crypto: ccp - CCP AES CMAC mode crypto API support
These routines provide crypto API support for the CMAC mode of AES on the AMD CCP. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Родитель
2b789435d7
Коммит
7c1853711f
|
@ -0,0 +1,355 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
|
||||
int ret)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
if (ret)
|
||||
goto e_free;
|
||||
|
||||
if (rctx->hash_rem) {
|
||||
/* Save remaining data to buffer */
|
||||
scatterwalk_map_and_copy(rctx->buf, rctx->cmd.u.aes.src,
|
||||
rctx->hash_cnt, rctx->hash_rem, 0);
|
||||
rctx->buf_count = rctx->hash_rem;
|
||||
} else
|
||||
rctx->buf_count = 0;
|
||||
|
||||
memcpy(req->result, rctx->iv, digest_size);
|
||||
|
||||
e_free:
|
||||
sg_free_table(&rctx->data_sg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
|
||||
unsigned int final)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct scatterlist *sg, *cmac_key_sg = NULL;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int len, need_pad, sg_count;
|
||||
int ret;
|
||||
|
||||
if (!ctx->u.aes.key_len) {
|
||||
pr_err("AES key not set\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (nbytes)
|
||||
rctx->null_msg = 0;
|
||||
|
||||
if (!final && ((nbytes + rctx->buf_count) <= block_size)) {
|
||||
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
|
||||
0, nbytes, 0);
|
||||
rctx->buf_count += nbytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
len = rctx->buf_count + nbytes;
|
||||
|
||||
rctx->final = final;
|
||||
rctx->hash_cnt = final ? len : len & ~(block_size - 1);
|
||||
rctx->hash_rem = final ? 0 : len & (block_size - 1);
|
||||
if (!final && (rctx->hash_cnt == len)) {
|
||||
/* CCP can't do zero length final, so keep some data around */
|
||||
rctx->hash_cnt -= block_size;
|
||||
rctx->hash_rem = block_size;
|
||||
}
|
||||
|
||||
if (final && (rctx->null_msg || (len & (block_size - 1))))
|
||||
need_pad = 1;
|
||||
else
|
||||
need_pad = 0;
|
||||
|
||||
sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
|
||||
|
||||
/* Build the data scatterlist table - allocate enough entries for all
|
||||
* possible data pieces (buffer, input data, padding)
|
||||
*/
|
||||
sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
|
||||
ret = sg_alloc_table(&rctx->data_sg, sg_count, GFP_KERNEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sg = NULL;
|
||||
if (rctx->buf_count) {
|
||||
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
|
||||
}
|
||||
|
||||
if (nbytes)
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
|
||||
|
||||
if (need_pad) {
|
||||
int pad_length = block_size - (len & (block_size - 1));
|
||||
|
||||
rctx->hash_cnt += pad_length;
|
||||
|
||||
memset(rctx->pad, 0, sizeof(rctx->pad));
|
||||
rctx->pad[0] = 0x80;
|
||||
sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
|
||||
}
|
||||
if (sg)
|
||||
sg_mark_end(sg);
|
||||
|
||||
/* Initialize the K1/K2 scatterlist */
|
||||
if (final)
|
||||
cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
|
||||
: &ctx->u.aes.k1_sg;
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_AES;
|
||||
rctx->cmd.u.aes.type = ctx->u.aes.type;
|
||||
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
|
||||
rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
|
||||
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
|
||||
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
|
||||
rctx->cmd.u.aes.iv = &rctx->iv_sg;
|
||||
rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
|
||||
rctx->cmd.u.aes.src = (sg) ? rctx->data_sg.sgl : NULL;
|
||||
rctx->cmd.u.aes.src_len = rctx->hash_cnt;
|
||||
rctx->cmd.u.aes.dst = NULL;
|
||||
rctx->cmd.u.aes.cmac_key = cmac_key_sg;
|
||||
rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
|
||||
rctx->cmd.u.aes.cmac_final = final;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_init(struct ahash_request *req)
|
||||
{
|
||||
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
memset(rctx, 0, sizeof(*rctx));
|
||||
|
||||
rctx->null_msg = 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_update(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, req->nbytes, 0);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_final(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, 0, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_finup(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_cmac_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_digest(struct ahash_request *req)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = ccp_aes_cmac_init(req);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return ccp_do_cmac_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
|
||||
struct ccp_crypto_ahash_alg *alg =
|
||||
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
|
||||
u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
|
||||
u64 rb_hi = 0x00, rb_lo = 0x87;
|
||||
__be64 *gk;
|
||||
int ret;
|
||||
|
||||
switch (key_len) {
|
||||
case AES_KEYSIZE_128:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_128;
|
||||
break;
|
||||
case AES_KEYSIZE_192:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_192;
|
||||
break;
|
||||
case AES_KEYSIZE_256:
|
||||
ctx->u.aes.type = CCP_AES_TYPE_256;
|
||||
break;
|
||||
default:
|
||||
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
ctx->u.aes.mode = alg->mode;
|
||||
|
||||
/* Set to zero until complete */
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
/* Set the key for the AES cipher used to generate the keys */
|
||||
ret = crypto_cipher_setkey(ctx->u.aes.tfm_cipher, key, key_len);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Encrypt a block of zeroes - use key area in context */
|
||||
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
||||
crypto_cipher_encrypt_one(ctx->u.aes.tfm_cipher, ctx->u.aes.key,
|
||||
ctx->u.aes.key);
|
||||
|
||||
/* Generate K1 and K2 */
|
||||
k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
|
||||
k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
|
||||
|
||||
k1_hi = (k0_hi << 1) | (k0_lo >> 63);
|
||||
k1_lo = k0_lo << 1;
|
||||
if (ctx->u.aes.key[0] & 0x80) {
|
||||
k1_hi ^= rb_hi;
|
||||
k1_lo ^= rb_lo;
|
||||
}
|
||||
gk = (__be64 *)ctx->u.aes.k1;
|
||||
*gk = cpu_to_be64(k1_hi);
|
||||
gk++;
|
||||
*gk = cpu_to_be64(k1_lo);
|
||||
|
||||
k2_hi = (k1_hi << 1) | (k1_lo >> 63);
|
||||
k2_lo = k1_lo << 1;
|
||||
if (ctx->u.aes.k1[0] & 0x80) {
|
||||
k2_hi ^= rb_hi;
|
||||
k2_lo ^= rb_lo;
|
||||
}
|
||||
gk = (__be64 *)ctx->u.aes.k2;
|
||||
*gk = cpu_to_be64(k2_hi);
|
||||
gk++;
|
||||
*gk = cpu_to_be64(k2_lo);
|
||||
|
||||
ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
|
||||
sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
|
||||
sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
|
||||
|
||||
/* Save the supplied key */
|
||||
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
||||
memcpy(ctx->u.aes.key, key, key_len);
|
||||
ctx->u.aes.key_len = key_len;
|
||||
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
||||
struct crypto_cipher *cipher_tfm;
|
||||
|
||||
ctx->complete = ccp_aes_cmac_complete;
|
||||
ctx->u.aes.key_len = 0;
|
||||
|
||||
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx));
|
||||
|
||||
cipher_tfm = crypto_alloc_cipher("aes", 0,
|
||||
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
|
||||
if (IS_ERR(cipher_tfm)) {
|
||||
pr_warn("could not load aes cipher driver\n");
|
||||
return PTR_ERR(cipher_tfm);
|
||||
}
|
||||
ctx->u.aes.tfm_cipher = cipher_tfm;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_aes_cmac_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->u.aes.tfm_cipher)
|
||||
crypto_free_cipher(ctx->u.aes.tfm_cipher);
|
||||
ctx->u.aes.tfm_cipher = NULL;
|
||||
}
|
||||
|
||||
int ccp_register_aes_cmac_algs(struct list_head *head)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
ccp_alg->mode = CCP_AES_MODE_CMAC;
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->init = ccp_aes_cmac_init;
|
||||
alg->update = ccp_aes_cmac_update;
|
||||
alg->final = ccp_aes_cmac_final;
|
||||
alg->finup = ccp_aes_cmac_finup;
|
||||
alg->digest = ccp_aes_cmac_digest;
|
||||
alg->setkey = ccp_aes_cmac_setkey;
|
||||
|
||||
halg = &alg->halg;
|
||||
halg->digestsize = AES_BLOCK_SIZE;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
|
||||
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK;
|
||||
base->cra_blocksize = AES_BLOCK_SIZE;
|
||||
base->cra_ctxsize = sizeof(struct ccp_ctx);
|
||||
base->cra_priority = CCP_CRA_PRIORITY;
|
||||
base->cra_type = &crypto_ahash_type;
|
||||
base->cra_init = ccp_aes_cmac_cra_init;
|
||||
base->cra_exit = ccp_aes_cmac_cra_exit;
|
||||
base->cra_module = THIS_MODULE;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return 0;
|
||||
}
|
Загрузка…
Ссылка в новой задаче