hrtimer: Allow hrtimer::function() to free the timer
Currently an hrtimer callback function cannot free its own timer because __run_hrtimer() still needs to clear HRTIMER_STATE_CALLBACK after it. Freeing the timer would result in a clear use-after-free. Solve this by using a scheme similar to regular timers; track the current running timer in hrtimer_clock_base::running. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: ktkhai@parallels.com Cc: rostedt@goodmis.org Cc: juri.lelli@gmail.com Cc: pang.xunlei@linaro.org Cc: wanpeng.li@linux.intel.com Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: umgwanakikbuti@gmail.com Link: http://lkml.kernel.org/r/20150611124743.471563047@infradead.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Родитель
c4bfa3f5f9
Коммит
887d9dc989
|
@ -53,30 +53,25 @@ enum hrtimer_restart {
|
|||
*
|
||||
* 0x00 inactive
|
||||
* 0x01 enqueued into rbtree
|
||||
* 0x02 callback function running
|
||||
* 0x04 timer is migrated to another cpu
|
||||
*
|
||||
* Special cases:
|
||||
* 0x03 callback function running and enqueued
|
||||
* (was requeued on another CPU)
|
||||
* 0x05 timer was migrated on CPU hotunplug
|
||||
* The callback state is not part of the timer->state because clearing it would
|
||||
* mean touching the timer after the callback, this makes it impossible to free
|
||||
* the timer from the callback function.
|
||||
*
|
||||
* The "callback function running and enqueued" status is only possible on
|
||||
* SMP. It happens for example when a posix timer expired and the callback
|
||||
* Therefore we track the callback state in:
|
||||
*
|
||||
* timer->base->cpu_base->running == timer
|
||||
*
|
||||
* On SMP it is possible to have a "callback function running and enqueued"
|
||||
* status. It happens for example when a posix timer expired and the callback
|
||||
* queued a signal. Between dropping the lock which protects the posix timer
|
||||
* and reacquiring the base lock of the hrtimer, another CPU can deliver the
|
||||
* signal and rearm the timer. We have to preserve the callback running state,
|
||||
* as otherwise the timer could be removed before the softirq code finishes the
|
||||
* the handling of the timer.
|
||||
*
|
||||
* The HRTIMER_STATE_ENQUEUED bit is always or'ed to the current state
|
||||
* to preserve the HRTIMER_STATE_CALLBACK in the above scenario.
|
||||
* signal and rearm the timer.
|
||||
*
|
||||
* All state transitions are protected by cpu_base->lock.
|
||||
*/
|
||||
#define HRTIMER_STATE_INACTIVE 0x00
|
||||
#define HRTIMER_STATE_ENQUEUED 0x01
|
||||
#define HRTIMER_STATE_CALLBACK 0x02
|
||||
|
||||
/**
|
||||
* struct hrtimer - the basic hrtimer structure
|
||||
|
@ -163,6 +158,8 @@ enum hrtimer_base_type {
|
|||
* struct hrtimer_cpu_base - the per cpu clock bases
|
||||
* @lock: lock protecting the base and associated clock bases
|
||||
* and timers
|
||||
* @seq: seqcount around __run_hrtimer
|
||||
* @running: pointer to the currently running hrtimer
|
||||
* @cpu: cpu number
|
||||
* @active_bases: Bitfield to mark bases with active timers
|
||||
* @clock_was_set_seq: Sequence counter of clock was set events
|
||||
|
@ -184,6 +181,8 @@ enum hrtimer_base_type {
|
|||
*/
|
||||
struct hrtimer_cpu_base {
|
||||
raw_spinlock_t lock;
|
||||
seqcount_t seq;
|
||||
struct hrtimer *running;
|
||||
unsigned int cpu;
|
||||
unsigned int active_bases;
|
||||
unsigned int clock_was_set_seq;
|
||||
|
@ -391,15 +390,7 @@ extern ktime_t hrtimer_get_remaining(const struct hrtimer *timer);
|
|||
|
||||
extern u64 hrtimer_get_next_event(void);
|
||||
|
||||
/*
|
||||
* A timer is active, when it is enqueued into the rbtree or the
|
||||
* callback function is running or it's in the state of being migrated
|
||||
* to another cpu.
|
||||
*/
|
||||
static inline int hrtimer_active(const struct hrtimer *timer)
|
||||
{
|
||||
return timer->state != HRTIMER_STATE_INACTIVE;
|
||||
}
|
||||
extern bool hrtimer_active(const struct hrtimer *timer);
|
||||
|
||||
/*
|
||||
* Helper function to check, whether the timer is on one of the queues
|
||||
|
@ -415,7 +406,7 @@ static inline int hrtimer_is_queued(struct hrtimer *timer)
|
|||
*/
|
||||
static inline int hrtimer_callback_running(struct hrtimer *timer)
|
||||
{
|
||||
return timer->state & HRTIMER_STATE_CALLBACK;
|
||||
return timer->base->cpu_base->running == timer;
|
||||
}
|
||||
|
||||
/* Forward a hrtimer so it expires after now: */
|
||||
|
|
|
@ -67,6 +67,7 @@
|
|||
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
|
||||
{
|
||||
.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
|
||||
.seq = SEQCNT_ZERO(hrtimer_bases.seq),
|
||||
.clock_base =
|
||||
{
|
||||
{
|
||||
|
@ -110,6 +111,18 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
|
|||
*/
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
/*
|
||||
* We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
|
||||
* such that hrtimer_callback_running() can unconditionally dereference
|
||||
* timer->base->cpu_base
|
||||
*/
|
||||
static struct hrtimer_cpu_base migration_cpu_base = {
|
||||
.seq = SEQCNT_ZERO(migration_cpu_base),
|
||||
.clock_base = { { .cpu_base = &migration_cpu_base, }, },
|
||||
};
|
||||
|
||||
#define migration_base migration_cpu_base.clock_base[0]
|
||||
|
||||
/*
|
||||
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
|
||||
* means that all timers which are tied to this base via timer->base are
|
||||
|
@ -119,8 +132,8 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
|
|||
* be found on the lists/queues.
|
||||
*
|
||||
* When the timer's base is locked, and the timer removed from list, it is
|
||||
* possible to set timer->base = NULL and drop the lock: the timer remains
|
||||
* locked.
|
||||
* possible to set timer->base = &migration_base and drop the lock: the timer
|
||||
* remains locked.
|
||||
*/
|
||||
static
|
||||
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
|
||||
|
@ -130,7 +143,7 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
|
|||
|
||||
for (;;) {
|
||||
base = timer->base;
|
||||
if (likely(base != NULL)) {
|
||||
if (likely(base != &migration_base)) {
|
||||
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
|
||||
if (likely(base == timer->base))
|
||||
return base;
|
||||
|
@ -194,8 +207,8 @@ again:
|
|||
if (unlikely(hrtimer_callback_running(timer)))
|
||||
return base;
|
||||
|
||||
/* See the comment in lock_timer_base() */
|
||||
timer->base = NULL;
|
||||
/* See the comment in lock_hrtimer_base() */
|
||||
timer->base = &migration_base;
|
||||
raw_spin_unlock(&base->cpu_base->lock);
|
||||
raw_spin_lock(&new_base->cpu_base->lock);
|
||||
|
||||
|
@ -838,11 +851,7 @@ static int enqueue_hrtimer(struct hrtimer *timer,
|
|||
|
||||
base->cpu_base->active_bases |= 1 << base->index;
|
||||
|
||||
/*
|
||||
* HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
|
||||
* state of a possibly running callback.
|
||||
*/
|
||||
timer->state |= HRTIMER_STATE_ENQUEUED;
|
||||
timer->state = HRTIMER_STATE_ENQUEUED;
|
||||
|
||||
return timerqueue_add(&base->active, &timer->node);
|
||||
}
|
||||
|
@ -907,14 +916,9 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool rest
|
|||
timer_stats_hrtimer_clear_start_info(timer);
|
||||
reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
|
||||
|
||||
if (!restart) {
|
||||
/*
|
||||
* We must preserve the CALLBACK state flag here,
|
||||
* otherwise we could move the timer base in
|
||||
* switch_hrtimer_base.
|
||||
*/
|
||||
state &= HRTIMER_STATE_CALLBACK;
|
||||
}
|
||||
if (!restart)
|
||||
state = HRTIMER_STATE_INACTIVE;
|
||||
|
||||
__remove_hrtimer(timer, base, state, reprogram);
|
||||
return 1;
|
||||
}
|
||||
|
@ -1115,6 +1119,51 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(hrtimer_init);
|
||||
|
||||
/*
|
||||
* A timer is active, when it is enqueued into the rbtree or the
|
||||
* callback function is running or it's in the state of being migrated
|
||||
* to another cpu.
|
||||
*
|
||||
* It is important for this function to not return a false negative.
|
||||
*/
|
||||
bool hrtimer_active(const struct hrtimer *timer)
|
||||
{
|
||||
struct hrtimer_cpu_base *cpu_base;
|
||||
unsigned int seq;
|
||||
|
||||
do {
|
||||
cpu_base = READ_ONCE(timer->base->cpu_base);
|
||||
seq = raw_read_seqcount_begin(&cpu_base->seq);
|
||||
|
||||
if (timer->state != HRTIMER_STATE_INACTIVE ||
|
||||
cpu_base->running == timer)
|
||||
return true;
|
||||
|
||||
} while (read_seqcount_retry(&cpu_base->seq, seq) ||
|
||||
cpu_base != READ_ONCE(timer->base->cpu_base));
|
||||
|
||||
return false;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(hrtimer_active);
|
||||
|
||||
/*
|
||||
* The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
|
||||
* distinct sections:
|
||||
*
|
||||
* - queued: the timer is queued
|
||||
* - callback: the timer is being ran
|
||||
* - post: the timer is inactive or (re)queued
|
||||
*
|
||||
* On the read side we ensure we observe timer->state and cpu_base->running
|
||||
* from the same section, if anything changed while we looked at it, we retry.
|
||||
* This includes timer->base changing because sequence numbers alone are
|
||||
* insufficient for that.
|
||||
*
|
||||
* The sequence numbers are required because otherwise we could still observe
|
||||
* a false negative if the read side got smeared over multiple consequtive
|
||||
* __run_hrtimer() invocations.
|
||||
*/
|
||||
|
||||
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
|
||||
struct hrtimer_clock_base *base,
|
||||
struct hrtimer *timer, ktime_t *now)
|
||||
|
@ -1122,10 +1171,21 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
|
|||
enum hrtimer_restart (*fn)(struct hrtimer *);
|
||||
int restart;
|
||||
|
||||
WARN_ON(!irqs_disabled());
|
||||
lockdep_assert_held(&cpu_base->lock);
|
||||
|
||||
debug_deactivate(timer);
|
||||
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
|
||||
cpu_base->running = timer;
|
||||
|
||||
/*
|
||||
* Separate the ->running assignment from the ->state assignment.
|
||||
*
|
||||
* As with a regular write barrier, this ensures the read side in
|
||||
* hrtimer_active() cannot observe cpu_base->running == NULL &&
|
||||
* timer->state == INACTIVE.
|
||||
*/
|
||||
raw_write_seqcount_barrier(&cpu_base->seq);
|
||||
|
||||
__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
|
||||
timer_stats_account_hrtimer(timer);
|
||||
fn = timer->function;
|
||||
|
||||
|
@ -1141,7 +1201,7 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
|
|||
raw_spin_lock(&cpu_base->lock);
|
||||
|
||||
/*
|
||||
* Note: We clear the CALLBACK bit after enqueue_hrtimer and
|
||||
* Note: We clear the running state after enqueue_hrtimer and
|
||||
* we do not reprogramm the event hardware. Happens either in
|
||||
* hrtimer_start_range_ns() or in hrtimer_interrupt()
|
||||
*
|
||||
|
@ -1153,9 +1213,17 @@ static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
|
|||
!(timer->state & HRTIMER_STATE_ENQUEUED))
|
||||
enqueue_hrtimer(timer, base);
|
||||
|
||||
WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
|
||||
/*
|
||||
* Separate the ->running assignment from the ->state assignment.
|
||||
*
|
||||
* As with a regular write barrier, this ensures the read side in
|
||||
* hrtimer_active() cannot observe cpu_base->running == NULL &&
|
||||
* timer->state == INACTIVE.
|
||||
*/
|
||||
raw_write_seqcount_barrier(&cpu_base->seq);
|
||||
|
||||
timer->state &= ~HRTIMER_STATE_CALLBACK;
|
||||
WARN_ON_ONCE(cpu_base->running != timer);
|
||||
cpu_base->running = NULL;
|
||||
}
|
||||
|
||||
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
|
||||
|
|
Загрузка…
Ссылка в новой задаче