sched: remove old sched doc
Fabio Checconi noticed that Documentation/scheduler/sched-design.txt was a stale copy of the old scheduler. Remove it. Reported-by: Fabio Checconi <fabio@gandalf.sssup.it> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Родитель
2abdad0a4c
Коммит
733a0771df
|
@ -1,165 +0,0 @@
|
|||
Goals, Design and Implementation of the
|
||||
new ultra-scalable O(1) scheduler
|
||||
|
||||
|
||||
This is an edited version of an email Ingo Molnar sent to
|
||||
lkml on 4 Jan 2002. It describes the goals, design, and
|
||||
implementation of Ingo's new ultra-scalable O(1) scheduler.
|
||||
Last Updated: 18 April 2002.
|
||||
|
||||
|
||||
Goal
|
||||
====
|
||||
|
||||
The main goal of the new scheduler is to keep all the good things we know
|
||||
and love about the current Linux scheduler:
|
||||
|
||||
- good interactive performance even during high load: if the user
|
||||
types or clicks then the system must react instantly and must execute
|
||||
the user tasks smoothly, even during considerable background load.
|
||||
|
||||
- good scheduling/wakeup performance with 1-2 runnable processes.
|
||||
|
||||
- fairness: no process should stay without any timeslice for any
|
||||
unreasonable amount of time. No process should get an unjustly high
|
||||
amount of CPU time.
|
||||
|
||||
- priorities: less important tasks can be started with lower priority,
|
||||
more important tasks with higher priority.
|
||||
|
||||
- SMP efficiency: no CPU should stay idle if there is work to do.
|
||||
|
||||
- SMP affinity: processes which run on one CPU should stay affine to
|
||||
that CPU. Processes should not bounce between CPUs too frequently.
|
||||
|
||||
- plus additional scheduler features: RT scheduling, CPU binding.
|
||||
|
||||
and the goal is also to add a few new things:
|
||||
|
||||
- fully O(1) scheduling. Are you tired of the recalculation loop
|
||||
blowing the L1 cache away every now and then? Do you think the goodness
|
||||
loop is taking a bit too long to finish if there are lots of runnable
|
||||
processes? This new scheduler takes no prisoners: wakeup(), schedule(),
|
||||
the timer interrupt are all O(1) algorithms. There is no recalculation
|
||||
loop. There is no goodness loop either.
|
||||
|
||||
- 'perfect' SMP scalability. With the new scheduler there is no 'big'
|
||||
runqueue_lock anymore - it's all per-CPU runqueues and locks - two
|
||||
tasks on two separate CPUs can wake up, schedule and context-switch
|
||||
completely in parallel, without any interlocking. All
|
||||
scheduling-relevant data is structured for maximum scalability.
|
||||
|
||||
- better SMP affinity. The old scheduler has a particular weakness that
|
||||
causes the random bouncing of tasks between CPUs if/when higher
|
||||
priority/interactive tasks, this was observed and reported by many
|
||||
people. The reason is that the timeslice recalculation loop first needs
|
||||
every currently running task to consume its timeslice. But when this
|
||||
happens on eg. an 8-way system, then this property starves an
|
||||
increasing number of CPUs from executing any process. Once the last
|
||||
task that has a timeslice left has finished using up that timeslice,
|
||||
the recalculation loop is triggered and other CPUs can start executing
|
||||
tasks again - after having idled around for a number of timer ticks.
|
||||
The more CPUs, the worse this effect.
|
||||
|
||||
Furthermore, this same effect causes the bouncing effect as well:
|
||||
whenever there is such a 'timeslice squeeze' of the global runqueue,
|
||||
idle processors start executing tasks which are not affine to that CPU.
|
||||
(because the affine tasks have finished off their timeslices already.)
|
||||
|
||||
The new scheduler solves this problem by distributing timeslices on a
|
||||
per-CPU basis, without having any global synchronization or
|
||||
recalculation.
|
||||
|
||||
- batch scheduling. A significant proportion of computing-intensive tasks
|
||||
benefit from batch-scheduling, where timeslices are long and processes
|
||||
are roundrobin scheduled. The new scheduler does such batch-scheduling
|
||||
of the lowest priority tasks - so nice +19 jobs will get
|
||||
'batch-scheduled' automatically. With this scheduler, nice +19 jobs are
|
||||
in essence SCHED_IDLE, from an interactiveness point of view.
|
||||
|
||||
- handle extreme loads more smoothly, without breakdown and scheduling
|
||||
storms.
|
||||
|
||||
- O(1) RT scheduling. For those RT folks who are paranoid about the
|
||||
O(nr_running) property of the goodness loop and the recalculation loop.
|
||||
|
||||
- run fork()ed children before the parent. Andrea has pointed out the
|
||||
advantages of this a few months ago, but patches for this feature
|
||||
do not work with the old scheduler as well as they should,
|
||||
because idle processes often steal the new child before the fork()ing
|
||||
CPU gets to execute it.
|
||||
|
||||
|
||||
Design
|
||||
======
|
||||
|
||||
The core of the new scheduler contains the following mechanisms:
|
||||
|
||||
- *two* priority-ordered 'priority arrays' per CPU. There is an 'active'
|
||||
array and an 'expired' array. The active array contains all tasks that
|
||||
are affine to this CPU and have timeslices left. The expired array
|
||||
contains all tasks which have used up their timeslices - but this array
|
||||
is kept sorted as well. The active and expired array is not accessed
|
||||
directly, it's accessed through two pointers in the per-CPU runqueue
|
||||
structure. If all active tasks are used up then we 'switch' the two
|
||||
pointers and from now on the ready-to-go (former-) expired array is the
|
||||
active array - and the empty active array serves as the new collector
|
||||
for expired tasks.
|
||||
|
||||
- there is a 64-bit bitmap cache for array indices. Finding the highest
|
||||
priority task is thus a matter of two x86 BSFL bit-search instructions.
|
||||
|
||||
the split-array solution enables us to have an arbitrary number of active
|
||||
and expired tasks, and the recalculation of timeslices can be done
|
||||
immediately when the timeslice expires. Because the arrays are always
|
||||
access through the pointers in the runqueue, switching the two arrays can
|
||||
be done very quickly.
|
||||
|
||||
this is a hybride priority-list approach coupled with roundrobin
|
||||
scheduling and the array-switch method of distributing timeslices.
|
||||
|
||||
- there is a per-task 'load estimator'.
|
||||
|
||||
one of the toughest things to get right is good interactive feel during
|
||||
heavy system load. While playing with various scheduler variants i found
|
||||
that the best interactive feel is achieved not by 'boosting' interactive
|
||||
tasks, but by 'punishing' tasks that want to use more CPU time than there
|
||||
is available. This method is also much easier to do in an O(1) fashion.
|
||||
|
||||
to establish the actual 'load' the task contributes to the system, a
|
||||
complex-looking but pretty accurate method is used: there is a 4-entry
|
||||
'history' ringbuffer of the task's activities during the last 4 seconds.
|
||||
This ringbuffer is operated without much overhead. The entries tell the
|
||||
scheduler a pretty accurate load-history of the task: has it used up more
|
||||
CPU time or less during the past N seconds. [the size '4' and the interval
|
||||
of 4x 1 seconds was found by lots of experimentation - this part is
|
||||
flexible and can be changed in both directions.]
|
||||
|
||||
the penalty a task gets for generating more load than the CPU can handle
|
||||
is a priority decrease - there is a maximum amount to this penalty
|
||||
relative to their static priority, so even fully CPU-bound tasks will
|
||||
observe each other's priorities, and will share the CPU accordingly.
|
||||
|
||||
the SMP load-balancer can be extended/switched with additional parallel
|
||||
computing and cache hierarchy concepts: NUMA scheduling, multi-core CPUs
|
||||
can be supported easily by changing the load-balancer. Right now it's
|
||||
tuned for my SMP systems.
|
||||
|
||||
i skipped the prev->mm == next->mm advantage - no workload i know of shows
|
||||
any sensitivity to this. It can be added back by sacrificing O(1)
|
||||
schedule() [the current and one-lower priority list can be searched for a
|
||||
that->mm == current->mm condition], but costs a fair number of cycles
|
||||
during a number of important workloads, so i wanted to avoid this as much
|
||||
as possible.
|
||||
|
||||
- the SMP idle-task startup code was still racy and the new scheduler
|
||||
triggered this. So i streamlined the idle-setup code a bit. We do not call
|
||||
into schedule() before all processors have started up fully and all idle
|
||||
threads are in place.
|
||||
|
||||
- the patch also cleans up a number of aspects of sched.c - moves code
|
||||
into other areas of the kernel where it's appropriate, and simplifies
|
||||
certain code paths and data constructs. As a result, the new scheduler's
|
||||
code is smaller than the old one.
|
||||
|
||||
Ingo
|
Загрузка…
Ссылка в новой задаче