (128 bits) into count and convert its value
* to bytes */
@ -214,6 +244,7 @@ static int nx_sha512_export(struct shash_desc *desc, void *out)
octx->state[7] = SHA512_H7;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}
@ -223,6 +254,9 @@ static int nx_sha512_import(struct shash_desc *desc, const void *in)
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha512_state *ictx = in;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
sctx->count[0] = ictx->count[0] & 0x3f;
@ -240,6 +274,7 @@ static int nx_sha512_import(struct shash_desc *desc, const void *in)
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0;
}

Просмотреть файл

@ -61,8 +61,7 @@ int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
do {
rc = vio_h_cop_sync(viodev, op);
} while ((rc == -EBUSY && !may_sleep && retries--) ||
(rc == -EBUSY && may_sleep && cond_resched()));
} while (rc == -EBUSY && !may_sleep && retries--);
if (rc) {
dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
@ -114,13 +113,29 @@ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
* have been described (or @sgmax elements have been written), the
* loop ends. min_t is used to ensure @end_addr falls on the same page
* as sg_addr, if not, we need to create another nx_sg element for the
* data on the next page */
* data on the next page.
*
* Also when using vmalloc'ed data, every time that a system page
* boundary is crossed the physical address needs to be re-calculated.
*/
for (sg = sg_head; sg_len < len; sg++) {
u64 next_page;
sg->addr = sg_addr;
sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr);
sg->len = sg_addr - sg->addr;
sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
end_addr);
next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
sg_len += sg->len;
if (sg_addr >= next_page &&
is_vmalloc_addr(start_addr + sg_len)) {
sg_addr = page_to_phys(vmalloc_to_page(
start_addr + sg_len));
end_addr = sg_addr + len - sg_len;
}
if ((sg - sg_head) == sgmax) {
pr_err("nx: scatter/gather list overflow, pid: %d\n",
current->pid);
@ -196,6 +211,8 @@ struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
* @dst: destination scatterlist
* @src: source scatterlist
* @nbytes: length of data described in the scatterlists
* @offset: number of bytes to fast-forward past at the beginning of
* scatterlists.
* @iv: destination for the iv data, if the algorithm requires it
*
* This is common code shared by all the AES algorithms. It uses the block
@ -207,6 +224,7 @@ int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
struct scatterlist *dst,
struct scatterlist *src,
unsigned int nbytes,
unsigned int offset,
u8 *iv)
{
struct nx_sg *nx_insg = nx_ctx->in_sg;
@ -215,8 +233,10 @@ int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
if (iv)
memcpy(iv, desc->info, AES_BLOCK_SIZE);
nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src, 0, nbytes);
nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst, 0, nbytes);
nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src,
offset, nbytes);
nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst,
offset, nbytes);
/* these lengths should be negative, which will indicate to phyp that
* the input and output parameters are scatterlists, not linear
@ -235,6 +255,7 @@ int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
*/
void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
{
spin_lock_init(&nx_ctx->lock);
memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;

Просмотреть файл

@ -117,6 +117,7 @@ struct nx_ctr_priv {
};
struct nx_crypto_ctx {
spinlock_t lock; /* synchronize access to the context */
void *kmem; /* unaligned, kmalloc'd buffer */
size_t kmem_len; /* length of kmem */
struct nx_csbcpb *csbcpb; /* aligned page given to phyp @ hcall time */
@ -155,7 +156,7 @@ int nx_hcall_sync(struct nx_crypto_ctx *ctx, struct vio_pfo_op *op,
struct nx_sg *nx_build_sg_list(struct nx_sg *, u8 *, unsigned int, u32);
int nx_build_sg_lists(struct nx_crypto_ctx *, struct blkcipher_desc *,
struct scatterlist *, struct scatterlist *, unsigned int,
u8 *);
unsigned int, u8 *);
struct nx_sg *nx_walk_and_build(struct nx_sg *, unsigned int,
struct scatterlist *, unsigned int,
unsigned int);

Просмотреть файл

@ -13,7 +13,9 @@
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#define pr_fmt(fmt) "%20s: " fmt, __func__
#define prn(num) pr_debug(#num "=%d\n", num)
#define prx(num) pr_debug(#num "=%x\n", num)
#include <linux/err.h>
#include <linux/module.h>
@ -38,6 +40,8 @@
#define DST_MAXBURST 4
#define DMA_MIN (DST_MAXBURST * sizeof(u32))
#define _calc_walked(inout) (dd->inout##_walk.offset - dd->inout##_sg->offset)
/* OMAP TRM gives bitfields as start:end, where start is the higher bit
number. For example 7:0 */
#define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
@ -74,6 +78,10 @@
#define AES_REG_LENGTH_N(x) (0x54 + ((x) * 0x04))
#define AES_REG_IRQ_STATUS(dd) ((dd)->pdata->irq_status_ofs)
#define AES_REG_IRQ_ENABLE(dd) ((dd)->pdata->irq_enable_ofs)
#define AES_REG_IRQ_DATA_IN BIT(1)
#define AES_REG_IRQ_DATA_OUT BIT(2)
#define DEFAULT_TIMEOUT (5*HZ)
#define FLAGS_MODE_MASK 0x000f
@ -86,6 +94,8 @@
#define FLAGS_FAST BIT(5)
#define FLAGS_BUSY BIT(6)
#define AES_BLOCK_WORDS (AES_BLOCK_SIZE >> 2)
struct omap_aes_ctx {
struct omap_aes_dev *dd;
@ -119,6 +129,8 @@ struct omap_aes_pdata {
u32 data_ofs;
u32 rev_ofs;
u32 mask_ofs;
u32 irq_enable_ofs;
u32 irq_status_ofs;
u32 dma_enable_in;
u32 dma_enable_out;
@ -146,25 +158,32 @@ struct omap_aes_dev {
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
struct scatterlist *in_sg;
struct scatterlist in_sgl;
size_t in_offset;
struct scatterlist *out_sg;
struct scatterlist out_sgl;
size_t out_offset;
size_t buflen;
void *buf_in;
size_t dma_size;
/*
* total is used by PIO mode for book keeping so introduce
* variable total_save as need it to calc page_order
*/
size_t total;
size_t total_save;
struct scatterlist *in_sg;
struct scatterlist *out_sg;
/* Buffers for copying for unaligned cases */
struct scatterlist in_sgl;
struct scatterlist out_sgl;
struct scatterlist *orig_out;
int sgs_copied;
struct scatter_walk in_walk;
struct scatter_walk out_walk;
int dma_in;
struct dma_chan *dma_lch_in;
dma_addr_t dma_addr_in;
void *buf_out;
int dma_out;
struct dma_chan *dma_lch_out;
dma_addr_t dma_addr_out;
int in_sg_len;
int out_sg_len;
int pio_only;
const struct omap_aes_pdata *pdata;
};
@ -172,16 +191,36 @@ struct omap_aes_dev {
static LIST_HEAD(dev_list);
static DEFINE_SPINLOCK(list_lock);
#ifdef DEBUG
#define omap_aes_read(dd, offset) \
({ \
int _read_ret; \
_read_ret = __raw_readl(dd->io_base + offset); \
pr_debug("omap_aes_read(" #offset "=%#x)= %#x\n", \
offset, _read_ret); \
_read_ret; \
})
#else
static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
#endif
#ifdef DEBUG
#define omap_aes_write(dd, offset, value) \
do { \
pr_debug("omap_aes_write(" #offset "=%#x) value=%#x\n", \
offset, value); \
__raw_writel(value, dd->io_base + offset); \
} while (0)
#else
static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
#endif
static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
u32 value, u32 mask)
@ -323,33 +362,6 @@ static int omap_aes_dma_init(struct omap_aes_dev *dd)
dd->dma_lch_out = NULL;
dd->dma_lch_in = NULL;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out) {
dev_err(dd->dev, "unable to alloc pages.\n");
goto err_alloc;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen,
DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_out;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
@ -376,14 +388,6 @@ static int omap_aes_dma_init(struct omap_aes_dev *dd)
err_dma_out:
dma_release_channel(dd->dma_lch_in);
err_dma_in:
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
err_map_in:
free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
err_alloc:
if (err)
pr_err("error: %d\n", err);
return err;
@ -393,11 +397,6 @@ static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
{
dma_release_channel(dd->dma_lch_out);
dma_release_channel(dd->dma_lch_in);
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
}
static void sg_copy_buf(void *buf, struct scatterlist *sg,
@ -414,59 +413,27 @@ static void sg_copy_buf(void *buf, struct scatterlist *sg,
scatterwalk_done(&walk, out, 0);
}
static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf,
size_t buflen, size_t total, int out)
{
unsigned int count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
/*
* buflen and total are AES_BLOCK_SIZE size aligned,
* so count should be also aligned
*/
sg_copy_buf(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
struct scatterlist *in_sg, struct scatterlist *out_sg)
struct scatterlist *in_sg, struct scatterlist *out_sg,
int in_sg_len, int out_sg_len)
{
struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
struct omap_aes_dev *dd = ctx->dd;
struct dma_async_tx_descriptor *tx_in, *tx_out;
struct dma_slave_config cfg;
dma_addr_t dma_addr_in = sg_dma_address(in_sg);
int ret, length = sg_dma_len(in_sg);
int ret;
pr_debug("len: %d\n", length);
if (dd->pio_only) {
scatterwalk_start(&dd->in_walk, dd->in_sg);
scatterwalk_start(&dd->out_walk, dd->out_sg);
dd->dma_size = length;
/* Enable DATAIN interrupt and let it take
care of the rest */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
return 0;
}
if (!(dd->flags & FLAGS_FAST))
dma_sync_single_for_device(dd->dev, dma_addr_in, length,
DMA_TO_DEVICE);
dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
memset(&cfg, 0, sizeof(cfg));
@ -485,7 +452,7 @@ static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
return ret;
}
tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, 1,
tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_in) {
@ -504,7 +471,7 @@ static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
return ret;
}
tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, 1,
tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, out_sg_len,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
@ -522,7 +489,7 @@ static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
dma_async_issue_pending(dd->dma_lch_out);
/* start DMA */
dd->pdata->trigger(dd, length);
dd->pdata->trigger(dd, dd->total);
return 0;
}
@ -531,93 +498,32 @@ static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
crypto_ablkcipher_reqtfm(dd->req));
int err, fast = 0, in, out;
size_t count;
dma_addr_t addr_in, addr_out;
struct scatterlist *in_sg, *out_sg;
int len32;
int err;
pr_debug("total: %d\n", dd->total);
if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) {
/* check for alignment */
in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32));
out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32));
fast = in && out;
}
if (fast) {
count = min(dd->total, sg_dma_len(dd->in_sg));
count = min(count, sg_dma_len(dd->out_sg));
if (count != dd->total) {
pr_err("request length != buffer length\n");
return -EINVAL;
}
pr_debug("fast\n");
err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
if (!dd->pio_only) {
err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len,
DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
return -EINVAL;
}
addr_in = sg_dma_address(dd->in_sg);
addr_out = sg_dma_address(dd->out_sg);
in_sg = dd->in_sg;
out_sg = dd->out_sg;
dd->flags |= FLAGS_FAST;
} else {
/* use cache buffers */
count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in,
dd->buflen, dd->total, 0);
len32 = DIV_ROUND_UP(count, DMA_MIN) * DMA_MIN;
/*
* The data going into the AES module has been copied
* to a local buffer and the data coming out will go
* into a local buffer so set up local SG entries for
* both.
*/
sg_init_table(&dd->in_sgl, 1);
dd->in_sgl.offset = dd->in_offset;
sg_dma_len(&dd->in_sgl) = len32;
sg_dma_address(&dd->in_sgl) = dd->dma_addr_in;
sg_init_table(&dd->out_sgl, 1);
dd->out_sgl.offset = dd->out_offset;
sg_dma_len(&dd->out_sgl) = len32;
sg_dma_address(&dd->out_sgl) = dd->dma_addr_out;
in_sg = &dd->in_sgl;
out_sg = &dd->out_sgl;
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->flags &= ~FLAGS_FAST;
}
dd->total -= count;
err = omap_aes_crypt_dma(tfm, in_sg, out_sg);
if (err) {
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
err = omap_aes_crypt_dma(tfm, dd->in_sg, dd->out_sg, dd->in_sg_len,
dd->out_sg_len);
if (err && !dd->pio_only) {
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
}
return err;
@ -637,7 +543,6 @@ static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
{
int err = 0;
size_t count;
pr_debug("total: %d\n", dd->total);
@ -646,23 +551,49 @@ static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
dmaengine_terminate_all(dd->dma_lch_in);
dmaengine_terminate_all(dd->dma_lch_out);
if (dd->flags & FLAGS_FAST) {
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
} else {
dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
return err;
}
/* copy data */
count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out,
dd->buflen, dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
pr_err("not all data converted: %u\n", count);
}
int omap_aes_check_aligned(struct scatterlist *sg)
{
while (sg) {
if (!IS_ALIGNED(sg->offset, 4))
return -1;
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
return -1;
sg = sg_next(sg);
}
return 0;
}
int omap_aes_copy_sgs(struct omap_aes_dev *dd)
{
void *buf_in, *buf_out;
int pages;
pages = get_order(dd->total);
buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
if (!buf_in || !buf_out) {
pr_err("Couldn't allocated pages for unaligned cases.\n");
return -1;
}
return err;
dd->orig_out = dd->out_sg;
sg_copy_buf(buf_in, dd->in_sg, 0, dd->total, 0);
sg_init_table(&dd->in_sgl, 1);
sg_set_buf(&dd->in_sgl, buf_in, dd->total);
dd->in_sg = &dd->in_sgl;
sg_init_table(&dd->out_sgl, 1);
sg_set_buf(&dd->out_sgl, buf_out, dd->total);
dd->out_sg = &dd->out_sgl;
return 0;
}
static int omap_aes_handle_queue(struct omap_aes_dev *dd,
@ -698,11 +629,23 @@ static int omap_aes_handle_queue(struct omap_aes_dev *dd,
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_offset = 0;
dd->total_save = req->nbytes;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
if (omap_aes_check_aligned(dd->in_sg) ||
omap_aes_check_aligned(dd->out_sg)) {
if (omap_aes_copy_sgs(dd))
pr_err("Failed to copy SGs for unaligned cases\n");
dd->sgs_copied = 1;
} else {
dd->sgs_copied = 0;
}
dd->in_sg_len = scatterwalk_bytes_sglen(dd->in_sg, dd->total);
dd->out_sg_len = scatterwalk_bytes_sglen(dd->out_sg, dd->total);
BUG_ON(dd->in_sg_len < 0 || dd->out_sg_len < 0);
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
@ -726,21 +669,32 @@ static int omap_aes_handle_queue(struct omap_aes_dev *dd,
static void omap_aes_done_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
int err;
void *buf_in, *buf_out;
int pages;
pr_debug("enter\n");
pr_debug("enter done_task\n");
err = omap_aes_crypt_dma_stop(dd);
err = dd->err ? : err;
if (dd->total && !err) {
err = omap_aes_crypt_dma_start(dd);
if (!err)
return; /* DMA started. Not fininishing. */
if (!dd->pio_only) {
dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
omap_aes_crypt_dma_stop(dd);
}
omap_aes_finish_req(dd, err);
if (dd->sgs_copied) {
buf_in = sg_virt(&dd->in_sgl);
buf_out = sg_virt(&dd->out_sgl);
sg_copy_buf(buf_out, dd->orig_out, 0, dd->total_save, 1);
pages = get_order(dd->total_save);
free_pages((unsigned long)buf_in, pages);
free_pages((unsigned long)buf_out, pages);
}
omap_aes_finish_req(dd, 0);
omap_aes_handle_queue(dd, NULL);
pr_debug("exit\n");
@ -1002,6 +956,8 @@ static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
.data_ofs = 0x60,
.rev_ofs = 0x80,
.mask_ofs = 0x84,
.irq_status_ofs = 0x8c,
.irq_enable_ofs = 0x90,
.dma_enable_in = BIT(5),
.dma_enable_out = BIT(6),
.major_mask = 0x0700,
@ -1010,6 +966,90 @@ static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
.minor_shift = 0,
};
static irqreturn_t omap_aes_irq(int irq, void *dev_id)
{
struct omap_aes_dev *dd = dev_id;
u32 status, i;
u32 *src, *dst;
status = omap_aes_read(dd, AES_REG_IRQ_STATUS(dd));
if (status & AES_REG_IRQ_DATA_IN) {
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->in_sg);
BUG_ON(_calc_walked(in) > dd->in_sg->length);
src = sg_virt(dd->in_sg) + _calc_walked(in);
for (i = 0; i < AES_BLOCK_WORDS; i++) {
omap_aes_write(dd, AES_REG_DATA_N(dd, i), *src);
scatterwalk_advance(&dd->in_walk, 4);
if (dd->in_sg->length == _calc_walked(in)) {
dd->in_sg = scatterwalk_sg_next(dd->in_sg);
if (dd->in_sg) {
scatterwalk_start(&dd->in_walk,
dd->in_sg);
src = sg_virt(dd->in_sg) +
_calc_walked(in);
}
} else {
src++;
}
}
/* Clear IRQ status */
status &= ~AES_REG_IRQ_DATA_IN;
omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
/* Enable DATA_OUT interrupt */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x4);
} else if (status & AES_REG_IRQ_DATA_OUT) {
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->out_sg);
BUG_ON(_calc_walked(out) > dd->out_sg->length);
dst = sg_virt(dd->out_sg) + _calc_walked(out);
for (i = 0; i < AES_BLOCK_WORDS; i++) {
*dst = omap_aes_read(dd, AES_REG_DATA_N(dd, i));
scatterwalk_advance(&dd->out_walk, 4);
if (dd->out_sg->length == _calc_walked(out)) {
dd->out_sg = scatterwalk_sg_next(dd->out_sg);
if (dd->out_sg) {
scatterwalk_start(&dd->out_walk,
dd->out_sg);
dst = sg_virt(dd->out_sg) +
_calc_walked(out);
}
} else {
dst++;
}
}
dd->total -= AES_BLOCK_SIZE;
BUG_ON(dd->total < 0);
/* Clear IRQ status */
status &= ~AES_REG_IRQ_DATA_OUT;
omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
if (!dd->total)
/* All bytes read! */
tasklet_schedule(&dd->done_task);
else
/* Enable DATA_IN interrupt for next block */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
}
return IRQ_HANDLED;
}
static const struct of_device_id omap_aes_of_match[] = {
{
.compatible = "ti,omap2-aes",
@ -1115,10 +1155,10 @@ static int omap_aes_probe(struct platform_device *pdev)
struct omap_aes_dev *dd;
struct crypto_alg *algp;
struct resource res;
int err = -ENOMEM, i, j;
int err = -ENOMEM, i, j, irq = -1;
u32 reg;
dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
dd = devm_kzalloc(dev, sizeof(struct omap_aes_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
goto err_data;
@ -1158,8 +1198,23 @@ static int omap_aes_probe(struct platform_device *pdev)
tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
err = omap_aes_dma_init(dd);
if (err)
goto err_dma;
if (err && AES_REG_IRQ_STATUS(dd) && AES_REG_IRQ_ENABLE(dd)) {
dd->pio_only = 1;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "can't get IRQ resource\n");
goto err_irq;
}
err = devm_request_irq(dev, irq, omap_aes_irq, 0,
dev_name(dev), dd);
if (err) {
dev_err(dev, "Unable to grab omap-aes IRQ\n");
goto err_irq;
}
}
INIT_LIST_HEAD(&dd->list);
spin_lock(&list_lock);
@ -1187,13 +1242,13 @@ err_algs:
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_unregister_alg(
&dd->pdata->algs_info[i].algs_list[j]);
omap_aes_dma_cleanup(dd);
err_dma:
if (!dd->pio_only)
omap_aes_dma_cleanup(dd);
err_irq:
tasklet_kill(&dd->done_task);
tasklet_kill(&dd->queue_task);
pm_runtime_disable(dev);
err_res:
kfree(dd);
dd = NULL;
err_data:
dev_err(dev, "initialization failed.\n");
@ -1221,7 +1276,6 @@ static int omap_aes_remove(struct platform_device *pdev)
tasklet_kill(&dd->queue_task);
omap_aes_dma_cleanup(dd);
pm_runtime_disable(dd->dev);
kfree(dd);
dd = NULL;
return 0;

Просмотреть файл

@ -44,17 +44,13 @@
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#define SHA1_MD5_BLOCK_SIZE SHA1_BLOCK_SIZE
#define MD5_DIGEST_SIZE 16
#define DST_MAXBURST 16
#define DMA_MIN (DST_MAXBURST * sizeof(u32))
#define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
#define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
#define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
#define SHA_REG_ODIGEST(x) (0x00 + ((x) * 0x04))
#define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
#define SHA_REG_CTRL 0x18
#define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
@ -75,18 +71,21 @@
#define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
#define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
#define SHA_REG_MODE 0x44
#define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
#define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
#define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
#define SHA_REG_MODE_CLOSE_HASH (1 << 4)
#define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
#define SHA_REG_MODE_ALGO_MASK (3 << 1)
#define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
#define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
#define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
#define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
#define SHA_REG_LENGTH 0x48
#define SHA_REG_MODE_ALGO_MASK (7 << 0)
#define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
#define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
#define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
#define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
#define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
#define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
#define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
#define SHA_REG_IRQSTATUS 0x118
#define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
@ -117,18 +116,16 @@
#define FLAGS_SG 17
#define FLAGS_MODE_SHIFT 18
#define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK \
<< (FLAGS_MODE_SHIFT - 1))
#define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 \
<< (FLAGS_MODE_SHIFT - 1))
#define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 \
<< (FLAGS_MODE_SHIFT - 1))
#define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 \
<< (FLAGS_MODE_SHIFT - 1))
#define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 \
<< (FLAGS_MODE_SHIFT - 1))
#define FLAGS_HMAC 20
#define FLAGS_ERROR 21
#define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
#define FLAGS_HMAC 21
#define FLAGS_ERROR 22
#define OP_UPDATE 1
#define OP_FINAL 2
@ -145,7 +142,7 @@ struct omap_sham_reqctx {
unsigned long flags;
unsigned long op;
u8 digest[SHA256_DIGEST_SIZE] OMAP_ALIGNED;
u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
size_t digcnt;
size_t bufcnt;
size_t buflen;
@ -162,8 +159,8 @@ struct omap_sham_reqctx {
struct omap_sham_hmac_ctx {
struct crypto_shash *shash;
u8 ipad[SHA1_MD5_BLOCK_SIZE] OMAP_ALIGNED;
u8 opad[SHA1_MD5_BLOCK_SIZE] OMAP_ALIGNED;
u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
};
struct omap_sham_ctx {
@ -205,6 +202,8 @@ struct omap_sham_pdata {
u32 rev_ofs;
u32 mask_ofs;
u32 sysstatus_ofs;
u32 mode_ofs;
u32 length_ofs;
u32 major_mask;
u32 major_shift;
@ -223,6 +222,7 @@ struct omap_sham_dev {
unsigned int dma;
struct dma_chan *dma_lch;
struct tasklet_struct done_task;
u8 polling_mode;
unsigned long flags;
struct crypto_queue queue;
@ -306,9 +306,9 @@ static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
if (out)
opad[i] = omap_sham_read(dd,
SHA_REG_ODIGEST(i));
SHA_REG_ODIGEST(dd, i));
else
omap_sham_write(dd, SHA_REG_ODIGEST(i),
omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
opad[i]);
}
}
@ -342,6 +342,12 @@ static void omap_sham_copy_ready_hash(struct ahash_request *req)
case FLAGS_MODE_SHA256:
d = SHA256_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA384:
d = SHA384_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA512:
d = SHA512_DIGEST_SIZE / sizeof(u32);
break;
default:
d = 0;
}
@ -404,6 +410,30 @@ static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
}
static int get_block_size(struct omap_sham_reqctx *ctx)
{
int d;
switch (ctx->flags & FLAGS_MODE_MASK) {
case FLAGS_MODE_MD5:
case FLAGS_MODE_SHA1:
d = SHA1_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA224:
case FLAGS_MODE_SHA256:
d = SHA256_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA384:
case FLAGS_MODE_SHA512:
d = SHA512_BLOCK_SIZE;
break;
default:
d = 0;
}
return d;
}
static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
u32 *value, int count)
{
@ -422,20 +452,24 @@ static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
* CLOSE_HASH only for the last one. Note that flags mode bits
* correspond to algorithm encoding in mode register.
*/
val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT - 1);
val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
if (!ctx->digcnt) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs, nr_dr;
val |= SHA_REG_MODE_ALGO_CONSTANT;
if (ctx->flags & BIT(FLAGS_HMAC)) {
bs = get_block_size(ctx);
nr_dr = bs / (2 * sizeof(u32));
val |= SHA_REG_MODE_HMAC_KEY_PROC;
omap_sham_write_n(dd, SHA_REG_ODIGEST(0),
(u32 *)bctx->ipad,
SHA1_BLOCK_SIZE / sizeof(u32));
ctx->digcnt += SHA1_BLOCK_SIZE;
omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
(u32 *)bctx->ipad, nr_dr);
omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
(u32 *)bctx->ipad + nr_dr, nr_dr);
ctx->digcnt += bs;
}
}
@ -451,7 +485,7 @@ static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
SHA_REG_MODE_HMAC_KEY_PROC;
dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
omap_sham_write_mask(dd, SHA_REG_MODE, val, mask);
omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
omap_sham_write_mask(dd, SHA_REG_MASK(dd),
SHA_REG_MASK_IT_EN |
@ -461,7 +495,7 @@ static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
{
omap_sham_write(dd, SHA_REG_LENGTH, length);
omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
}
static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
@ -474,7 +508,7 @@ static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, const u8 *buf,
size_t length, int final)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32;
int count, len32, bs32, offset = 0;
const u32 *buffer = (const u32 *)buf;
dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
@ -486,18 +520,23 @@ static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, const u8 *buf,
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt += length;
if (dd->pdata->poll_irq(dd))
return -ETIMEDOUT;
if (final)
set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
set_bit(FLAGS_CPU, &dd->flags);
len32 = DIV_ROUND_UP(length, sizeof(u32));
bs32 = get_block_size(ctx) / sizeof(u32);
for (count = 0; count < len32; count++)
omap_sham_write(dd, SHA_REG_DIN(dd, count), buffer[count]);
while (len32) {
if (dd->pdata->poll_irq(dd))
return -ETIMEDOUT;
for (count = 0; count < min(len32, bs32); count++, offset++)
omap_sham_write(dd, SHA_REG_DIN(dd, count),
buffer[offset]);
len32 -= min(len32, bs32);
}
return -EINPROGRESS;
}
@ -516,7 +555,7 @@ static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr,
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *tx;
struct dma_slave_config cfg;
int len32, ret;
int len32, ret, dma_min = get_block_size(ctx);
dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
ctx->digcnt, length, final);
@ -525,7 +564,7 @@ static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr,
cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_maxburst = DST_MAXBURST;
cfg.dst_maxburst = dma_min / DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(dd->dma_lch, &cfg);
if (ret) {
@ -533,7 +572,7 @@ static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr,
return ret;
}
len32 = DIV_ROUND_UP(length, DMA_MIN) * DMA_MIN;
len32 = DIV_ROUND_UP(length, dma_min) * dma_min;
if (is_sg) {
/*
@ -666,14 +705,14 @@ static int omap_sham_update_dma_slow(struct omap_sham_dev *dd)
/* Start address alignment */
#define SG_AA(sg) (IS_ALIGNED(sg->offset, sizeof(u32)))
/* SHA1 block size alignment */
#define SG_SA(sg) (IS_ALIGNED(sg->length, SHA1_MD5_BLOCK_SIZE))
#define SG_SA(sg, bs) (IS_ALIGNED(sg->length, bs))
static int omap_sham_update_dma_start(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int length, final, tail;
struct scatterlist *sg;
int ret;
int ret, bs;
if (!ctx->total)
return 0;
@ -687,30 +726,31 @@ static int omap_sham_update_dma_start(struct omap_sham_dev *dd)
* the dmaengine infrastructure will calculate that it needs
* to transfer 0 frames which ultimately fails.
*/
if (ctx->total < (DST_MAXBURST * sizeof(u32)))
if (ctx->total < get_block_size(ctx))
return omap_sham_update_dma_slow(dd);
dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n",
ctx->digcnt, ctx->bufcnt, ctx->total);
sg = ctx->sg;
bs = get_block_size(ctx);
if (!SG_AA(sg))
return omap_sham_update_dma_slow(dd);
if (!sg_is_last(sg) && !SG_SA(sg))
/* size is not SHA1_BLOCK_SIZE aligned */
if (!sg_is_last(sg) && !SG_SA(sg, bs))
/* size is not BLOCK_SIZE aligned */
return omap_sham_update_dma_slow(dd);
length = min(ctx->total, sg->length);
if (sg_is_last(sg)) {
if (!(ctx->flags & BIT(FLAGS_FINUP))) {
/* not last sg must be SHA1_MD5_BLOCK_SIZE aligned */
tail = length & (SHA1_MD5_BLOCK_SIZE - 1);
/* not last sg must be BLOCK_SIZE aligned */
tail = length & (bs - 1);
/* without finup() we need one block to close hash */
if (!tail)
tail = SHA1_MD5_BLOCK_SIZE;
tail = bs;
length -= tail;
}
}
@ -737,13 +777,22 @@ static int omap_sham_update_dma_start(struct omap_sham_dev *dd)
static int omap_sham_update_cpu(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
int bufcnt;
int bufcnt, final;
if (!ctx->total)
return 0;
omap_sham_append_sg(ctx);
final = (ctx->flags & BIT(FLAGS_FINUP)) && !ctx->total;
dev_dbg(dd->dev, "cpu: bufcnt: %u, digcnt: %d, final: %d\n",
ctx->bufcnt, ctx->digcnt, final);
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, final);
}
static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
@ -773,6 +822,7 @@ static int omap_sham_init(struct ahash_request *req)
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = NULL, *tmp;
int bs = 0;
spin_lock_bh(&sham.lock);
if (!tctx->dd) {
@ -796,15 +846,27 @@ static int omap_sham_init(struct ahash_request *req)
switch (crypto_ahash_digestsize(tfm)) {
case MD5_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_MD5;
bs = SHA1_BLOCK_SIZE;
break;
case SHA1_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA1;
bs = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA224;
bs = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA256;
bs = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA384;
bs = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA512;
bs = SHA512_BLOCK_SIZE;
break;
}
@ -816,8 +878,8 @@ static int omap_sham_init(struct ahash_request *req)
if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
memcpy(ctx->buffer, bctx->ipad, SHA1_MD5_BLOCK_SIZE);
ctx->bufcnt = SHA1_MD5_BLOCK_SIZE;
memcpy(ctx->buffer, bctx->ipad, bs);
ctx->bufcnt = bs;
}
ctx->flags |= BIT(FLAGS_HMAC);
@ -853,8 +915,11 @@ static int omap_sham_final_req(struct omap_sham_dev *dd)
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err = 0, use_dma = 1;
if (ctx->bufcnt <= DMA_MIN)
/* faster to handle last block with cpu */
if ((ctx->bufcnt <= get_block_size(ctx)) || dd->polling_mode)
/*
* faster to handle last block with cpu or
* use cpu when dma is not present.
*/
use_dma = 0;
if (use_dma)
@ -1006,6 +1071,8 @@ static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
static int omap_sham_update(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int bs = get_block_size(ctx);
if (!req->nbytes)
return 0;
@ -1023,10 +1090,12 @@ static int omap_sham_update(struct ahash_request *req)
*/
omap_sham_append_sg(ctx);
return 0;
} else if (ctx->bufcnt + ctx->total <= SHA1_MD5_BLOCK_SIZE) {
} else if ((ctx->bufcnt + ctx->total <= bs) ||
dd->polling_mode) {
/*
* faster to use CPU for short transfers
*/
* faster to use CPU for short transfers or
* use cpu when dma is not present.
*/
ctx->flags |= BIT(FLAGS_CPU);
}
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
@ -1214,6 +1283,16 @@ static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
return omap_sham_cra_init_alg(tfm, "md5");
}
static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha384");
}
static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha512");
}
static void omap_sham_cra_exit(struct crypto_tfm *tfm)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
@ -1422,6 +1501,101 @@ static struct ahash_alg algs_sha224_sha256[] = {
},
};
static struct ahash_alg algs_sha384_sha512[] = {
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "omap-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "omap-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "omap-hmac-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha384_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "omap-hmac-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha512_init,
.cra_exit = omap_sham_cra_exit,
}
},
};
static void omap_sham_done_task(unsigned long data)
{
struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
@ -1433,8 +1607,12 @@ static void omap_sham_done_task(unsigned long data)
}
if (test_bit(FLAGS_CPU, &dd->flags)) {
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
goto finish;
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
/* hash or semi-hash ready */
err = omap_sham_update_cpu(dd);
if (err != -EINPROGRESS)
goto finish;
}
} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
omap_sham_update_dma_stop(dd);
@ -1548,11 +1726,54 @@ static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x020,
.odigest_ofs = 0x0,
.din_ofs = 0x080,
.digcnt_ofs = 0x040,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x44,
.length_ofs = 0x48,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
{
.algs_list = algs_sha384_sha512,
.size = ARRAY_SIZE(algs_sha384_sha512),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
.algs_info = omap_sham_algs_info_omap5,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
.flags = BIT(FLAGS_AUTO_XOR),
.digest_size = SHA512_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap4,
.write_ctrl = omap_sham_write_ctrl_omap4,
.trigger = omap_sham_trigger_omap4,
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x240,
.odigest_ofs = 0x200,
.din_ofs = 0x080,
.digcnt_ofs = 0x280,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x284,
.length_ofs = 0x288,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
@ -1568,6 +1789,10 @@ static const struct of_device_id omap_sham_of_match[] = {
.compatible = "ti,omap4-sham",
.data = &omap_sham_pdata_omap4,
},
{
.compatible = "ti,omap5-sham",
.data = &omap_sham_pdata_omap5,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_sham_of_match);
@ -1667,7 +1892,7 @@ static int omap_sham_probe(struct platform_device *pdev)
int err, i, j;
u32 rev;
dd = kzalloc(sizeof(struct omap_sham_dev), GFP_KERNEL);
dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
err = -ENOMEM;
@ -1684,20 +1909,21 @@ static int omap_sham_probe(struct platform_device *pdev)
err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
omap_sham_get_res_pdev(dd, pdev, &res);
if (err)
goto res_err;
goto data_err;
dd->io_base = devm_ioremap_resource(dev, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto res_err;
goto data_err;
}
dd->phys_base = res.start;
err = request_irq(dd->irq, dd->pdata->intr_hdlr, IRQF_TRIGGER_LOW,
dev_name(dev), dd);
err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
IRQF_TRIGGER_NONE, dev_name(dev), dd);
if (err) {
dev_err(dev, "unable to request irq.\n");
goto res_err;
dev_err(dev, "unable to request irq %d, err = %d\n",
dd->irq, err);
goto data_err;
}
dma_cap_zero(mask);
@ -1706,10 +1932,8 @@ static int omap_sham_probe(struct platform_device *pdev)
dd->dma_lch = dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&dd->dma, dev, "rx");
if (!dd->dma_lch) {
dev_err(dev, "unable to obtain RX DMA engine channel %u\n",
dd->dma);
err = -ENXIO;
goto dma_err;
dd->polling_mode = 1;
dev_dbg(dev, "using polling mode instead of dma\n");
}
dd->flags |= dd->pdata->flags;
@ -1747,11 +1971,6 @@ err_algs:
&dd->pdata->algs_info[i].algs_list[j]);
pm_runtime_disable(dev);
dma_release_channel(dd->dma_lch);
dma_err:
free_irq(dd->irq, dd);
res_err:
kfree(dd);
dd = NULL;
data_err:
dev_err(dev, "initialization failed.\n");
@ -1776,9 +1995,6 @@ static int omap_sham_remove(struct platform_device *pdev)
tasklet_kill(&dd->done_task);
pm_runtime_disable(&pdev->dev);
dma_release_channel(dd->dma_lch);
free_irq(dd->irq, dd);
kfree(dd);
dd = NULL;
return 0;
}

Просмотреть файл

@ -417,7 +417,7 @@ static void sahara_aes_done_task(unsigned long data)
dev->req->base.complete(&dev->req->base, dev->error);
}
void sahara_watchdog(unsigned long data)
static void sahara_watchdog(unsigned long data)
{
struct sahara_dev *dev = (struct sahara_dev *)data;
unsigned int err = sahara_read(dev, SAHARA_REG_ERRSTATUS);
@ -955,7 +955,7 @@ static int sahara_probe(struct platform_device *pdev)
dev->hw_link[0] = dma_alloc_coherent(&pdev->dev,
SAHARA_MAX_HW_LINK * sizeof(struct sahara_hw_link),
&dev->hw_phys_link[0], GFP_KERNEL);
if (!dev->hw_link) {
if (!dev->hw_link[0]) {
dev_err(&pdev->dev, "Could not allocate hw links\n");
err = -ENOMEM;
goto err_link;

Просмотреть файл

@ -275,7 +275,7 @@ static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
} while (eng_busy & (!icq_empty));
} while (eng_busy && !icq_empty);
aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
}
@ -365,7 +365,7 @@ static int aes_set_key(struct tegra_aes_dev *dd)
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
} while (eng_busy & (!icq_empty) & dma_busy);
} while (eng_busy && !icq_empty && dma_busy);
/* settable command to get key into internal registers */
value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
@ -379,7 +379,7 @@ static int aes_set_key(struct tegra_aes_dev *dd)
value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
} while (eng_busy & (!icq_empty));
} while (eng_busy && !icq_empty);
return 0;
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -113,4 +113,6 @@ void scatterwalk_done(struct scatter_walk *walk, int out, int more);
void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg,
unsigned int start, unsigned int nbytes, int out);
int scatterwalk_bytes_sglen(struct scatterlist *sg, int num_bytes);
#endif /* _CRYPTO_SCATTERWALK_H */

Просмотреть файл

@ -3,6 +3,10 @@
#include <linux/types.h>
#define CRC_T10DIF_DIGEST_SIZE 2
#define CRC_T10DIF_BLOCK_SIZE 1
__u16 crc_t10dif_generic(__u16 crc, const unsigned char *buffer, size_t len);
__u16 crc_t10dif(unsigned char const *, size_t);
#endif

Просмотреть файл

@ -846,6 +846,8 @@ static int padata_cpu_callback(struct notifier_block *nfb,
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
if (!pinst_has_cpu(pinst, cpu))
break;
mutex_lock(&pinst->lock);
@ -857,6 +859,8 @@ static int padata_cpu_callback(struct notifier_block *nfb,
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!pinst_has_cpu(pinst, cpu))
break;
mutex_lock(&pinst->lock);
@ -865,22 +869,6 @@ static int padata_cpu_callback(struct notifier_block *nfb,
if (err)
return notifier_from_errno(err);
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!pinst_has_cpu(pinst, cpu))
break;
mutex_lock(&pinst->lock);
__padata_remove_cpu(pinst, cpu);
mutex_unlock(&pinst->lock);
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
if (!pinst_has_cpu(pinst, cpu))
break;
mutex_lock(&pinst->lock);
__padata_add_cpu(pinst, cpu);
mutex_unlock(&pinst->lock);
}
return NOTIFY_OK;
@ -1086,18 +1074,18 @@ struct padata_instance *padata_alloc(struct workqueue_struct *wq,
pinst->flags = 0;
#ifdef CONFIG_HOTPLUG_CPU
pinst->cpu_notifier.notifier_call = padata_cpu_callback;
pinst->cpu_notifier.priority = 0;
register_hotcpu_notifier(&pinst->cpu_notifier);
#endif
put_online_cpus();
BLOCKING_INIT_NOTIFIER_HEAD(&pinst->cpumask_change_notifier);
kobject_init(&pinst->kobj, &padata_attr_type);
mutex_init(&pinst->lock);
#ifdef CONFIG_HOTPLUG_CPU
pinst->cpu_notifier.notifier_call = padata_cpu_callback;
pinst->cpu_notifier.priority = 0;
register_hotcpu_notifier(&pinst->cpu_notifier);
#endif
return pinst;
err_free_masks:

Просмотреть файл

@ -76,6 +76,8 @@ config CRC16
config CRC_T10DIF
tristate "CRC calculation for the T10 Data Integrity Field"
select CRYPTO
select CRYPTO_CRCT10DIF
help
This option is only needed if a module that's not in the
kernel tree needs to calculate CRC checks for use with the

Просмотреть файл

@ -11,57 +11,45 @@
#include <linux/types.h>
#include <linux/module.h>
#include <linux/crc-t10dif.h>
#include <linux/err.h>
#include <linux/init.h>
#include <crypto/hash.h>
/* Table generated using the following polynomium:
* x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
* gt: 0x8bb7
*/
static const __u16 t10_dif_crc_table[256] = {
0x0000, 0x8BB7, 0x9CD9, 0x176E, 0xB205, 0x39B2, 0x2EDC, 0xA56B,
0xEFBD, 0x640A, 0x7364, 0xF8D3, 0x5DB8, 0xD60F, 0xC161, 0x4AD6,
0x54CD, 0xDF7A, 0xC814, 0x43A3, 0xE6C8, 0x6D7F, 0x7A11, 0xF1A6,
0xBB70, 0x30C7, 0x27A9, 0xAC1E, 0x0975, 0x82C2, 0x95AC, 0x1E1B,
0xA99A, 0x222D, 0x3543, 0xBEF4, 0x1B9F, 0x9028, 0x8746, 0x0CF1,
0x4627, 0xCD90, 0xDAFE, 0x5149, 0xF422, 0x7F95, 0x68FB, 0xE34C,
0xFD57, 0x76E0, 0x618E, 0xEA39, 0x4F52, 0xC4E5, 0xD38B, 0x583C,
0x12EA, 0x995D, 0x8E33, 0x0584, 0xA0EF, 0x2B58, 0x3C36, 0xB781,
0xD883, 0x5334, 0x445A, 0xCFED, 0x6A86, 0xE131, 0xF65F, 0x7DE8,
0x373E, 0xBC89, 0xABE7, 0x2050, 0x853B, 0x0E8C, 0x19E2, 0x9255,
0x8C4E, 0x07F9, 0x1097, 0x9B20, 0x3E4B, 0xB5FC, 0xA292, 0x2925,
0x63F3, 0xE844, 0xFF2A, 0x749D, 0xD1F6, 0x5A41, 0x4D2F, 0xC698,
0x7119, 0xFAAE, 0xEDC0, 0x6677, 0xC31C, 0x48AB, 0x5FC5, 0xD472,
0x9EA4, 0x1513, 0x027D, 0x89CA, 0x2CA1, 0xA716, 0xB078, 0x3BCF,
0x25D4, 0xAE63, 0xB90D, 0x32BA, 0x97D1, 0x1C66, 0x0B08, 0x80BF,
0xCA69, 0x41DE, 0x56B0, 0xDD07, 0x786C, 0xF3DB, 0xE4B5, 0x6F02,
0x3AB1, 0xB106, 0xA668, 0x2DDF, 0x88B4, 0x0303, 0x146D, 0x9FDA,
0xD50C, 0x5EBB, 0x49D5, 0xC262, 0x6709, 0xECBE, 0xFBD0, 0x7067,
0x6E7C, 0xE5CB, 0xF2A5, 0x7912, 0xDC79, 0x57CE, 0x40A0, 0xCB17,
0x81C1, 0x0A76, 0x1D18, 0x96AF, 0x33C4, 0xB873, 0xAF1D, 0x24AA,
0x932B, 0x189C, 0x0FF2, 0x8445, 0x212E, 0xAA99, 0xBDF7, 0x3640,
0x7C96, 0xF721, 0xE04F, 0x6BF8, 0xCE93, 0x4524, 0x524A, 0xD9FD,
0xC7E6, 0x4C51, 0x5B3F, 0xD088, 0x75E3, 0xFE54, 0xE93A, 0x628D,
0x285B, 0xA3EC, 0xB482, 0x3F35, 0x9A5E, 0x11E9, 0x0687, 0x8D30,
0xE232, 0x6985, 0x7EEB, 0xF55C, 0x5037, 0xDB80, 0xCCEE, 0x4759,
0x0D8F, 0x8638, 0x9156, 0x1AE1, 0xBF8A, 0x343D, 0x2353, 0xA8E4,
0xB6FF, 0x3D48, 0x2A26, 0xA191, 0x04FA, 0x8F4D, 0x9823, 0x1394,
0x5942, 0xD2F5, 0xC59B, 0x4E2C, 0xEB47, 0x60F0, 0x779E, 0xFC29,
0x4BA8, 0xC01F, 0xD771, 0x5CC6, 0xF9AD, 0x721A, 0x6574, 0xEEC3,
0xA415, 0x2FA2, 0x38CC, 0xB37B, 0x1610, 0x9DA7, 0x8AC9, 0x017E,
0x1F65, 0x94D2, 0x83BC, 0x080B, 0xAD60, 0x26D7, 0x31B9, 0xBA0E,
0xF0D8, 0x7B6F, 0x6C01, 0xE7B6, 0x42DD, 0xC96A, 0xDE04, 0x55B3
};
static struct crypto_shash *crct10dif_tfm;
__u16 crc_t10dif(const unsigned char *buffer, size_t len)
{
__u16 crc = 0;
unsigned int i;
struct {
struct shash_desc shash;
char ctx[2];
} desc;
int err;
for (i = 0 ; i < len ; i++)
crc = (crc << 8) ^ t10_dif_crc_table[((crc >> 8) ^ buffer[i]) & 0xff];
desc.shash.tfm = crct10dif_tfm;
desc.shash.flags = 0;
*(__u16 *)desc.ctx = 0;
return crc;
err = crypto_shash_update(&desc.shash, buffer, len);
BUG_ON(err);
return *(__u16 *)desc.ctx;
}
EXPORT_SYMBOL(crc_t10dif);
static int __init crc_t10dif_mod_init(void)
{
crct10dif_tfm = crypto_alloc_shash("crct10dif", 0, 0);
return PTR_RET(crct10dif_tfm);
}
static void __exit crc_t10dif_mod_fini(void)
{
crypto_free_shash(crct10dif_tfm);
}
module_init(crc_t10dif_mod_init);
module_exit(crc_t10dif_mod_fini);
MODULE_DESCRIPTION("T10 DIF CRC calculation");
MODULE_LICENSE("GPL");
MODULE_SOFTDEP("pre: crct10dif");