kselftests: timers: Add test for frequency step
This test checks the response of the system clock to frequency steps made with adjtimex(). The frequency error and stability of the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock is measured in two intervals following the step. The test fails if values from the second interval exceed specified limits. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
This commit is contained in:
Родитель
7a5de55122
Коммит
767392565a
|
@ -1,6 +1,6 @@
|
|||
BUILD_FLAGS = -DKTEST
|
||||
CFLAGS += -O3 -Wl,-no-as-needed -Wall $(BUILD_FLAGS)
|
||||
LDFLAGS += -lrt -lpthread
|
||||
LDFLAGS += -lrt -lpthread -lm
|
||||
|
||||
# these are all "safe" tests that don't modify
|
||||
# system time or require escalated privileges
|
||||
|
@ -8,7 +8,7 @@ TEST_GEN_PROGS = posix_timers nanosleep nsleep-lat set-timer-lat mqueue-lat \
|
|||
inconsistency-check raw_skew threadtest rtctest
|
||||
|
||||
TEST_GEN_PROGS_EXTENDED = alarmtimer-suspend valid-adjtimex adjtick change_skew \
|
||||
skew_consistency clocksource-switch leap-a-day \
|
||||
skew_consistency clocksource-switch freq-step leap-a-day \
|
||||
leapcrash set-tai set-2038 set-tz
|
||||
|
||||
|
||||
|
@ -24,6 +24,7 @@ run_destructive_tests: run_tests
|
|||
./change_skew
|
||||
./skew_consistency
|
||||
./clocksource-switch
|
||||
./freq-step
|
||||
./leap-a-day -s -i 10
|
||||
./leapcrash
|
||||
./set-tz
|
||||
|
|
|
@ -0,0 +1,268 @@
|
|||
/*
|
||||
* This test checks the response of the system clock to frequency
|
||||
* steps made with adjtimex(). The frequency error and stability of
|
||||
* the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
|
||||
* is measured in two intervals following the step. The test fails if
|
||||
* values from the second interval exceed specified limits.
|
||||
*
|
||||
* Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of version 2 of the GNU General Public License as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/timex.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "../kselftest.h"
|
||||
|
||||
#define SAMPLES 100
|
||||
#define SAMPLE_READINGS 10
|
||||
#define MEAN_SAMPLE_INTERVAL 0.1
|
||||
#define STEP_INTERVAL 1.0
|
||||
#define MAX_PRECISION 100e-9
|
||||
#define MAX_FREQ_ERROR 10e-6
|
||||
#define MAX_STDDEV 1000e-9
|
||||
|
||||
struct sample {
|
||||
double offset;
|
||||
double time;
|
||||
};
|
||||
|
||||
static time_t mono_raw_base;
|
||||
static time_t mono_base;
|
||||
static long user_hz;
|
||||
static double precision;
|
||||
static double mono_freq_offset;
|
||||
|
||||
static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
|
||||
{
|
||||
return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
|
||||
}
|
||||
|
||||
static double get_sample(struct sample *sample)
|
||||
{
|
||||
double delay, mindelay = 0.0;
|
||||
struct timespec ts1, ts2, ts3;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < SAMPLE_READINGS; i++) {
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts2);
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
|
||||
|
||||
ts1.tv_sec -= mono_raw_base;
|
||||
ts2.tv_sec -= mono_base;
|
||||
ts3.tv_sec -= mono_raw_base;
|
||||
|
||||
delay = diff_timespec(&ts3, &ts1);
|
||||
if (delay <= 1e-9) {
|
||||
i--;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!i || delay < mindelay) {
|
||||
sample->offset = diff_timespec(&ts2, &ts1);
|
||||
sample->offset -= delay / 2.0;
|
||||
sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
|
||||
mindelay = delay;
|
||||
}
|
||||
}
|
||||
|
||||
return mindelay;
|
||||
}
|
||||
|
||||
static void reset_ntp_error(void)
|
||||
{
|
||||
struct timex txc;
|
||||
|
||||
txc.modes = ADJ_SETOFFSET;
|
||||
txc.time.tv_sec = 0;
|
||||
txc.time.tv_usec = 0;
|
||||
|
||||
if (adjtimex(&txc) < 0) {
|
||||
perror("[FAIL] adjtimex");
|
||||
ksft_exit_fail();
|
||||
}
|
||||
}
|
||||
|
||||
static void set_frequency(double freq)
|
||||
{
|
||||
struct timex txc;
|
||||
int tick_offset;
|
||||
|
||||
tick_offset = 1e6 * freq / user_hz;
|
||||
|
||||
txc.modes = ADJ_TICK | ADJ_FREQUENCY;
|
||||
txc.tick = 1000000 / user_hz + tick_offset;
|
||||
txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
|
||||
|
||||
if (adjtimex(&txc) < 0) {
|
||||
perror("[FAIL] adjtimex");
|
||||
ksft_exit_fail();
|
||||
}
|
||||
}
|
||||
|
||||
static void regress(struct sample *samples, int n, double *intercept,
|
||||
double *slope, double *r_stddev, double *r_max)
|
||||
{
|
||||
double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
|
||||
int i;
|
||||
|
||||
x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
x = samples[i].time;
|
||||
y = samples[i].offset;
|
||||
|
||||
x_sum += x;
|
||||
y_sum += y;
|
||||
xy_sum += x * y;
|
||||
x2_sum += x * x;
|
||||
}
|
||||
|
||||
*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
|
||||
*intercept = (y_sum - *slope * x_sum) / n;
|
||||
|
||||
*r_max = 0.0, r2_sum = 0.0;
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
x = samples[i].time;
|
||||
y = samples[i].offset;
|
||||
r = fabs(x * *slope + *intercept - y);
|
||||
if (*r_max < r)
|
||||
*r_max = r;
|
||||
r2_sum += r * r;
|
||||
}
|
||||
|
||||
*r_stddev = sqrt(r2_sum / n);
|
||||
}
|
||||
|
||||
static int run_test(int calibration, double freq_base, double freq_step)
|
||||
{
|
||||
struct sample samples[SAMPLES];
|
||||
double intercept, slope, stddev1, max1, stddev2, max2;
|
||||
double freq_error1, freq_error2;
|
||||
int i;
|
||||
|
||||
set_frequency(freq_base);
|
||||
|
||||
for (i = 0; i < 10; i++)
|
||||
usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
|
||||
|
||||
reset_ntp_error();
|
||||
|
||||
set_frequency(freq_base + freq_step);
|
||||
|
||||
for (i = 0; i < 10; i++)
|
||||
usleep(rand() % 2000000 * STEP_INTERVAL / 10);
|
||||
|
||||
set_frequency(freq_base);
|
||||
|
||||
for (i = 0; i < SAMPLES; i++) {
|
||||
usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
|
||||
get_sample(&samples[i]);
|
||||
}
|
||||
|
||||
if (calibration) {
|
||||
regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
|
||||
mono_freq_offset = slope;
|
||||
printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
|
||||
1e6 * mono_freq_offset);
|
||||
return 0;
|
||||
}
|
||||
|
||||
regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
|
||||
freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
|
||||
freq_base;
|
||||
|
||||
regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
|
||||
&stddev2, &max2);
|
||||
freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
|
||||
freq_base;
|
||||
|
||||
printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
|
||||
1e6 * freq_step,
|
||||
1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
|
||||
1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
|
||||
|
||||
if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
|
||||
printf("[FAIL]\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
printf("[OK]\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void init_test(void)
|
||||
{
|
||||
struct timespec ts;
|
||||
struct sample sample;
|
||||
|
||||
if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
|
||||
perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
|
||||
ksft_exit_fail();
|
||||
}
|
||||
|
||||
mono_raw_base = ts.tv_sec;
|
||||
|
||||
if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
|
||||
perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
|
||||
ksft_exit_fail();
|
||||
}
|
||||
|
||||
mono_base = ts.tv_sec;
|
||||
|
||||
user_hz = sysconf(_SC_CLK_TCK);
|
||||
|
||||
precision = get_sample(&sample) / 2.0;
|
||||
printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
|
||||
1e9 * precision);
|
||||
|
||||
if (precision > MAX_PRECISION) {
|
||||
printf("[SKIP]\n");
|
||||
ksft_exit_skip();
|
||||
}
|
||||
|
||||
printf("[OK]\n");
|
||||
srand(ts.tv_sec ^ ts.tv_nsec);
|
||||
|
||||
run_test(1, 0.0, 0.0);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double freq_base, freq_step;
|
||||
int i, j, fails = 0;
|
||||
|
||||
init_test();
|
||||
|
||||
printf("Checking response to frequency step:\n");
|
||||
printf(" Step 1st interval 2nd interval\n");
|
||||
printf(" Freq Dev Max Freq Dev Max\n");
|
||||
|
||||
for (i = 2; i >= 0; i--) {
|
||||
for (j = 0; j < 5; j++) {
|
||||
freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
|
||||
freq_step = 10e-6 * (1 << (6 * i));
|
||||
fails += run_test(0, freq_base, freq_step);
|
||||
}
|
||||
}
|
||||
|
||||
set_frequency(0.0);
|
||||
|
||||
if (fails)
|
||||
ksft_exit_fail();
|
||||
|
||||
ksft_exit_pass();
|
||||
}
|
Загрузка…
Ссылка в новой задаче