hugetlb: Try to grow hugetlb pool for MAP_PRIVATE mappings
Because we overcommit hugepages for MAP_PRIVATE mappings, it is possible that the hugetlb pool will be exhausted or completely reserved when a hugepage is needed to satisfy a page fault. Before killing the process in this situation, try to allocate a hugepage directly from the buddy allocator. The explicitly configured pool size becomes a low watermark. When dynamically grown, the allocated huge pages are accounted as a surplus over the watermark. As huge pages are freed on a node, surplus pages are released to the buddy allocator so that the pool will shrink back to the watermark. Surplus accounting also allows for friendlier explicit pool resizing. When shrinking a pool that is fully in-use, increase the surplus so pages will be returned to the buddy allocator as soon as they are freed. When growing a pool that has a surplus, consume the surplus first and then allocate new pages. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Dave McCracken <dave.mccracken@oracle.com> Cc: William Irwin <bill.irwin@oracle.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Родитель
6af2acb661
Коммит
7893d1d505
137
mm/hugetlb.c
137
mm/hugetlb.c
|
@ -23,10 +23,12 @@
|
|||
|
||||
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
|
||||
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
|
||||
static unsigned long surplus_huge_pages;
|
||||
unsigned long max_huge_pages;
|
||||
static struct list_head hugepage_freelists[MAX_NUMNODES];
|
||||
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
|
||||
static unsigned int free_huge_pages_node[MAX_NUMNODES];
|
||||
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
|
||||
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
|
||||
unsigned long hugepages_treat_as_movable;
|
||||
|
||||
|
@ -109,15 +111,57 @@ static void update_and_free_page(struct page *page)
|
|||
|
||||
static void free_huge_page(struct page *page)
|
||||
{
|
||||
BUG_ON(page_count(page));
|
||||
int nid = page_to_nid(page);
|
||||
|
||||
BUG_ON(page_count(page));
|
||||
INIT_LIST_HEAD(&page->lru);
|
||||
|
||||
spin_lock(&hugetlb_lock);
|
||||
if (surplus_huge_pages_node[nid]) {
|
||||
update_and_free_page(page);
|
||||
surplus_huge_pages--;
|
||||
surplus_huge_pages_node[nid]--;
|
||||
} else {
|
||||
enqueue_huge_page(page);
|
||||
}
|
||||
spin_unlock(&hugetlb_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Increment or decrement surplus_huge_pages. Keep node-specific counters
|
||||
* balanced by operating on them in a round-robin fashion.
|
||||
* Returns 1 if an adjustment was made.
|
||||
*/
|
||||
static int adjust_pool_surplus(int delta)
|
||||
{
|
||||
static int prev_nid;
|
||||
int nid = prev_nid;
|
||||
int ret = 0;
|
||||
|
||||
VM_BUG_ON(delta != -1 && delta != 1);
|
||||
do {
|
||||
nid = next_node(nid, node_online_map);
|
||||
if (nid == MAX_NUMNODES)
|
||||
nid = first_node(node_online_map);
|
||||
|
||||
/* To shrink on this node, there must be a surplus page */
|
||||
if (delta < 0 && !surplus_huge_pages_node[nid])
|
||||
continue;
|
||||
/* Surplus cannot exceed the total number of pages */
|
||||
if (delta > 0 && surplus_huge_pages_node[nid] >=
|
||||
nr_huge_pages_node[nid])
|
||||
continue;
|
||||
|
||||
surplus_huge_pages += delta;
|
||||
surplus_huge_pages_node[nid] += delta;
|
||||
ret = 1;
|
||||
break;
|
||||
} while (nid != prev_nid);
|
||||
|
||||
prev_nid = nid;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int alloc_fresh_huge_page(void)
|
||||
{
|
||||
static int prev_nid;
|
||||
|
@ -150,10 +194,30 @@ static int alloc_fresh_huge_page(void)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
|
||||
unsigned long address)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
|
||||
HUGETLB_PAGE_ORDER);
|
||||
if (page) {
|
||||
set_compound_page_dtor(page, free_huge_page);
|
||||
spin_lock(&hugetlb_lock);
|
||||
nr_huge_pages++;
|
||||
nr_huge_pages_node[page_to_nid(page)]++;
|
||||
surplus_huge_pages++;
|
||||
surplus_huge_pages_node[page_to_nid(page)]++;
|
||||
spin_unlock(&hugetlb_lock);
|
||||
}
|
||||
|
||||
return page;
|
||||
}
|
||||
|
||||
static struct page *alloc_huge_page(struct vm_area_struct *vma,
|
||||
unsigned long addr)
|
||||
{
|
||||
struct page *page;
|
||||
struct page *page = NULL;
|
||||
|
||||
spin_lock(&hugetlb_lock);
|
||||
if (vma->vm_flags & VM_MAYSHARE)
|
||||
|
@ -173,7 +237,16 @@ fail:
|
|||
if (vma->vm_flags & VM_MAYSHARE)
|
||||
resv_huge_pages++;
|
||||
spin_unlock(&hugetlb_lock);
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* Private mappings do not use reserved huge pages so the allocation
|
||||
* may have failed due to an undersized hugetlb pool. Try to grab a
|
||||
* surplus huge page from the buddy allocator.
|
||||
*/
|
||||
if (!(vma->vm_flags & VM_MAYSHARE))
|
||||
page = alloc_buddy_huge_page(vma, addr);
|
||||
|
||||
return page;
|
||||
}
|
||||
|
||||
static int __init hugetlb_init(void)
|
||||
|
@ -241,26 +314,62 @@ static inline void try_to_free_low(unsigned long count)
|
|||
}
|
||||
#endif
|
||||
|
||||
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
|
||||
static unsigned long set_max_huge_pages(unsigned long count)
|
||||
{
|
||||
while (count > nr_huge_pages) {
|
||||
if (!alloc_fresh_huge_page())
|
||||
return nr_huge_pages;
|
||||
}
|
||||
if (count >= nr_huge_pages)
|
||||
return nr_huge_pages;
|
||||
unsigned long min_count, ret;
|
||||
|
||||
/*
|
||||
* Increase the pool size
|
||||
* First take pages out of surplus state. Then make up the
|
||||
* remaining difference by allocating fresh huge pages.
|
||||
*/
|
||||
spin_lock(&hugetlb_lock);
|
||||
count = max(count, resv_huge_pages);
|
||||
try_to_free_low(count);
|
||||
while (count < nr_huge_pages) {
|
||||
while (surplus_huge_pages && count > persistent_huge_pages) {
|
||||
if (!adjust_pool_surplus(-1))
|
||||
break;
|
||||
}
|
||||
|
||||
while (count > persistent_huge_pages) {
|
||||
int ret;
|
||||
/*
|
||||
* If this allocation races such that we no longer need the
|
||||
* page, free_huge_page will handle it by freeing the page
|
||||
* and reducing the surplus.
|
||||
*/
|
||||
spin_unlock(&hugetlb_lock);
|
||||
ret = alloc_fresh_huge_page();
|
||||
spin_lock(&hugetlb_lock);
|
||||
if (!ret)
|
||||
goto out;
|
||||
|
||||
}
|
||||
if (count >= persistent_huge_pages)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Decrease the pool size
|
||||
* First return free pages to the buddy allocator (being careful
|
||||
* to keep enough around to satisfy reservations). Then place
|
||||
* pages into surplus state as needed so the pool will shrink
|
||||
* to the desired size as pages become free.
|
||||
*/
|
||||
min_count = max(count, resv_huge_pages);
|
||||
try_to_free_low(min_count);
|
||||
while (min_count < persistent_huge_pages) {
|
||||
struct page *page = dequeue_huge_page(NULL, 0);
|
||||
if (!page)
|
||||
break;
|
||||
update_and_free_page(page);
|
||||
}
|
||||
while (count < persistent_huge_pages) {
|
||||
if (!adjust_pool_surplus(1))
|
||||
break;
|
||||
}
|
||||
out:
|
||||
ret = persistent_huge_pages;
|
||||
spin_unlock(&hugetlb_lock);
|
||||
return nr_huge_pages;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
|
||||
|
@ -292,10 +401,12 @@ int hugetlb_report_meminfo(char *buf)
|
|||
"HugePages_Total: %5lu\n"
|
||||
"HugePages_Free: %5lu\n"
|
||||
"HugePages_Rsvd: %5lu\n"
|
||||
"HugePages_Surp: %5lu\n"
|
||||
"Hugepagesize: %5lu kB\n",
|
||||
nr_huge_pages,
|
||||
free_huge_pages,
|
||||
resv_huge_pages,
|
||||
surplus_huge_pages,
|
||||
HPAGE_SIZE/1024);
|
||||
}
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче