net: dsa: bcm_sf2: Add support for ethtool::rxnfc
Add support for configuring classification rules using the ethtool::rxnfc API. This is useful to program the switch's CFP/TCAM to redirect specific packets to specific ports/queues for instance. For now, we allow any kind of IPv4 5-tuple matching. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
853458087e
Коммит
7318166cac
|
@ -1,5 +1,6 @@
|
|||
obj-$(CONFIG_NET_DSA_MV88E6060) += mv88e6060.o
|
||||
obj-$(CONFIG_NET_DSA_BCM_SF2) += bcm_sf2.o
|
||||
bcm_sf2-objs += bcm_sf2_cfp.o
|
||||
obj-$(CONFIG_NET_DSA_QCA8K) += qca8k.o
|
||||
|
||||
obj-y += b53/
|
||||
|
|
|
@ -1045,6 +1045,8 @@ static const struct dsa_switch_ops bcm_sf2_ops = {
|
|||
.port_fdb_dump = b53_fdb_dump,
|
||||
.port_fdb_add = b53_fdb_add,
|
||||
.port_fdb_del = b53_fdb_del,
|
||||
.get_rxnfc = bcm_sf2_get_rxnfc,
|
||||
.set_rxnfc = bcm_sf2_set_rxnfc,
|
||||
};
|
||||
|
||||
struct bcm_sf2_of_data {
|
||||
|
@ -1168,6 +1170,12 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev)
|
|||
|
||||
spin_lock_init(&priv->indir_lock);
|
||||
mutex_init(&priv->stats_mutex);
|
||||
mutex_init(&priv->cfp.lock);
|
||||
|
||||
/* CFP rule #0 cannot be used for specific classifications, flag it as
|
||||
* permanently used
|
||||
*/
|
||||
set_bit(0, priv->cfp.used);
|
||||
|
||||
bcm_sf2_identify_ports(priv, dn->child);
|
||||
|
||||
|
@ -1197,6 +1205,12 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev)
|
|||
return ret;
|
||||
}
|
||||
|
||||
ret = bcm_sf2_cfp_rst(priv);
|
||||
if (ret) {
|
||||
pr_err("failed to reset CFP\n");
|
||||
goto out_mdio;
|
||||
}
|
||||
|
||||
/* Disable all interrupts and request them */
|
||||
bcm_sf2_intr_disable(priv);
|
||||
|
||||
|
|
|
@ -52,6 +52,13 @@ struct bcm_sf2_port_status {
|
|||
struct ethtool_eee eee;
|
||||
};
|
||||
|
||||
struct bcm_sf2_cfp_priv {
|
||||
/* Mutex protecting concurrent accesses to the CFP registers */
|
||||
struct mutex lock;
|
||||
DECLARE_BITMAP(used, CFP_NUM_RULES);
|
||||
unsigned int rules_cnt;
|
||||
};
|
||||
|
||||
struct bcm_sf2_priv {
|
||||
/* Base registers, keep those in order with BCM_SF2_REGS_NAME */
|
||||
void __iomem *core;
|
||||
|
@ -103,6 +110,9 @@ struct bcm_sf2_priv {
|
|||
|
||||
/* Bitmask of ports needing BRCM tags */
|
||||
unsigned int brcm_tag_mask;
|
||||
|
||||
/* CFP rules context */
|
||||
struct bcm_sf2_cfp_priv cfp;
|
||||
};
|
||||
|
||||
static inline struct bcm_sf2_priv *bcm_sf2_to_priv(struct dsa_switch *ds)
|
||||
|
@ -197,4 +207,11 @@ SF2_IO_MACRO(acb);
|
|||
SWITCH_INTR_L2(0);
|
||||
SWITCH_INTR_L2(1);
|
||||
|
||||
/* RXNFC */
|
||||
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
|
||||
struct ethtool_rxnfc *nfc, u32 *rule_locs);
|
||||
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
|
||||
struct ethtool_rxnfc *nfc);
|
||||
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv);
|
||||
|
||||
#endif /* __BCM_SF2_H */
|
||||
|
|
|
@ -0,0 +1,613 @@
|
|||
/*
|
||||
* Broadcom Starfighter 2 DSA switch CFP support
|
||||
*
|
||||
* Copyright (C) 2016, Broadcom
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*/
|
||||
|
||||
#include <linux/list.h>
|
||||
#include <net/dsa.h>
|
||||
#include <linux/ethtool.h>
|
||||
#include <linux/if_ether.h>
|
||||
#include <linux/in.h>
|
||||
#include <linux/bitmap.h>
|
||||
|
||||
#include "bcm_sf2.h"
|
||||
#include "bcm_sf2_regs.h"
|
||||
|
||||
struct cfp_udf_layout {
|
||||
u8 slices[UDF_NUM_SLICES];
|
||||
u32 mask_value;
|
||||
|
||||
};
|
||||
|
||||
/* UDF slices layout for a TCPv4/UDPv4 specification */
|
||||
static const struct cfp_udf_layout udf_tcpip4_layout = {
|
||||
.slices = {
|
||||
/* End of L2, byte offset 12, src IP[0:15] */
|
||||
CFG_UDF_EOL2 | 6,
|
||||
/* End of L2, byte offset 14, src IP[16:31] */
|
||||
CFG_UDF_EOL2 | 7,
|
||||
/* End of L2, byte offset 16, dst IP[0:15] */
|
||||
CFG_UDF_EOL2 | 8,
|
||||
/* End of L2, byte offset 18, dst IP[16:31] */
|
||||
CFG_UDF_EOL2 | 9,
|
||||
/* End of L3, byte offset 0, src port */
|
||||
CFG_UDF_EOL3 | 0,
|
||||
/* End of L3, byte offset 2, dst port */
|
||||
CFG_UDF_EOL3 | 1,
|
||||
0, 0, 0
|
||||
},
|
||||
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
||||
};
|
||||
|
||||
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
|
||||
{
|
||||
unsigned int i, count = 0;
|
||||
|
||||
for (i = 0; i < UDF_NUM_SLICES; i++) {
|
||||
if (layout[i] != 0)
|
||||
count++;
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
|
||||
unsigned int slice_num,
|
||||
const u8 *layout)
|
||||
{
|
||||
u32 offset = CORE_UDF_0_A_0_8_PORT_0 + slice_num * UDF_SLICE_OFFSET;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < UDF_NUM_SLICES; i++)
|
||||
core_writel(priv, layout[i], offset + i * 4);
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
|
||||
{
|
||||
unsigned int timeout = 1000;
|
||||
u32 reg;
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
|
||||
reg |= OP_STR_DONE | op;
|
||||
core_writel(priv, reg, CORE_CFP_ACC);
|
||||
|
||||
do {
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
if (!(reg & OP_STR_DONE))
|
||||
break;
|
||||
|
||||
cpu_relax();
|
||||
} while (timeout--);
|
||||
|
||||
if (!timeout)
|
||||
return -ETIMEDOUT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
|
||||
unsigned int addr)
|
||||
{
|
||||
u32 reg;
|
||||
|
||||
WARN_ON(addr >= CFP_NUM_RULES);
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
|
||||
reg |= addr << XCESS_ADDR_SHIFT;
|
||||
core_writel(priv, reg, CORE_CFP_ACC);
|
||||
}
|
||||
|
||||
static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
|
||||
{
|
||||
/* Entry #0 is reserved */
|
||||
return CFP_NUM_RULES - 1;
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
|
||||
struct ethtool_rx_flow_spec *fs)
|
||||
{
|
||||
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
||||
struct ethtool_tcpip4_spec *v4_spec;
|
||||
const struct cfp_udf_layout *layout;
|
||||
unsigned int slice_num, rule_index;
|
||||
unsigned int queue_num, port_num;
|
||||
u8 ip_proto, ip_frag;
|
||||
u8 num_udf;
|
||||
u32 reg;
|
||||
int ret;
|
||||
|
||||
/* Check for unsupported extensions */
|
||||
if ((fs->flow_type & FLOW_EXT) &&
|
||||
(fs->m_ext.vlan_etype || fs->m_ext.data[1]))
|
||||
return -EINVAL;
|
||||
|
||||
if (fs->location != RX_CLS_LOC_ANY &&
|
||||
test_bit(fs->location, priv->cfp.used))
|
||||
return -EBUSY;
|
||||
|
||||
if (fs->location != RX_CLS_LOC_ANY &&
|
||||
fs->location > bcm_sf2_cfp_rule_size(priv))
|
||||
return -EINVAL;
|
||||
|
||||
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
||||
|
||||
/* We do not support discarding packets, check that the
|
||||
* destination port is enabled and that we are within the
|
||||
* number of ports supported by the switch
|
||||
*/
|
||||
port_num = fs->ring_cookie / 8;
|
||||
|
||||
if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
|
||||
!(BIT(port_num) & ds->enabled_port_mask) ||
|
||||
port_num >= priv->hw_params.num_ports)
|
||||
return -EINVAL;
|
||||
|
||||
switch (fs->flow_type & ~FLOW_EXT) {
|
||||
case TCP_V4_FLOW:
|
||||
ip_proto = IPPROTO_TCP;
|
||||
v4_spec = &fs->h_u.tcp_ip4_spec;
|
||||
break;
|
||||
case UDP_V4_FLOW:
|
||||
ip_proto = IPPROTO_UDP;
|
||||
v4_spec = &fs->h_u.udp_ip4_spec;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* We only use one UDF slice for now */
|
||||
slice_num = 1;
|
||||
layout = &udf_tcpip4_layout;
|
||||
num_udf = bcm_sf2_get_num_udf_slices(layout->slices);
|
||||
|
||||
/* Apply the UDF layout for this filter */
|
||||
bcm_sf2_cfp_udf_set(priv, slice_num, layout->slices);
|
||||
|
||||
/* Apply to all packets received through this port */
|
||||
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
||||
|
||||
/* S-Tag status [31:30]
|
||||
* C-Tag status [29:28]
|
||||
* L2 framing [27:26]
|
||||
* L3 framing [25:24]
|
||||
* IP ToS [23:16]
|
||||
* IP proto [15:08]
|
||||
* IP Fragm [7]
|
||||
* Non 1st frag [6]
|
||||
* IP Authen [5]
|
||||
* TTL range [4:3]
|
||||
* PPPoE session [2]
|
||||
* Reserved [1]
|
||||
* UDF_Valid[8] [0]
|
||||
*/
|
||||
core_writel(priv, v4_spec->tos << 16 | ip_proto << 8 | ip_frag << 7,
|
||||
CORE_CFP_DATA_PORT(6));
|
||||
|
||||
/* UDF_Valid[7:0] [31:24]
|
||||
* S-Tag [23:8]
|
||||
* C-Tag [7:0]
|
||||
*/
|
||||
core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_DATA_PORT(5));
|
||||
|
||||
/* C-Tag [31:24]
|
||||
* UDF_n_A8 [23:8]
|
||||
* UDF_n_A7 [7:0]
|
||||
*/
|
||||
core_writel(priv, 0, CORE_CFP_DATA_PORT(4));
|
||||
|
||||
/* UDF_n_A7 [31:24]
|
||||
* UDF_n_A6 [23:8]
|
||||
* UDF_n_A5 [7:0]
|
||||
*/
|
||||
core_writel(priv, be16_to_cpu(v4_spec->pdst) >> 8,
|
||||
CORE_CFP_DATA_PORT(3));
|
||||
|
||||
/* UDF_n_A5 [31:24]
|
||||
* UDF_n_A4 [23:8]
|
||||
* UDF_n_A3 [7:0]
|
||||
*/
|
||||
reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
|
||||
(u32)be16_to_cpu(v4_spec->psrc) << 8 |
|
||||
(be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
|
||||
core_writel(priv, reg, CORE_CFP_DATA_PORT(2));
|
||||
|
||||
/* UDF_n_A3 [31:24]
|
||||
* UDF_n_A2 [23:8]
|
||||
* UDF_n_A1 [7:0]
|
||||
*/
|
||||
reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
|
||||
(u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
|
||||
(be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
|
||||
core_writel(priv, reg, CORE_CFP_DATA_PORT(1));
|
||||
|
||||
/* UDF_n_A1 [31:24]
|
||||
* UDF_n_A0 [23:8]
|
||||
* Reserved [7:4]
|
||||
* Slice ID [3:2]
|
||||
* Slice valid [1:0]
|
||||
*/
|
||||
reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
|
||||
(u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
|
||||
SLICE_NUM(slice_num) | SLICE_VALID;
|
||||
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
|
||||
|
||||
/* Source port map match */
|
||||
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
||||
|
||||
/* Mask with the specific layout for IPv4 packets */
|
||||
core_writel(priv, layout->mask_value, CORE_CFP_MASK_PORT(6));
|
||||
|
||||
/* Mask all but valid UDFs */
|
||||
core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_MASK_PORT(5));
|
||||
|
||||
/* Mask all */
|
||||
core_writel(priv, 0, CORE_CFP_MASK_PORT(4));
|
||||
|
||||
/* All other UDFs should be matched with the filter */
|
||||
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(3));
|
||||
core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
|
||||
core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
|
||||
core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
|
||||
|
||||
/* Locate the first rule available */
|
||||
if (fs->location == RX_CLS_LOC_ANY)
|
||||
rule_index = find_first_zero_bit(priv->cfp.used,
|
||||
bcm_sf2_cfp_rule_size(priv));
|
||||
else
|
||||
rule_index = fs->location;
|
||||
|
||||
/* Insert into TCAM now */
|
||||
bcm_sf2_cfp_rule_addr_set(priv, rule_index);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
||||
if (ret) {
|
||||
pr_err("TCAM entry at addr %d failed\n", rule_index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Replace ARL derived destination with DST_MAP derived, define
|
||||
* which port and queue this should be forwarded to.
|
||||
*
|
||||
* We have a small oddity where Port 6 just does not have a
|
||||
* valid bit here (so we subtract by one).
|
||||
*/
|
||||
queue_num = fs->ring_cookie % 8;
|
||||
if (port_num >= 7)
|
||||
port_num -= 1;
|
||||
|
||||
reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
|
||||
CHANGE_TC | queue_num << NEW_TC_SHIFT;
|
||||
|
||||
core_writel(priv, reg, CORE_ACT_POL_DATA0);
|
||||
|
||||
/* Set classification ID that needs to be put in Broadcom tag */
|
||||
core_writel(priv, rule_index << CHAIN_ID_SHIFT,
|
||||
CORE_ACT_POL_DATA1);
|
||||
|
||||
core_writel(priv, 0, CORE_ACT_POL_DATA2);
|
||||
|
||||
/* Configure policer RAM now */
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
|
||||
if (ret) {
|
||||
pr_err("Policer entry at %d failed\n", rule_index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Disable the policer */
|
||||
core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
|
||||
|
||||
/* Now the rate meter */
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
|
||||
if (ret) {
|
||||
pr_err("Meter entry at %d failed\n", rule_index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Turn on CFP for this rule now */
|
||||
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
||||
reg |= BIT(port);
|
||||
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
||||
|
||||
/* Flag the rule as being used and return it */
|
||||
set_bit(rule_index, priv->cfp.used);
|
||||
fs->location = rule_index;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
||||
u32 loc)
|
||||
{
|
||||
int ret;
|
||||
u32 reg;
|
||||
|
||||
/* Refuse deletion of unused rules, and the default reserved rule */
|
||||
if (!test_bit(loc, priv->cfp.used) || loc == 0)
|
||||
return -EINVAL;
|
||||
|
||||
/* Indicate which rule we want to read */
|
||||
bcm_sf2_cfp_rule_addr_set(priv, loc);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Clear its valid bits */
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
||||
reg &= ~SLICE_VALID;
|
||||
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
|
||||
|
||||
/* Write back this entry into the TCAM now */
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
clear_bit(loc, priv->cfp.used);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < sizeof(flow->m_u); i++)
|
||||
flow->m_u.hdata[i] ^= 0xff;
|
||||
|
||||
flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
|
||||
flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
|
||||
flow->m_ext.data[0] ^= cpu_to_be32(~0);
|
||||
flow->m_ext.data[1] ^= cpu_to_be32(~0);
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
||||
struct ethtool_rxnfc *nfc, bool search)
|
||||
{
|
||||
struct ethtool_tcpip4_spec *v4_spec;
|
||||
unsigned int queue_num;
|
||||
u16 src_dst_port;
|
||||
u32 reg, ipv4;
|
||||
int ret;
|
||||
|
||||
if (!search) {
|
||||
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
reg = core_readl(priv, CORE_ACT_POL_DATA0);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
} else {
|
||||
reg = core_readl(priv, CORE_ACT_POL_DATA0);
|
||||
}
|
||||
|
||||
/* Extract the destination port */
|
||||
nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
|
||||
DST_MAP_IB_MASK) - 1;
|
||||
|
||||
/* There is no Port 6, so we compensate for that here */
|
||||
if (nfc->fs.ring_cookie >= 6)
|
||||
nfc->fs.ring_cookie++;
|
||||
nfc->fs.ring_cookie *= 8;
|
||||
|
||||
/* Extract the destination queue */
|
||||
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
|
||||
nfc->fs.ring_cookie += queue_num;
|
||||
|
||||
/* Extract the IP protocol */
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
||||
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
||||
case IPPROTO_TCP:
|
||||
nfc->fs.flow_type = TCP_V4_FLOW;
|
||||
v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
|
||||
break;
|
||||
case IPPROTO_UDP:
|
||||
nfc->fs.flow_type = UDP_V4_FLOW;
|
||||
v4_spec = &nfc->fs.h_u.udp_ip4_spec;
|
||||
break;
|
||||
default:
|
||||
/* Clear to exit the search process */
|
||||
if (search)
|
||||
core_readl(priv, CORE_CFP_DATA_PORT(7));
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
v4_spec->tos = (reg >> 16) & IPPROTO_MASK;
|
||||
nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> 7) & 1);
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
|
||||
/* src port [15:8] */
|
||||
src_dst_port = reg << 8;
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
|
||||
/* src port [7:0] */
|
||||
src_dst_port |= (reg >> 24);
|
||||
|
||||
v4_spec->pdst = cpu_to_be16(src_dst_port);
|
||||
nfc->fs.m_u.tcp_ip4_spec.pdst = cpu_to_be16(~0);
|
||||
v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
|
||||
nfc->fs.m_u.tcp_ip4_spec.psrc = cpu_to_be16(~0);
|
||||
|
||||
/* IPv4 dst [15:8] */
|
||||
ipv4 = (u16)(reg & 0xff) << 8;
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
|
||||
/* IPv4 dst [31:16] */
|
||||
ipv4 |= (u32)((reg >> 8) & 0xffffff) << 16;
|
||||
/* IPv4 dst [7:0] */
|
||||
ipv4 |= (reg >> 24) & 0xff;
|
||||
v4_spec->ip4dst = cpu_to_be32(ipv4);
|
||||
nfc->fs.m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(~0);
|
||||
|
||||
/* IPv4 src [15:8] */
|
||||
ipv4 = (u16)(reg & 0xff) << 8;
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
||||
|
||||
if (!(reg & SLICE_VALID))
|
||||
return -EINVAL;
|
||||
|
||||
/* IPv4 src [7:0] */
|
||||
ipv4 |= (reg >> 24) & 0xff;
|
||||
/* IPv4 src [31:16] */
|
||||
ipv4 |= ((reg >> 8) & 0xffffff) << 16;
|
||||
v4_spec->ip4src = cpu_to_be32(ipv4);
|
||||
nfc->fs.m_u.tcp_ip4_spec.ip4src = cpu_to_be32(~0);
|
||||
|
||||
/* Read last to avoid next entry clobbering the results during search
|
||||
* operations
|
||||
*/
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
|
||||
if (!(reg & 1 << port))
|
||||
return -EINVAL;
|
||||
|
||||
bcm_sf2_invert_masks(&nfc->fs);
|
||||
|
||||
/* Put the TCAM size here */
|
||||
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* We implement the search doing a TCAM search operation */
|
||||
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
|
||||
int port, struct ethtool_rxnfc *nfc,
|
||||
u32 *rule_locs)
|
||||
{
|
||||
unsigned int index = 1, rules_cnt = 0;
|
||||
int ret;
|
||||
u32 reg;
|
||||
|
||||
/* Do not poll on OP_STR_DONE to be self-clearing for search
|
||||
* operations, we cannot use bcm_sf2_cfp_op here because it completes
|
||||
* on clearing OP_STR_DONE which won't clear until the entire search
|
||||
* operation is over.
|
||||
*/
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
|
||||
reg |= index << XCESS_ADDR_SHIFT;
|
||||
reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
|
||||
reg |= OP_SEL_SEARCH | TCAM_SEL | OP_STR_DONE;
|
||||
core_writel(priv, reg, CORE_CFP_ACC);
|
||||
|
||||
do {
|
||||
/* Wait for results to be ready */
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
|
||||
/* Extract the address we are searching */
|
||||
index = reg >> XCESS_ADDR_SHIFT;
|
||||
index &= XCESS_ADDR_MASK;
|
||||
|
||||
/* We have a valid search result, so flag it accordingly */
|
||||
if (reg & SEARCH_STS) {
|
||||
ret = bcm_sf2_cfp_rule_get(priv, port, nfc, true);
|
||||
if (ret)
|
||||
continue;
|
||||
|
||||
rule_locs[rules_cnt] = index;
|
||||
rules_cnt++;
|
||||
}
|
||||
|
||||
/* Search is over break out */
|
||||
if (!(reg & OP_STR_DONE))
|
||||
break;
|
||||
|
||||
} while (index < CFP_NUM_RULES);
|
||||
|
||||
/* Put the TCAM size here */
|
||||
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
||||
nfc->rule_cnt = rules_cnt;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
|
||||
struct ethtool_rxnfc *nfc, u32 *rule_locs)
|
||||
{
|
||||
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
||||
int ret = 0;
|
||||
|
||||
mutex_lock(&priv->cfp.lock);
|
||||
|
||||
switch (nfc->cmd) {
|
||||
case ETHTOOL_GRXCLSRLCNT:
|
||||
/* Subtract the default, unusable rule */
|
||||
nfc->rule_cnt = bitmap_weight(priv->cfp.used,
|
||||
CFP_NUM_RULES) - 1;
|
||||
/* We support specifying rule locations */
|
||||
nfc->data |= RX_CLS_LOC_SPECIAL;
|
||||
break;
|
||||
case ETHTOOL_GRXCLSRULE:
|
||||
ret = bcm_sf2_cfp_rule_get(priv, port, nfc, false);
|
||||
break;
|
||||
case ETHTOOL_GRXCLSRLALL:
|
||||
ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
|
||||
break;
|
||||
default:
|
||||
ret = -EOPNOTSUPP;
|
||||
break;
|
||||
}
|
||||
|
||||
mutex_unlock(&priv->cfp.lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
|
||||
struct ethtool_rxnfc *nfc)
|
||||
{
|
||||
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
||||
int ret = 0;
|
||||
|
||||
mutex_lock(&priv->cfp.lock);
|
||||
|
||||
switch (nfc->cmd) {
|
||||
case ETHTOOL_SRXCLSRLINS:
|
||||
ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
|
||||
break;
|
||||
|
||||
case ETHTOOL_SRXCLSRLDEL:
|
||||
ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
|
||||
break;
|
||||
default:
|
||||
ret = -EOPNOTSUPP;
|
||||
break;
|
||||
}
|
||||
|
||||
mutex_unlock(&priv->cfp.lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
|
||||
{
|
||||
unsigned int timeout = 1000;
|
||||
u32 reg;
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
reg |= TCAM_RESET;
|
||||
core_writel(priv, reg, CORE_CFP_ACC);
|
||||
|
||||
do {
|
||||
reg = core_readl(priv, CORE_CFP_ACC);
|
||||
if (!(reg & TCAM_RESET))
|
||||
break;
|
||||
|
||||
cpu_relax();
|
||||
} while (timeout--);
|
||||
|
||||
if (!timeout)
|
||||
return -ETIMEDOUT;
|
||||
|
||||
return 0;
|
||||
}
|
Загрузка…
Ссылка в новой задаче