bpf: pre-allocate hash map elements
If kprobe is placed on spin_unlock then calling kmalloc/kfree from bpf programs is not safe, since the following dead lock is possible: kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe-> bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock) and deadlocks. The following solutions were considered and some implemented, but eventually discarded - kmem_cache_create for every map - add recursion check to slow-path of slub - use reserved memory in bpf_map_update for in_irq or in preempt_disabled - kmalloc via irq_work At the end pre-allocation of all map elements turned out to be the simplest solution and since the user is charged upfront for all the memory, such pre-allocation doesn't affect the user space visible behavior. Since it's impossible to tell whether kprobe is triggered in a safe location from kmalloc point of view, use pre-allocation by default and introduce new BPF_F_NO_PREALLOC flag. While testing of per-cpu hash maps it was discovered that alloc_percpu(GFP_ATOMIC) has odd corner cases and often fails to allocate memory even when 90% of it is free. The pre-allocation of per-cpu hash elements solves this problem as well. Turned out that bpf_map_update() quickly followed by bpf_map_lookup()+bpf_map_delete() is very common pattern used in many of iovisor/bcc/tools, so there is additional benefit of pre-allocation, since such use cases are must faster. Since all hash map elements are now pre-allocated we can remove atomic increment of htab->count and save few more cycles. Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid large malloc/free done by users who don't have sufficient limits. Pre-allocation is done with vmalloc and alloc/free is done via percpu_freelist. Here are performance numbers for different pre-allocation algorithms that were implemented, but discarded in favor of percpu_freelist: 1 cpu: pcpu_ida 2.1M pcpu_ida nolock 2.3M bt 2.4M kmalloc 1.8M hlist+spinlock 2.3M pcpu_freelist 2.6M 4 cpu: pcpu_ida 1.5M pcpu_ida nolock 1.8M bt w/smp_align 1.7M bt no/smp_align 1.1M kmalloc 0.7M hlist+spinlock 0.2M pcpu_freelist 2.0M 8 cpu: pcpu_ida 0.7M bt w/smp_align 0.8M kmalloc 0.4M pcpu_freelist 1.5M 32 cpu: kmalloc 0.13M pcpu_freelist 0.49M pcpu_ida nolock is a modified percpu_ida algorithm without percpu_ida_cpu locks and without cross-cpu tag stealing. It's faster than existing percpu_ida, but not as fast as pcpu_freelist. bt is a variant of block/blk-mq-tag.c simlified and customized for bpf use case. bt w/smp_align is using cache line for every 'long' (similar to blk-mq-tag). bt no/smp_align allocates 'long' bitmasks continuously to save memory. It's comparable to percpu_ida and in some cases faster, but slower than percpu_freelist hlist+spinlock is the simplest free list with single spinlock. As expeceted it has very bad scaling in SMP. kmalloc is existing implementation which is still available via BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist, but saves memory, so in cases where map->max_entries can be large and number of map update/delete per second is low, it may make sense to use it. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
e19494edab
Коммит
6c90598174
|
@ -37,6 +37,7 @@ struct bpf_map {
|
|||
u32 key_size;
|
||||
u32 value_size;
|
||||
u32 max_entries;
|
||||
u32 map_flags;
|
||||
u32 pages;
|
||||
struct user_struct *user;
|
||||
const struct bpf_map_ops *ops;
|
||||
|
@ -178,6 +179,7 @@ struct bpf_map *__bpf_map_get(struct fd f);
|
|||
void bpf_map_inc(struct bpf_map *map, bool uref);
|
||||
void bpf_map_put_with_uref(struct bpf_map *map);
|
||||
void bpf_map_put(struct bpf_map *map);
|
||||
int bpf_map_precharge_memlock(u32 pages);
|
||||
|
||||
extern int sysctl_unprivileged_bpf_disabled;
|
||||
|
||||
|
|
|
@ -101,12 +101,15 @@ enum bpf_prog_type {
|
|||
#define BPF_NOEXIST 1 /* create new element if it didn't exist */
|
||||
#define BPF_EXIST 2 /* update existing element */
|
||||
|
||||
#define BPF_F_NO_PREALLOC (1U << 0)
|
||||
|
||||
union bpf_attr {
|
||||
struct { /* anonymous struct used by BPF_MAP_CREATE command */
|
||||
__u32 map_type; /* one of enum bpf_map_type */
|
||||
__u32 key_size; /* size of key in bytes */
|
||||
__u32 value_size; /* size of value in bytes */
|
||||
__u32 max_entries; /* max number of entries in a map */
|
||||
__u32 map_flags; /* prealloc or not */
|
||||
};
|
||||
|
||||
struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
||||
* Copyright (c) 2016 Facebook
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of version 2 of the GNU General Public
|
||||
|
@ -13,6 +14,7 @@
|
|||
#include <linux/jhash.h>
|
||||
#include <linux/filter.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include "percpu_freelist.h"
|
||||
|
||||
struct bucket {
|
||||
struct hlist_head head;
|
||||
|
@ -22,6 +24,8 @@ struct bucket {
|
|||
struct bpf_htab {
|
||||
struct bpf_map map;
|
||||
struct bucket *buckets;
|
||||
void *elems;
|
||||
struct pcpu_freelist freelist;
|
||||
atomic_t count; /* number of elements in this hashtable */
|
||||
u32 n_buckets; /* number of hash buckets */
|
||||
u32 elem_size; /* size of each element in bytes */
|
||||
|
@ -29,15 +33,86 @@ struct bpf_htab {
|
|||
|
||||
/* each htab element is struct htab_elem + key + value */
|
||||
struct htab_elem {
|
||||
struct hlist_node hash_node;
|
||||
struct rcu_head rcu;
|
||||
union {
|
||||
u32 hash;
|
||||
u32 key_size;
|
||||
struct hlist_node hash_node;
|
||||
struct bpf_htab *htab;
|
||||
struct pcpu_freelist_node fnode;
|
||||
};
|
||||
struct rcu_head rcu;
|
||||
u32 hash;
|
||||
char key[0] __aligned(8);
|
||||
};
|
||||
|
||||
static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
|
||||
void __percpu *pptr)
|
||||
{
|
||||
*(void __percpu **)(l->key + key_size) = pptr;
|
||||
}
|
||||
|
||||
static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
|
||||
{
|
||||
return *(void __percpu **)(l->key + key_size);
|
||||
}
|
||||
|
||||
static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
|
||||
{
|
||||
return (struct htab_elem *) (htab->elems + i * htab->elem_size);
|
||||
}
|
||||
|
||||
static void htab_free_elems(struct bpf_htab *htab)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (htab->map.map_type != BPF_MAP_TYPE_PERCPU_HASH)
|
||||
goto free_elems;
|
||||
|
||||
for (i = 0; i < htab->map.max_entries; i++) {
|
||||
void __percpu *pptr;
|
||||
|
||||
pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
|
||||
htab->map.key_size);
|
||||
free_percpu(pptr);
|
||||
}
|
||||
free_elems:
|
||||
vfree(htab->elems);
|
||||
}
|
||||
|
||||
static int prealloc_elems_and_freelist(struct bpf_htab *htab)
|
||||
{
|
||||
int err = -ENOMEM, i;
|
||||
|
||||
htab->elems = vzalloc(htab->elem_size * htab->map.max_entries);
|
||||
if (!htab->elems)
|
||||
return -ENOMEM;
|
||||
|
||||
if (htab->map.map_type != BPF_MAP_TYPE_PERCPU_HASH)
|
||||
goto skip_percpu_elems;
|
||||
|
||||
for (i = 0; i < htab->map.max_entries; i++) {
|
||||
u32 size = round_up(htab->map.value_size, 8);
|
||||
void __percpu *pptr;
|
||||
|
||||
pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
|
||||
if (!pptr)
|
||||
goto free_elems;
|
||||
htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
|
||||
pptr);
|
||||
}
|
||||
|
||||
skip_percpu_elems:
|
||||
err = pcpu_freelist_init(&htab->freelist);
|
||||
if (err)
|
||||
goto free_elems;
|
||||
|
||||
pcpu_freelist_populate(&htab->freelist, htab->elems, htab->elem_size,
|
||||
htab->map.max_entries);
|
||||
return 0;
|
||||
|
||||
free_elems:
|
||||
htab_free_elems(htab);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* Called from syscall */
|
||||
static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
||||
{
|
||||
|
@ -46,6 +121,10 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
|||
int err, i;
|
||||
u64 cost;
|
||||
|
||||
if (attr->map_flags & ~BPF_F_NO_PREALLOC)
|
||||
/* reserved bits should not be used */
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
htab = kzalloc(sizeof(*htab), GFP_USER);
|
||||
if (!htab)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
@ -55,6 +134,7 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
|||
htab->map.key_size = attr->key_size;
|
||||
htab->map.value_size = attr->value_size;
|
||||
htab->map.max_entries = attr->max_entries;
|
||||
htab->map.map_flags = attr->map_flags;
|
||||
|
||||
/* check sanity of attributes.
|
||||
* value_size == 0 may be allowed in the future to use map as a set
|
||||
|
@ -92,7 +172,7 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
|||
if (percpu)
|
||||
htab->elem_size += sizeof(void *);
|
||||
else
|
||||
htab->elem_size += htab->map.value_size;
|
||||
htab->elem_size += round_up(htab->map.value_size, 8);
|
||||
|
||||
/* prevent zero size kmalloc and check for u32 overflow */
|
||||
if (htab->n_buckets == 0 ||
|
||||
|
@ -112,6 +192,11 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
|||
|
||||
htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
|
||||
|
||||
/* if map size is larger than memlock limit, reject it early */
|
||||
err = bpf_map_precharge_memlock(htab->map.pages);
|
||||
if (err)
|
||||
goto free_htab;
|
||||
|
||||
err = -ENOMEM;
|
||||
htab->buckets = kmalloc_array(htab->n_buckets, sizeof(struct bucket),
|
||||
GFP_USER | __GFP_NOWARN);
|
||||
|
@ -127,10 +212,16 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
|
|||
raw_spin_lock_init(&htab->buckets[i].lock);
|
||||
}
|
||||
|
||||
atomic_set(&htab->count, 0);
|
||||
if (!(attr->map_flags & BPF_F_NO_PREALLOC)) {
|
||||
err = prealloc_elems_and_freelist(htab);
|
||||
if (err)
|
||||
goto free_buckets;
|
||||
}
|
||||
|
||||
return &htab->map;
|
||||
|
||||
free_buckets:
|
||||
kvfree(htab->buckets);
|
||||
free_htab:
|
||||
kfree(htab);
|
||||
return ERR_PTR(err);
|
||||
|
@ -249,42 +340,42 @@ find_first_elem:
|
|||
}
|
||||
}
|
||||
|
||||
/* itereated over all buckets and all elements */
|
||||
/* iterated over all buckets and all elements */
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
|
||||
static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
|
||||
void __percpu *pptr)
|
||||
static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
|
||||
{
|
||||
*(void __percpu **)(l->key + key_size) = pptr;
|
||||
}
|
||||
|
||||
static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
|
||||
{
|
||||
return *(void __percpu **)(l->key + key_size);
|
||||
}
|
||||
|
||||
static void htab_percpu_elem_free(struct htab_elem *l)
|
||||
{
|
||||
free_percpu(htab_elem_get_ptr(l, l->key_size));
|
||||
if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
|
||||
free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
|
||||
kfree(l);
|
||||
|
||||
}
|
||||
|
||||
static void htab_percpu_elem_free_rcu(struct rcu_head *head)
|
||||
static void htab_elem_free_rcu(struct rcu_head *head)
|
||||
{
|
||||
struct htab_elem *l = container_of(head, struct htab_elem, rcu);
|
||||
struct bpf_htab *htab = l->htab;
|
||||
|
||||
htab_percpu_elem_free(l);
|
||||
/* must increment bpf_prog_active to avoid kprobe+bpf triggering while
|
||||
* we're calling kfree, otherwise deadlock is possible if kprobes
|
||||
* are placed somewhere inside of slub
|
||||
*/
|
||||
preempt_disable();
|
||||
__this_cpu_inc(bpf_prog_active);
|
||||
htab_elem_free(htab, l);
|
||||
__this_cpu_dec(bpf_prog_active);
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
static void free_htab_elem(struct htab_elem *l, bool percpu, u32 key_size)
|
||||
static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
|
||||
{
|
||||
if (percpu) {
|
||||
l->key_size = key_size;
|
||||
call_rcu(&l->rcu, htab_percpu_elem_free_rcu);
|
||||
if (!(htab->map.map_flags & BPF_F_NO_PREALLOC)) {
|
||||
pcpu_freelist_push(&htab->freelist, &l->fnode);
|
||||
} else {
|
||||
kfree_rcu(l, rcu);
|
||||
atomic_dec(&htab->count);
|
||||
l->htab = htab;
|
||||
call_rcu(&l->rcu, htab_elem_free_rcu);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -293,23 +384,39 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
|
|||
bool percpu, bool onallcpus)
|
||||
{
|
||||
u32 size = htab->map.value_size;
|
||||
bool prealloc = !(htab->map.map_flags & BPF_F_NO_PREALLOC);
|
||||
struct htab_elem *l_new;
|
||||
void __percpu *pptr;
|
||||
|
||||
l_new = kmalloc(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN);
|
||||
if (!l_new)
|
||||
return NULL;
|
||||
if (prealloc) {
|
||||
l_new = (struct htab_elem *)pcpu_freelist_pop(&htab->freelist);
|
||||
if (!l_new)
|
||||
return ERR_PTR(-E2BIG);
|
||||
} else {
|
||||
if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
|
||||
atomic_dec(&htab->count);
|
||||
return ERR_PTR(-E2BIG);
|
||||
}
|
||||
l_new = kmalloc(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN);
|
||||
if (!l_new)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
}
|
||||
|
||||
memcpy(l_new->key, key, key_size);
|
||||
if (percpu) {
|
||||
/* round up value_size to 8 bytes */
|
||||
size = round_up(size, 8);
|
||||
|
||||
/* alloc_percpu zero-fills */
|
||||
pptr = __alloc_percpu_gfp(size, 8, GFP_ATOMIC | __GFP_NOWARN);
|
||||
if (!pptr) {
|
||||
kfree(l_new);
|
||||
return NULL;
|
||||
if (prealloc) {
|
||||
pptr = htab_elem_get_ptr(l_new, key_size);
|
||||
} else {
|
||||
/* alloc_percpu zero-fills */
|
||||
pptr = __alloc_percpu_gfp(size, 8,
|
||||
GFP_ATOMIC | __GFP_NOWARN);
|
||||
if (!pptr) {
|
||||
kfree(l_new);
|
||||
return ERR_PTR(-ENOMEM);
|
||||
}
|
||||
}
|
||||
|
||||
if (!onallcpus) {
|
||||
|
@ -324,7 +431,8 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
|
|||
off += size;
|
||||
}
|
||||
}
|
||||
htab_elem_set_ptr(l_new, key_size, pptr);
|
||||
if (!prealloc)
|
||||
htab_elem_set_ptr(l_new, key_size, pptr);
|
||||
} else {
|
||||
memcpy(l_new->key + round_up(key_size, 8), value, size);
|
||||
}
|
||||
|
@ -336,12 +444,6 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
|
|||
static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
|
||||
u64 map_flags)
|
||||
{
|
||||
if (!l_old && unlikely(atomic_read(&htab->count) >= htab->map.max_entries))
|
||||
/* if elem with this 'key' doesn't exist and we've reached
|
||||
* max_entries limit, fail insertion of new elem
|
||||
*/
|
||||
return -E2BIG;
|
||||
|
||||
if (l_old && map_flags == BPF_NOEXIST)
|
||||
/* elem already exists */
|
||||
return -EEXIST;
|
||||
|
@ -375,13 +477,6 @@ static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|||
|
||||
hash = htab_map_hash(key, key_size);
|
||||
|
||||
/* allocate new element outside of the lock, since
|
||||
* we're most likley going to insert it
|
||||
*/
|
||||
l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false);
|
||||
if (!l_new)
|
||||
return -ENOMEM;
|
||||
|
||||
b = __select_bucket(htab, hash);
|
||||
head = &b->head;
|
||||
|
||||
|
@ -394,21 +489,24 @@ static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|||
if (ret)
|
||||
goto err;
|
||||
|
||||
l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false);
|
||||
if (IS_ERR(l_new)) {
|
||||
/* all pre-allocated elements are in use or memory exhausted */
|
||||
ret = PTR_ERR(l_new);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* add new element to the head of the list, so that
|
||||
* concurrent search will find it before old elem
|
||||
*/
|
||||
hlist_add_head_rcu(&l_new->hash_node, head);
|
||||
if (l_old) {
|
||||
hlist_del_rcu(&l_old->hash_node);
|
||||
kfree_rcu(l_old, rcu);
|
||||
} else {
|
||||
atomic_inc(&htab->count);
|
||||
free_htab_elem(htab, l_old);
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&b->lock, flags);
|
||||
return 0;
|
||||
ret = 0;
|
||||
err:
|
||||
raw_spin_unlock_irqrestore(&b->lock, flags);
|
||||
kfree(l_new);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -466,12 +564,11 @@ static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
|
|||
} else {
|
||||
l_new = alloc_htab_elem(htab, key, value, key_size,
|
||||
hash, true, onallcpus);
|
||||
if (!l_new) {
|
||||
ret = -ENOMEM;
|
||||
if (IS_ERR(l_new)) {
|
||||
ret = PTR_ERR(l_new);
|
||||
goto err;
|
||||
}
|
||||
hlist_add_head_rcu(&l_new->hash_node, head);
|
||||
atomic_inc(&htab->count);
|
||||
}
|
||||
ret = 0;
|
||||
err:
|
||||
|
@ -489,7 +586,6 @@ static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
|
|||
static int htab_map_delete_elem(struct bpf_map *map, void *key)
|
||||
{
|
||||
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
|
||||
bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_HASH;
|
||||
struct hlist_head *head;
|
||||
struct bucket *b;
|
||||
struct htab_elem *l;
|
||||
|
@ -511,8 +607,7 @@ static int htab_map_delete_elem(struct bpf_map *map, void *key)
|
|||
|
||||
if (l) {
|
||||
hlist_del_rcu(&l->hash_node);
|
||||
atomic_dec(&htab->count);
|
||||
free_htab_elem(l, percpu, key_size);
|
||||
free_htab_elem(htab, l);
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
|
@ -531,17 +626,10 @@ static void delete_all_elements(struct bpf_htab *htab)
|
|||
|
||||
hlist_for_each_entry_safe(l, n, head, hash_node) {
|
||||
hlist_del_rcu(&l->hash_node);
|
||||
atomic_dec(&htab->count);
|
||||
if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) {
|
||||
l->key_size = htab->map.key_size;
|
||||
htab_percpu_elem_free(l);
|
||||
} else {
|
||||
kfree(l);
|
||||
}
|
||||
htab_elem_free(htab, l);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
|
||||
static void htab_map_free(struct bpf_map *map)
|
||||
{
|
||||
|
@ -554,10 +642,16 @@ static void htab_map_free(struct bpf_map *map)
|
|||
*/
|
||||
synchronize_rcu();
|
||||
|
||||
/* some of kfree_rcu() callbacks for elements of this map may not have
|
||||
* executed. It's ok. Proceed to free residual elements and map itself
|
||||
/* some of free_htab_elem() callbacks for elements of this map may
|
||||
* not have executed. Wait for them.
|
||||
*/
|
||||
delete_all_elements(htab);
|
||||
rcu_barrier();
|
||||
if (htab->map.map_flags & BPF_F_NO_PREALLOC) {
|
||||
delete_all_elements(htab);
|
||||
} else {
|
||||
htab_free_elems(htab);
|
||||
pcpu_freelist_destroy(&htab->freelist);
|
||||
}
|
||||
kvfree(htab->buckets);
|
||||
kfree(htab);
|
||||
}
|
||||
|
|
|
@ -48,6 +48,19 @@ void bpf_register_map_type(struct bpf_map_type_list *tl)
|
|||
list_add(&tl->list_node, &bpf_map_types);
|
||||
}
|
||||
|
||||
int bpf_map_precharge_memlock(u32 pages)
|
||||
{
|
||||
struct user_struct *user = get_current_user();
|
||||
unsigned long memlock_limit, cur;
|
||||
|
||||
memlock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
||||
cur = atomic_long_read(&user->locked_vm);
|
||||
free_uid(user);
|
||||
if (cur + pages > memlock_limit)
|
||||
return -EPERM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bpf_map_charge_memlock(struct bpf_map *map)
|
||||
{
|
||||
struct user_struct *user = get_current_user();
|
||||
|
@ -153,7 +166,7 @@ int bpf_map_new_fd(struct bpf_map *map)
|
|||
offsetof(union bpf_attr, CMD##_LAST_FIELD) - \
|
||||
sizeof(attr->CMD##_LAST_FIELD)) != NULL
|
||||
|
||||
#define BPF_MAP_CREATE_LAST_FIELD max_entries
|
||||
#define BPF_MAP_CREATE_LAST_FIELD map_flags
|
||||
/* called via syscall */
|
||||
static int map_create(union bpf_attr *attr)
|
||||
{
|
||||
|
|
Загрузка…
Ссылка в новой задаче