sched/fair: Replace CFS internal cpu_util() with cpu_util_cfs()
cpu_util_cfs() was created by commitd4edd662ac
("sched/cpufreq: Use the DEADLINE utilization signal") to enable the access to CPU utilization from the Schedutil CPUfreq governor. Commita07630b8b2
("sched/cpufreq/schedutil: Use util_est for OPP selection") added util_est support later. The only thing cpu_util() is doing on top of what cpu_util_cfs() already does is to clamp the return value to the [0..capacity_orig] capacity range of the CPU. Integrating this into cpu_util_cfs() is not harming the existing users (Schedutil and CPUfreq cooling (latter via sched_cpu_util() wrapper)). For straightforwardness, prefer to keep using `int cpu` as the function parameter over using `struct rq *rq` which might avoid some calls to cpu_rq(cpu) -> per_cpu(runqueues, cpu) -> RELOC_HIDE(). Update cfs_util()'s documentation and reuse it for cpu_util_cfs(). Remove cpu_util(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20211118164240.623551-1-dietmar.eggemann@arm.com
This commit is contained in:
Родитель
ef8df9798d
Коммит
82762d2af3
|
@ -7166,7 +7166,7 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
|
|||
|
||||
unsigned long sched_cpu_util(int cpu, unsigned long max)
|
||||
{
|
||||
return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
|
||||
return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
|
||||
ENERGY_UTIL, NULL);
|
||||
}
|
||||
#endif /* CONFIG_SMP */
|
||||
|
|
|
@ -168,7 +168,7 @@ static void sugov_get_util(struct sugov_cpu *sg_cpu)
|
|||
|
||||
sg_cpu->max = max;
|
||||
sg_cpu->bw_dl = cpu_bw_dl(rq);
|
||||
sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max,
|
||||
sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), max,
|
||||
FREQUENCY_UTIL, NULL);
|
||||
}
|
||||
|
||||
|
|
|
@ -1502,7 +1502,6 @@ struct task_numa_env {
|
|||
|
||||
static unsigned long cpu_load(struct rq *rq);
|
||||
static unsigned long cpu_runnable(struct rq *rq);
|
||||
static unsigned long cpu_util(int cpu);
|
||||
static inline long adjust_numa_imbalance(int imbalance,
|
||||
int dst_running, int dst_weight);
|
||||
|
||||
|
@ -1569,7 +1568,7 @@ static void update_numa_stats(struct task_numa_env *env,
|
|||
|
||||
ns->load += cpu_load(rq);
|
||||
ns->runnable += cpu_runnable(rq);
|
||||
ns->util += cpu_util(cpu);
|
||||
ns->util += cpu_util_cfs(cpu);
|
||||
ns->nr_running += rq->cfs.h_nr_running;
|
||||
ns->compute_capacity += capacity_of(cpu);
|
||||
|
||||
|
@ -3240,7 +3239,7 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
|
|||
* As is, the util number is not freq-invariant (we'd have to
|
||||
* implement arch_scale_freq_capacity() for that).
|
||||
*
|
||||
* See cpu_util().
|
||||
* See cpu_util_cfs().
|
||||
*/
|
||||
cpufreq_update_util(rq, flags);
|
||||
}
|
||||
|
@ -5510,11 +5509,9 @@ static inline void hrtick_update(struct rq *rq)
|
|||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static inline unsigned long cpu_util(int cpu);
|
||||
|
||||
static inline bool cpu_overutilized(int cpu)
|
||||
{
|
||||
return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
|
||||
return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
|
||||
}
|
||||
|
||||
static inline void update_overutilized_status(struct rq *rq)
|
||||
|
@ -6459,58 +6456,6 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
|
|||
return target;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
|
||||
* @cpu: the CPU to get the utilization of
|
||||
*
|
||||
* The unit of the return value must be the one of capacity so we can compare
|
||||
* the utilization with the capacity of the CPU that is available for CFS task
|
||||
* (ie cpu_capacity).
|
||||
*
|
||||
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
|
||||
* recent utilization of currently non-runnable tasks on a CPU. It represents
|
||||
* the amount of utilization of a CPU in the range [0..capacity_orig] where
|
||||
* capacity_orig is the cpu_capacity available at the highest frequency
|
||||
* (arch_scale_freq_capacity()).
|
||||
* The utilization of a CPU converges towards a sum equal to or less than the
|
||||
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
|
||||
* the running time on this CPU scaled by capacity_curr.
|
||||
*
|
||||
* The estimated utilization of a CPU is defined to be the maximum between its
|
||||
* cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
|
||||
* currently RUNNABLE on that CPU.
|
||||
* This allows to properly represent the expected utilization of a CPU which
|
||||
* has just got a big task running since a long sleep period. At the same time
|
||||
* however it preserves the benefits of the "blocked utilization" in
|
||||
* describing the potential for other tasks waking up on the same CPU.
|
||||
*
|
||||
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
|
||||
* higher than capacity_orig because of unfortunate rounding in
|
||||
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
|
||||
* the average stabilizes with the new running time. We need to check that the
|
||||
* utilization stays within the range of [0..capacity_orig] and cap it if
|
||||
* necessary. Without utilization capping, a group could be seen as overloaded
|
||||
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
|
||||
* available capacity. We allow utilization to overshoot capacity_curr (but not
|
||||
* capacity_orig) as it useful for predicting the capacity required after task
|
||||
* migrations (scheduler-driven DVFS).
|
||||
*
|
||||
* Return: the (estimated) utilization for the specified CPU
|
||||
*/
|
||||
static inline unsigned long cpu_util(int cpu)
|
||||
{
|
||||
struct cfs_rq *cfs_rq;
|
||||
unsigned int util;
|
||||
|
||||
cfs_rq = &cpu_rq(cpu)->cfs;
|
||||
util = READ_ONCE(cfs_rq->avg.util_avg);
|
||||
|
||||
if (sched_feat(UTIL_EST))
|
||||
util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
|
||||
|
||||
return min_t(unsigned long, util, capacity_orig_of(cpu));
|
||||
}
|
||||
|
||||
/*
|
||||
* cpu_util_without: compute cpu utilization without any contributions from *p
|
||||
* @cpu: the CPU which utilization is requested
|
||||
|
@ -6531,7 +6476,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
|
|||
|
||||
/* Task has no contribution or is new */
|
||||
if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
|
||||
return cpu_util(cpu);
|
||||
return cpu_util_cfs(cpu);
|
||||
|
||||
cfs_rq = &cpu_rq(cpu)->cfs;
|
||||
util = READ_ONCE(cfs_rq->avg.util_avg);
|
||||
|
@ -6595,7 +6540,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
|
|||
/*
|
||||
* Utilization (estimated) can exceed the CPU capacity, thus let's
|
||||
* clamp to the maximum CPU capacity to ensure consistency with
|
||||
* the cpu_util call.
|
||||
* cpu_util.
|
||||
*/
|
||||
return min_t(unsigned long, util, capacity_orig_of(cpu));
|
||||
}
|
||||
|
@ -6627,7 +6572,7 @@ static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
|
|||
* During wake-up, the task isn't enqueued yet and doesn't
|
||||
* appear in the cfs_rq->avg.util_est.enqueued of any rq,
|
||||
* so just add it (if needed) to "simulate" what will be
|
||||
* cpu_util() after the task has been enqueued.
|
||||
* cpu_util after the task has been enqueued.
|
||||
*/
|
||||
if (dst_cpu == cpu)
|
||||
util_est += _task_util_est(p);
|
||||
|
@ -8689,7 +8634,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
|
|||
struct rq *rq = cpu_rq(i);
|
||||
|
||||
sgs->group_load += cpu_load(rq);
|
||||
sgs->group_util += cpu_util(i);
|
||||
sgs->group_util += cpu_util_cfs(i);
|
||||
sgs->group_runnable += cpu_runnable(rq);
|
||||
sgs->sum_h_nr_running += rq->cfs.h_nr_running;
|
||||
|
||||
|
@ -9707,7 +9652,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
|
|||
break;
|
||||
|
||||
case migrate_util:
|
||||
util = cpu_util(cpu_of(rq));
|
||||
util = cpu_util_cfs(i);
|
||||
|
||||
/*
|
||||
* Don't try to pull utilization from a CPU with one
|
||||
|
|
|
@ -2966,16 +2966,52 @@ static inline unsigned long cpu_util_dl(struct rq *rq)
|
|||
return READ_ONCE(rq->avg_dl.util_avg);
|
||||
}
|
||||
|
||||
static inline unsigned long cpu_util_cfs(struct rq *rq)
|
||||
/**
|
||||
* cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
|
||||
* @cpu: the CPU to get the utilization for.
|
||||
*
|
||||
* The unit of the return value must be the same as the one of CPU capacity
|
||||
* so that CPU utilization can be compared with CPU capacity.
|
||||
*
|
||||
* CPU utilization is the sum of running time of runnable tasks plus the
|
||||
* recent utilization of currently non-runnable tasks on that CPU.
|
||||
* It represents the amount of CPU capacity currently used by CFS tasks in
|
||||
* the range [0..max CPU capacity] with max CPU capacity being the CPU
|
||||
* capacity at f_max.
|
||||
*
|
||||
* The estimated CPU utilization is defined as the maximum between CPU
|
||||
* utilization and sum of the estimated utilization of the currently
|
||||
* runnable tasks on that CPU. It preserves a utilization "snapshot" of
|
||||
* previously-executed tasks, which helps better deduce how busy a CPU will
|
||||
* be when a long-sleeping task wakes up. The contribution to CPU utilization
|
||||
* of such a task would be significantly decayed at this point of time.
|
||||
*
|
||||
* CPU utilization can be higher than the current CPU capacity
|
||||
* (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
|
||||
* of rounding errors as well as task migrations or wakeups of new tasks.
|
||||
* CPU utilization has to be capped to fit into the [0..max CPU capacity]
|
||||
* range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
|
||||
* could be seen as over-utilized even though CPU1 has 20% of spare CPU
|
||||
* capacity. CPU utilization is allowed to overshoot current CPU capacity
|
||||
* though since this is useful for predicting the CPU capacity required
|
||||
* after task migrations (scheduler-driven DVFS).
|
||||
*
|
||||
* Return: (Estimated) utilization for the specified CPU.
|
||||
*/
|
||||
static inline unsigned long cpu_util_cfs(int cpu)
|
||||
{
|
||||
unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
|
||||
struct cfs_rq *cfs_rq;
|
||||
unsigned long util;
|
||||
|
||||
cfs_rq = &cpu_rq(cpu)->cfs;
|
||||
util = READ_ONCE(cfs_rq->avg.util_avg);
|
||||
|
||||
if (sched_feat(UTIL_EST)) {
|
||||
util = max_t(unsigned long, util,
|
||||
READ_ONCE(rq->cfs.avg.util_est.enqueued));
|
||||
READ_ONCE(cfs_rq->avg.util_est.enqueued));
|
||||
}
|
||||
|
||||
return util;
|
||||
return min(util, capacity_orig_of(cpu));
|
||||
}
|
||||
|
||||
static inline unsigned long cpu_util_rt(struct rq *rq)
|
||||
|
|
Загрузка…
Ссылка в новой задаче