kasan: docs: update error reports section

Update the "Error reports" section in KASAN documentation:

 - Mention that bug titles are best-effort.

 - Move and reword the part about auxiliary stacks from "Implementation
   details".

 - Punctuation, readability, and other minor clean-ups.

Link: https://lkml.kernel.org/r/3531e8fe6972cf39d1954e3643237b19eb21227e.1615559068.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Andrey Konovalov 2021-04-29 23:00:21 -07:00 коммит произвёл Linus Torvalds
Родитель 86e6f08dd2
Коммит 836f79a266
1 изменённых файлов: 26 добавлений и 20 удалений

Просмотреть файл

@ -60,7 +60,7 @@ physical pages, enable ``CONFIG_PAGE_OWNER`` and boot with ``page_owner=on``.
Error reports
~~~~~~~~~~~~~
A typical out-of-bounds access generic KASAN report looks like this::
A typical KASAN report looks like this::
==================================================================
BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
@ -133,33 +133,43 @@ A typical out-of-bounds access generic KASAN report looks like this::
ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================
The header of the report provides a short summary of what kind of bug happened
and what kind of access caused it. It's followed by a stack trace of the bad
access, a stack trace of where the accessed memory was allocated (in case bad
access happens on a slab object), and a stack trace of where the object was
freed (in case of a use-after-free bug report). Next comes a description of
the accessed slab object and information about the accessed memory page.
The report header summarizes what kind of bug happened and what kind of access
caused it. It is followed by a stack trace of the bad access, a stack trace of
where the accessed memory was allocated (in case a slab object was accessed),
and a stack trace of where the object was freed (in case of a use-after-free
bug report). Next comes a description of the accessed slab object and the
information about the accessed memory page.
In the last section the report shows memory state around the accessed address.
Internally KASAN tracks memory state separately for each memory granule, which
In the end, the report shows the memory state around the accessed address.
Internally, KASAN tracks memory state separately for each memory granule, which
is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
memory state section of the report shows the state of one of the memory
granules that surround the accessed address.
For generic KASAN the size of each memory granule is 8. The state of each
For generic KASAN, the size of each memory granule is 8. The state of each
granule is encoded in one shadow byte. Those 8 bytes can be accessible,
partially accessible, freed or be a part of a redzone. KASAN uses the following
encoding for each shadow byte: 0 means that all 8 bytes of the corresponding
partially accessible, freed, or be a part of a redzone. KASAN uses the following
encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
memory region are accessible; number N (1 <= N <= 7) means that the first N
bytes are accessible, and other (8 - N) bytes are not; any negative value
indicates that the entire 8-byte word is inaccessible. KASAN uses different
negative values to distinguish between different kinds of inaccessible memory
like redzones or freed memory (see mm/kasan/kasan.h).
In the report above the arrows point to the shadow byte 03, which means that
the accessed address is partially accessible. For tag-based KASAN modes this
last report section shows the memory tags around the accessed address
(see the `Implementation details`_ section).
In the report above, the arrow points to the shadow byte ``03``, which means
that the accessed address is partially accessible.
For tag-based KASAN modes, this last report section shows the memory tags around
the accessed address (see the `Implementation details`_ section).
Note that KASAN bug titles (like ``slab-out-of-bounds`` or ``use-after-free``)
are best-effort: KASAN prints the most probable bug type based on the limited
information it has. The actual type of the bug might be different.
Generic KASAN also reports up to two auxiliary call stack traces. These stack
traces point to places in code that interacted with the object but that are not
directly present in the bad access stack trace. Currently, this includes
call_rcu() and workqueue queuing.
Boot parameters
~~~~~~~~~~~~~~~
@ -223,10 +233,6 @@ function calls GCC directly inserts the code to check the shadow memory.
This option significantly enlarges kernel but it gives x1.1-x2 performance
boost over outline instrumented kernel.
Generic KASAN also reports the last 2 call stacks to creation of work that
potentially has access to an object. Call stacks for the following are shown:
call_rcu() and workqueue queuing.
Generic KASAN is the only mode that delays the reuse of freed object via
quarantine (see mm/kasan/quarantine.c for implementation).