asm-generic, x86: add bitops instrumentation for KASAN
This adds a new header to asm-generic to allow optionally instrumenting architecture-specific asm implementations of bitops. This change includes the required change for x86 as reference and changes the kernel API doc to point to bitops-instrumented.h instead. Rationale: the functions in x86's bitops.h are no longer the kernel API functions, but instead the arch_ prefixed functions, which are then instrumented via bitops-instrumented.h. Other architectures can similarly add support for asm implementations of bitops. The documentation text was derived from x86 and existing bitops asm-generic versions: 1) references to x86 have been removed; 2) as a result, some of the text had to be reworded for clarity and consistency. Tested using lib/test_kasan with bitops tests (pre-requisite patch). Bugzilla ref: https://bugzilla.kernel.org/show_bug.cgi?id=198439 Link: http://lkml.kernel.org/r/20190613125950.197667-4-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Родитель
ff66135015
Коммит
751ad98d5f
|
@ -54,7 +54,7 @@ The Linux kernel provides more basic utility functions.
|
|||
Bit Operations
|
||||
--------------
|
||||
|
||||
.. kernel-doc:: arch/x86/include/asm/bitops.h
|
||||
.. kernel-doc:: include/asm-generic/bitops-instrumented.h
|
||||
:internal:
|
||||
|
||||
Bitmap Operations
|
||||
|
|
|
@ -49,23 +49,8 @@
|
|||
#define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3))
|
||||
#define CONST_MASK(nr) (1 << ((nr) & 7))
|
||||
|
||||
/**
|
||||
* set_bit - Atomically set a bit in memory
|
||||
* @nr: the bit to set
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* This function is atomic and may not be reordered. See __set_bit()
|
||||
* if you do not require the atomic guarantees.
|
||||
*
|
||||
* Note: there are no guarantees that this function will not be reordered
|
||||
* on non x86 architectures, so if you are writing portable code,
|
||||
* make sure not to rely on its reordering guarantees.
|
||||
*
|
||||
* Note that @nr may be almost arbitrarily large; this function is not
|
||||
* restricted to acting on a single-word quantity.
|
||||
*/
|
||||
static __always_inline void
|
||||
set_bit(long nr, volatile unsigned long *addr)
|
||||
arch_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
if (IS_IMMEDIATE(nr)) {
|
||||
asm volatile(LOCK_PREFIX "orb %1,%0"
|
||||
|
@ -78,32 +63,14 @@ set_bit(long nr, volatile unsigned long *addr)
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* __set_bit - Set a bit in memory
|
||||
* @nr: the bit to set
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
||||
* If it's called on the same region of memory simultaneously, the effect
|
||||
* may be that only one operation succeeds.
|
||||
*/
|
||||
static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch___set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
|
||||
}
|
||||
|
||||
/**
|
||||
* clear_bit - Clears a bit in memory
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* clear_bit() is atomic and may not be reordered. However, it does
|
||||
* not contain a memory barrier, so if it is used for locking purposes,
|
||||
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
|
||||
* in order to ensure changes are visible on other processors.
|
||||
*/
|
||||
static __always_inline void
|
||||
clear_bit(long nr, volatile unsigned long *addr)
|
||||
arch_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
if (IS_IMMEDIATE(nr)) {
|
||||
asm volatile(LOCK_PREFIX "andb %1,%0"
|
||||
|
@ -115,26 +82,21 @@ clear_bit(long nr, volatile unsigned long *addr)
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* clear_bit_unlock - Clears a bit in memory
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* clear_bit() is atomic and implies release semantics before the memory
|
||||
* operation. It can be used for an unlock.
|
||||
*/
|
||||
static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
barrier();
|
||||
clear_bit(nr, addr);
|
||||
arch_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch___clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
|
||||
}
|
||||
|
||||
static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
bool negative;
|
||||
asm volatile(LOCK_PREFIX "andb %2,%1"
|
||||
|
@ -143,48 +105,23 @@ static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile
|
|||
: "ir" ((char) ~(1 << nr)) : "memory");
|
||||
return negative;
|
||||
}
|
||||
#define arch_clear_bit_unlock_is_negative_byte \
|
||||
arch_clear_bit_unlock_is_negative_byte
|
||||
|
||||
// Let everybody know we have it
|
||||
#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
|
||||
|
||||
/*
|
||||
* __clear_bit_unlock - Clears a bit in memory
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* __clear_bit() is non-atomic and implies release semantics before the memory
|
||||
* operation. It can be used for an unlock if no other CPUs can concurrently
|
||||
* modify other bits in the word.
|
||||
*/
|
||||
static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
__clear_bit(nr, addr);
|
||||
arch___clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __change_bit - Toggle a bit in memory
|
||||
* @nr: the bit to change
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
||||
* If it's called on the same region of memory simultaneously, the effect
|
||||
* may be that only one operation succeeds.
|
||||
*/
|
||||
static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch___change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
|
||||
}
|
||||
|
||||
/**
|
||||
* change_bit - Toggle a bit in memory
|
||||
* @nr: Bit to change
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* change_bit() is atomic and may not be reordered.
|
||||
* Note that @nr may be almost arbitrarily large; this function is not
|
||||
* restricted to acting on a single-word quantity.
|
||||
*/
|
||||
static __always_inline void change_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline void
|
||||
arch_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
if (IS_IMMEDIATE(nr)) {
|
||||
asm volatile(LOCK_PREFIX "xorb %1,%0"
|
||||
|
@ -196,42 +133,20 @@ static __always_inline void change_bit(long nr, volatile unsigned long *addr)
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_set_bit - Set a bit and return its old value
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is atomic and cannot be reordered.
|
||||
* It also implies a memory barrier.
|
||||
*/
|
||||
static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch_test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_set_bit_lock - Set a bit and return its old value for lock
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This is the same as test_and_set_bit on x86.
|
||||
*/
|
||||
static __always_inline bool
|
||||
test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
||||
arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
return test_and_set_bit(nr, addr);
|
||||
return arch_test_and_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __test_and_set_bit - Set a bit and return its old value
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is non-atomic and can be reordered.
|
||||
* If two examples of this operation race, one can appear to succeed
|
||||
* but actually fail. You must protect multiple accesses with a lock.
|
||||
*/
|
||||
static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch___test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
bool oldbit;
|
||||
|
||||
|
@ -242,28 +157,13 @@ static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *
|
|||
return oldbit;
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_clear_bit - Clear a bit and return its old value
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is atomic and cannot be reordered.
|
||||
* It also implies a memory barrier.
|
||||
*/
|
||||
static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __test_and_clear_bit - Clear a bit and return its old value
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is non-atomic and can be reordered.
|
||||
* If two examples of this operation race, one can appear to succeed
|
||||
* but actually fail. You must protect multiple accesses with a lock.
|
||||
*
|
||||
/*
|
||||
* Note: the operation is performed atomically with respect to
|
||||
* the local CPU, but not other CPUs. Portable code should not
|
||||
* rely on this behaviour.
|
||||
|
@ -271,7 +171,8 @@ static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *
|
|||
* accessed from a hypervisor on the same CPU if running in a VM: don't change
|
||||
* this without also updating arch/x86/kernel/kvm.c
|
||||
*/
|
||||
static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch___test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
bool oldbit;
|
||||
|
||||
|
@ -282,8 +183,8 @@ static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long
|
|||
return oldbit;
|
||||
}
|
||||
|
||||
/* WARNING: non atomic and it can be reordered! */
|
||||
static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch___test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
bool oldbit;
|
||||
|
||||
|
@ -295,15 +196,8 @@ static __always_inline bool __test_and_change_bit(long nr, volatile unsigned lon
|
|||
return oldbit;
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_change_bit - Change a bit and return its old value
|
||||
* @nr: Bit to change
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is atomic and cannot be reordered.
|
||||
* It also implies a memory barrier.
|
||||
*/
|
||||
static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
static __always_inline bool
|
||||
arch_test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
|
||||
}
|
||||
|
@ -326,16 +220,7 @@ static __always_inline bool variable_test_bit(long nr, volatile const unsigned l
|
|||
return oldbit;
|
||||
}
|
||||
|
||||
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
||||
/**
|
||||
* test_bit - Determine whether a bit is set
|
||||
* @nr: bit number to test
|
||||
* @addr: Address to start counting from
|
||||
*/
|
||||
static bool test_bit(int nr, const volatile unsigned long *addr);
|
||||
#endif
|
||||
|
||||
#define test_bit(nr, addr) \
|
||||
#define arch_test_bit(nr, addr) \
|
||||
(__builtin_constant_p((nr)) \
|
||||
? constant_test_bit((nr), (addr)) \
|
||||
: variable_test_bit((nr), (addr)))
|
||||
|
@ -504,6 +389,8 @@ static __always_inline int fls64(__u64 x)
|
|||
|
||||
#include <asm-generic/bitops/const_hweight.h>
|
||||
|
||||
#include <asm-generic/bitops-instrumented.h>
|
||||
|
||||
#include <asm-generic/bitops/le.h>
|
||||
|
||||
#include <asm-generic/bitops/ext2-atomic-setbit.h>
|
||||
|
|
|
@ -0,0 +1,263 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
/*
|
||||
* This file provides wrappers with sanitizer instrumentation for bit
|
||||
* operations.
|
||||
*
|
||||
* To use this functionality, an arch's bitops.h file needs to define each of
|
||||
* the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
|
||||
* arch___set_bit(), etc.).
|
||||
*/
|
||||
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_H
|
||||
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_H
|
||||
|
||||
#include <linux/kasan-checks.h>
|
||||
|
||||
/**
|
||||
* set_bit - Atomically set a bit in memory
|
||||
* @nr: the bit to set
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* This is a relaxed atomic operation (no implied memory barriers).
|
||||
*
|
||||
* Note that @nr may be almost arbitrarily large; this function is not
|
||||
* restricted to acting on a single-word quantity.
|
||||
*/
|
||||
static inline void set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __set_bit - Set a bit in memory
|
||||
* @nr: the bit to set
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* Unlike set_bit(), this function is non-atomic. If it is called on the same
|
||||
* region of memory concurrently, the effect may be that only one operation
|
||||
* succeeds.
|
||||
*/
|
||||
static inline void __set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___set_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* clear_bit - Clears a bit in memory
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* This is a relaxed atomic operation (no implied memory barriers).
|
||||
*/
|
||||
static inline void clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __clear_bit - Clears a bit in memory
|
||||
* @nr: the bit to clear
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* Unlike clear_bit(), this function is non-atomic. If it is called on the same
|
||||
* region of memory concurrently, the effect may be that only one operation
|
||||
* succeeds.
|
||||
*/
|
||||
static inline void __clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* clear_bit_unlock - Clear a bit in memory, for unlock
|
||||
* @nr: the bit to set
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* This operation is atomic and provides release barrier semantics.
|
||||
*/
|
||||
static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_clear_bit_unlock(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __clear_bit_unlock - Clears a bit in memory
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* This is a non-atomic operation but implies a release barrier before the
|
||||
* memory operation. It can be used for an unlock if no other CPUs can
|
||||
* concurrently modify other bits in the word.
|
||||
*/
|
||||
static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___clear_bit_unlock(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* change_bit - Toggle a bit in memory
|
||||
* @nr: Bit to change
|
||||
* @addr: Address to start counting from
|
||||
*
|
||||
* This is a relaxed atomic operation (no implied memory barriers).
|
||||
*
|
||||
* Note that @nr may be almost arbitrarily large; this function is not
|
||||
* restricted to acting on a single-word quantity.
|
||||
*/
|
||||
static inline void change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __change_bit - Toggle a bit in memory
|
||||
* @nr: the bit to change
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* Unlike change_bit(), this function is non-atomic. If it is called on the same
|
||||
* region of memory concurrently, the effect may be that only one operation
|
||||
* succeeds.
|
||||
*/
|
||||
static inline void __change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___change_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_set_bit - Set a bit and return its old value
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This is an atomic fully-ordered operation (implied full memory barrier).
|
||||
*/
|
||||
static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __test_and_set_bit - Set a bit and return its old value
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is non-atomic. If two instances of this operation race, one
|
||||
* can appear to succeed but actually fail.
|
||||
*/
|
||||
static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_set_bit_lock - Set a bit and return its old value, for lock
|
||||
* @nr: Bit to set
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is atomic and provides acquire barrier semantics if
|
||||
* the returned value is 0.
|
||||
* It can be used to implement bit locks.
|
||||
*/
|
||||
static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_set_bit_lock(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_clear_bit - Clear a bit and return its old value
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This is an atomic fully-ordered operation (implied full memory barrier).
|
||||
*/
|
||||
static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __test_and_clear_bit - Clear a bit and return its old value
|
||||
* @nr: Bit to clear
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is non-atomic. If two instances of this operation race, one
|
||||
* can appear to succeed but actually fail.
|
||||
*/
|
||||
static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_and_change_bit - Change a bit and return its old value
|
||||
* @nr: Bit to change
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This is an atomic fully-ordered operation (implied full memory barrier).
|
||||
*/
|
||||
static inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* __test_and_change_bit - Change a bit and return its old value
|
||||
* @nr: Bit to change
|
||||
* @addr: Address to count from
|
||||
*
|
||||
* This operation is non-atomic. If two instances of this operation race, one
|
||||
* can appear to succeed but actually fail.
|
||||
*/
|
||||
static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* test_bit - Determine whether a bit is set
|
||||
* @nr: bit number to test
|
||||
* @addr: Address to start counting from
|
||||
*/
|
||||
static inline bool test_bit(long nr, const volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_bit(nr, addr);
|
||||
}
|
||||
|
||||
#if defined(arch_clear_bit_unlock_is_negative_byte)
|
||||
/**
|
||||
* clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
|
||||
* byte is negative, for unlock.
|
||||
* @nr: the bit to clear
|
||||
* @addr: the address to start counting from
|
||||
*
|
||||
* This operation is atomic and provides release barrier semantics.
|
||||
*
|
||||
* This is a bit of a one-trick-pony for the filemap code, which clears
|
||||
* PG_locked and tests PG_waiters,
|
||||
*/
|
||||
static inline bool
|
||||
clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_clear_bit_unlock_is_negative_byte(nr, addr);
|
||||
}
|
||||
/* Let everybody know we have it. */
|
||||
#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
|
||||
#endif
|
||||
|
||||
#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_H */
|
Загрузка…
Ссылка в новой задаче