HID: amd_sfh: Implement SFH1.1 functionality

Newer AMD SOCs use SFH1.1 memory access with new PCI-id. Hence add new
sfh1_1 sub directory to implement SFH1.1 functionality by defining new
PCI id, interface functions, descriptor functions and handlers which
invokes sfh1.1.

Signed-off-by: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This commit is contained in:
Basavaraj Natikar 2022-07-12 23:48:36 +05:30 коммит произвёл Jiri Kosina
Родитель 014730c40b
Коммит 93ce5e0231
8 изменённых файлов: 895 добавлений и 0 удалений

Просмотреть файл

@ -9,5 +9,8 @@ amd_sfh-objs := amd_sfh_hid.o
amd_sfh-objs += amd_sfh_client.o
amd_sfh-objs += amd_sfh_pcie.o
amd_sfh-objs += hid_descriptor/amd_sfh_hid_desc.o
amd_sfh-objs += sfh1_1/amd_sfh_init.o
amd_sfh-objs += sfh1_1/amd_sfh_interface.o
amd_sfh-objs += sfh1_1/amd_sfh_desc.o
ccflags-y += -I $(srctree)/$(src)/

Просмотреть файл

@ -14,6 +14,7 @@
#include "amd_sfh_hid.h"
#define PCI_DEVICE_ID_AMD_MP2 0x15E4
#define PCI_DEVICE_ID_AMD_MP2_1_1 0x164A
#define AMD_C2P_MSG(regno) (0x10500 + ((regno) * 4))
#define AMD_P2C_MSG(regno) (0x10680 + ((regno) * 4))
@ -40,6 +41,8 @@ struct amd_mp2_dev {
struct pci_dev *pdev;
struct amdtp_cl_data *cl_data;
void __iomem *mmio;
void __iomem *vsbase;
const struct amd_sfh1_1_ops *sfh1_1_ops;
struct amd_mp2_ops *mp2_ops;
struct amd_input_data in_data;
/* mp2 active control status */

Просмотреть файл

@ -19,6 +19,7 @@
#include <linux/slab.h>
#include "amd_sfh_pcie.h"
#include "sfh1_1/amd_sfh_init.h"
#define DRIVER_NAME "pcie_mp2_amd"
#define DRIVER_DESC "AMD(R) PCIe MP2 Communication Driver"
@ -318,6 +319,14 @@ static int amd_mp2_pci_probe(struct pci_dev *pdev, const struct pci_device_id *i
if (!privdata->cl_data)
return -ENOMEM;
privdata->sfh1_1_ops = (const struct amd_sfh1_1_ops *)id->driver_data;
if (privdata->sfh1_1_ops) {
rc = privdata->sfh1_1_ops->init(privdata);
if (rc)
return rc;
goto init_done;
}
mp2_select_ops(privdata);
rc = amd_sfh_irq_init(privdata);
@ -333,6 +342,7 @@ static int amd_mp2_pci_probe(struct pci_dev *pdev, const struct pci_device_id *i
return rc;
}
init_done:
amd_sfh_clear_intr(privdata);
return devm_add_action_or_reset(&pdev->dev, privdata->mp2_ops->remove, privdata);
@ -361,6 +371,8 @@ static SIMPLE_DEV_PM_OPS(amd_mp2_pm_ops, amd_mp2_pci_suspend,
static const struct pci_device_id amd_mp2_pci_tbl[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_MP2) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_MP2_1_1),
.driver_data = (kernel_ulong_t)&sfh1_1_ops },
{ }
};
MODULE_DEVICE_TABLE(pci, amd_mp2_pci_tbl);

Просмотреть файл

@ -0,0 +1,300 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD MP2 1.1 descriptor interfaces
*
* Copyright (c) 2022, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include <linux/hid-sensor-ids.h>
#include "amd_sfh_interface.h"
#include "../hid_descriptor/amd_sfh_hid_desc.h"
#include "../hid_descriptor/amd_sfh_hid_report_desc.h"
#define SENSOR_PROP_REPORTING_STATE_ALL_EVENTS_ENUM 0x41
#define SENSOR_PROP_POWER_STATE_D0_FULL_POWER_ENUM 0x51
#define HID_DEFAULT_REPORT_INTERVAL 0x50
#define HID_DEFAULT_MIN_VALUE 0X7F
#define HID_DEFAULT_MAX_VALUE 0x80
#define HID_DEFAULT_SENSITIVITY 0x7F
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_ENUM 0x01
/* state enums */
#define HID_USAGE_SENSOR_STATE_READY_ENUM 0x02
#define HID_USAGE_SENSOR_STATE_INITIALIZING_ENUM 0x05
#define HID_USAGE_SENSOR_EVENT_DATA_UPDATED_ENUM 0x04
static int get_report_desc(int sensor_idx, u8 *rep_desc)
{
switch (sensor_idx) {
case ACCEL_IDX: /* accelerometer */
memset(rep_desc, 0, sizeof(accel3_report_descriptor));
memcpy(rep_desc, accel3_report_descriptor,
sizeof(accel3_report_descriptor));
break;
case GYRO_IDX: /* gyroscope */
memset(rep_desc, 0, sizeof(gyro3_report_descriptor));
memcpy(rep_desc, gyro3_report_descriptor,
sizeof(gyro3_report_descriptor));
break;
case MAG_IDX: /* magnetometer */
memset(rep_desc, 0, sizeof(comp3_report_descriptor));
memcpy(rep_desc, comp3_report_descriptor,
sizeof(comp3_report_descriptor));
break;
case ALS_IDX: /* ambient light sensor */
memset(rep_desc, 0, sizeof(als_report_descriptor));
memcpy(rep_desc, als_report_descriptor,
sizeof(als_report_descriptor));
break;
case HPD_IDX: /* HPD sensor */
memset(rep_desc, 0, sizeof(hpd_report_descriptor));
memcpy(rep_desc, hpd_report_descriptor,
sizeof(hpd_report_descriptor));
break;
}
return 0;
}
static void get_common_features(struct common_feature_property *common, int report_id)
{
common->report_id = report_id;
common->connection_type = HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_ENUM;
common->report_state = SENSOR_PROP_REPORTING_STATE_ALL_EVENTS_ENUM;
common->power_state = SENSOR_PROP_POWER_STATE_D0_FULL_POWER_ENUM;
common->sensor_state = HID_USAGE_SENSOR_STATE_INITIALIZING_ENUM;
common->report_interval = HID_DEFAULT_REPORT_INTERVAL;
}
static u8 get_feature_rep(int sensor_idx, int report_id, u8 *feature_report)
{
struct magno_feature_report magno_feature;
struct accel3_feature_report acc_feature;
struct gyro_feature_report gyro_feature;
struct hpd_feature_report hpd_feature;
struct als_feature_report als_feature;
u8 report_size = 0;
if (!feature_report)
return report_size;
switch (sensor_idx) {
case ACCEL_IDX: /* accelerometer */
get_common_features(&acc_feature.common_property, report_id);
acc_feature.accel_change_sesnitivity = HID_DEFAULT_SENSITIVITY;
acc_feature.accel_sensitivity_min = HID_DEFAULT_MIN_VALUE;
acc_feature.accel_sensitivity_max = HID_DEFAULT_MAX_VALUE;
memcpy(feature_report, &acc_feature, sizeof(acc_feature));
report_size = sizeof(acc_feature);
break;
case GYRO_IDX: /* gyroscope */
get_common_features(&gyro_feature.common_property, report_id);
gyro_feature.gyro_change_sesnitivity = HID_DEFAULT_SENSITIVITY;
gyro_feature.gyro_sensitivity_min = HID_DEFAULT_MIN_VALUE;
gyro_feature.gyro_sensitivity_max = HID_DEFAULT_MAX_VALUE;
memcpy(feature_report, &gyro_feature, sizeof(gyro_feature));
report_size = sizeof(gyro_feature);
break;
case MAG_IDX: /* magnetometer */
get_common_features(&magno_feature.common_property, report_id);
magno_feature.magno_headingchange_sensitivity = HID_DEFAULT_SENSITIVITY;
magno_feature.heading_min = HID_DEFAULT_MIN_VALUE;
magno_feature.heading_max = HID_DEFAULT_MAX_VALUE;
magno_feature.flux_change_sensitivity = HID_DEFAULT_MIN_VALUE;
magno_feature.flux_min = HID_DEFAULT_MIN_VALUE;
magno_feature.flux_max = HID_DEFAULT_MAX_VALUE;
memcpy(feature_report, &magno_feature, sizeof(magno_feature));
report_size = sizeof(magno_feature);
break;
case ALS_IDX: /* ambient light sensor */
get_common_features(&als_feature.common_property, report_id);
als_feature.als_change_sesnitivity = HID_DEFAULT_SENSITIVITY;
als_feature.als_sensitivity_min = HID_DEFAULT_MIN_VALUE;
als_feature.als_sensitivity_max = HID_DEFAULT_MAX_VALUE;
memcpy(feature_report, &als_feature, sizeof(als_feature));
report_size = sizeof(als_feature);
break;
case HPD_IDX: /* human presence detection sensor */
get_common_features(&hpd_feature.common_property, report_id);
memcpy(feature_report, &hpd_feature, sizeof(hpd_feature));
report_size = sizeof(hpd_feature);
break;
}
return report_size;
}
static void get_common_inputs(struct common_input_property *common, int report_id)
{
common->report_id = report_id;
common->sensor_state = HID_USAGE_SENSOR_STATE_READY_ENUM;
common->event_type = HID_USAGE_SENSOR_EVENT_DATA_UPDATED_ENUM;
}
static int float_to_int(u32 float32)
{
int fraction, shift, mantissa, sign, exp, zeropre;
mantissa = float32 & GENMASK(22, 0);
sign = (float32 & BIT(31)) ? -1 : 1;
exp = (float32 & ~BIT(31)) >> 23;
if (!exp && !mantissa)
return 0;
exp -= 127;
if (exp < 0) {
exp = -exp;
zeropre = (((BIT(23) + mantissa) * 100) >> 23) >> exp;
return zeropre >= 50 ? sign : 0;
}
shift = 23 - exp;
float32 = BIT(exp) + (mantissa >> shift);
fraction = mantissa & GENMASK(shift - 1, 0);
return (((fraction * 100) >> shift) >= 50) ? sign * (float32 + 1) : sign * float32;
}
static u8 get_input_rep(u8 current_index, int sensor_idx, int report_id,
struct amd_input_data *in_data)
{
struct amd_mp2_dev *mp2 = container_of(in_data, struct amd_mp2_dev, in_data);
u8 *input_report = in_data->input_report[current_index];
struct magno_input_report magno_input;
struct accel3_input_report acc_input;
struct gyro_input_report gyro_input;
struct als_input_report als_input;
struct hpd_input_report hpd_input;
struct sfh_accel_data accel_data;
struct sfh_gyro_data gyro_data;
struct sfh_mag_data mag_data;
struct sfh_als_data als_data;
struct hpd_status hpdstatus;
void __iomem *sensoraddr;
u8 report_size = 0;
if (!input_report)
return report_size;
switch (sensor_idx) {
case ACCEL_IDX: /* accelerometer */
sensoraddr = mp2->vsbase + (ACCEL_IDX * SENSOR_DATA_MEM_SIZE_DEFAULT) +
OFFSET_SENSOR_DATA_DEFAULT;
memcpy_fromio(&accel_data, sensoraddr, sizeof(struct sfh_accel_data));
get_common_inputs(&acc_input.common_property, report_id);
acc_input.in_accel_x_value = float_to_int(accel_data.acceldata.x) / 100;
acc_input.in_accel_y_value = float_to_int(accel_data.acceldata.y) / 100;
acc_input.in_accel_z_value = float_to_int(accel_data.acceldata.z) / 100;
memcpy(input_report, &acc_input, sizeof(acc_input));
report_size = sizeof(acc_input);
break;
case GYRO_IDX: /* gyroscope */
sensoraddr = mp2->vsbase + (GYRO_IDX * SENSOR_DATA_MEM_SIZE_DEFAULT) +
OFFSET_SENSOR_DATA_DEFAULT;
memcpy_fromio(&gyro_data, sensoraddr, sizeof(struct sfh_gyro_data));
get_common_inputs(&gyro_input.common_property, report_id);
gyro_input.in_angel_x_value = float_to_int(gyro_data.gyrodata.x) / 1000;
gyro_input.in_angel_y_value = float_to_int(gyro_data.gyrodata.y) / 1000;
gyro_input.in_angel_z_value = float_to_int(gyro_data.gyrodata.z) / 1000;
memcpy(input_report, &gyro_input, sizeof(gyro_input));
report_size = sizeof(gyro_input);
break;
case MAG_IDX: /* magnetometer */
sensoraddr = mp2->vsbase + (MAG_IDX * SENSOR_DATA_MEM_SIZE_DEFAULT) +
OFFSET_SENSOR_DATA_DEFAULT;
memcpy_fromio(&mag_data, sensoraddr, sizeof(struct sfh_mag_data));
get_common_inputs(&magno_input.common_property, report_id);
magno_input.in_magno_x = float_to_int(mag_data.magdata.x) / 100;
magno_input.in_magno_y = float_to_int(mag_data.magdata.y) / 100;
magno_input.in_magno_z = float_to_int(mag_data.magdata.z) / 100;
magno_input.in_magno_accuracy = mag_data.accuracy / 100;
memcpy(input_report, &magno_input, sizeof(magno_input));
report_size = sizeof(magno_input);
break;
case ALS_IDX:
sensoraddr = mp2->vsbase + (ALS_IDX * SENSOR_DATA_MEM_SIZE_DEFAULT) +
OFFSET_SENSOR_DATA_DEFAULT;
memcpy_fromio(&als_data, sensoraddr, sizeof(struct sfh_als_data));
get_common_inputs(&als_input.common_property, report_id);
als_input.illuminance_value = als_data.lux;
report_size = sizeof(als_input);
memcpy(input_report, &als_input, sizeof(als_input));
break;
case HPD_IDX:
get_common_inputs(&hpd_input.common_property, report_id);
hpdstatus.val = readl(mp2->mmio + AMD_C2P_MSG(4));
hpd_input.human_presence = hpdstatus.shpd.presence;
report_size = sizeof(hpd_input);
memcpy(input_report, &hpd_input, sizeof(hpd_input));
break;
}
return report_size;
}
static u32 get_desc_size(int sensor_idx, int descriptor_name)
{
switch (sensor_idx) {
case ACCEL_IDX:
switch (descriptor_name) {
case descr_size:
return sizeof(accel3_report_descriptor);
case input_size:
return sizeof(struct accel3_input_report);
case feature_size:
return sizeof(struct accel3_feature_report);
}
break;
case GYRO_IDX:
switch (descriptor_name) {
case descr_size:
return sizeof(gyro3_report_descriptor);
case input_size:
return sizeof(struct gyro_input_report);
case feature_size:
return sizeof(struct gyro_feature_report);
}
break;
case MAG_IDX:
switch (descriptor_name) {
case descr_size:
return sizeof(comp3_report_descriptor);
case input_size:
return sizeof(struct magno_input_report);
case feature_size:
return sizeof(struct magno_feature_report);
}
break;
case ALS_IDX:
switch (descriptor_name) {
case descr_size:
return sizeof(als_report_descriptor);
case input_size:
return sizeof(struct als_input_report);
case feature_size:
return sizeof(struct als_feature_report);
}
break;
case HPD_IDX:
switch (descriptor_name) {
case descr_size:
return sizeof(hpd_report_descriptor);
case input_size:
return sizeof(struct hpd_input_report);
case feature_size:
return sizeof(struct hpd_feature_report);
}
break;
}
return 0;
}
void amd_sfh1_1_set_desc_ops(struct amd_mp2_ops *mp2_ops)
{
mp2_ops->get_rep_desc = get_report_desc;
mp2_ops->get_feat_rep = get_feature_rep;
mp2_ops->get_desc_sz = get_desc_size;
mp2_ops->get_in_rep = get_input_rep;
}

Просмотреть файл

@ -0,0 +1,324 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD MP2 1.1 communication driver
*
* Copyright (c) 2022, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include <linux/delay.h>
#include <linux/hid.h>
#include "amd_sfh_init.h"
#include "amd_sfh_interface.h"
#include "../hid_descriptor/amd_sfh_hid_desc.h"
static int amd_sfh_get_sensor_num(struct amd_mp2_dev *mp2, u8 *sensor_id)
{
struct sfh_sensor_list *slist;
struct sfh_base_info binfo;
int num_of_sensors = 0;
int i;
memcpy_fromio(&binfo, mp2->vsbase, sizeof(struct sfh_base_info));
slist = &binfo.sbase.s_list;
for (i = 0; i < MAX_IDX; i++) {
switch (i) {
case ACCEL_IDX:
case GYRO_IDX:
case MAG_IDX:
case ALS_IDX:
case HPD_IDX:
if (BIT(i) & slist->sl.sensors)
sensor_id[num_of_sensors++] = i;
break;
}
}
return num_of_sensors;
}
static u32 amd_sfh_wait_for_response(struct amd_mp2_dev *mp2, u8 sid, u32 cmd_id)
{
if (mp2->mp2_ops->response)
return mp2->mp2_ops->response(mp2, sid, cmd_id);
return 0;
}
static const char *get_sensor_name(int idx)
{
switch (idx) {
case ACCEL_IDX:
return "accelerometer";
case GYRO_IDX:
return "gyroscope";
case MAG_IDX:
return "magnetometer";
case ALS_IDX:
return "ALS";
case HPD_IDX:
return "HPD";
default:
return "unknown sensor type";
}
}
static int amd_sfh_hid_client_deinit(struct amd_mp2_dev *privdata)
{
struct amdtp_cl_data *cl_data = privdata->cl_data;
int i, status;
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (cl_data->sensor_sts[i] == SENSOR_ENABLED) {
privdata->mp2_ops->stop(privdata, cl_data->sensor_idx[i]);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], DISABLE_SENSOR);
if (status == 0)
cl_data->sensor_sts[i] = SENSOR_DISABLED;
dev_dbg(&privdata->pdev->dev, "stopping sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
}
cancel_delayed_work_sync(&cl_data->work);
cancel_delayed_work_sync(&cl_data->work_buffer);
amdtp_hid_remove(cl_data);
return 0;
}
static int amd_sfh1_1_hid_client_init(struct amd_mp2_dev *privdata)
{
struct amd_input_data *in_data = &privdata->in_data;
struct amdtp_cl_data *cl_data = privdata->cl_data;
struct amd_mp2_ops *mp2_ops = privdata->mp2_ops;
struct amd_mp2_sensor_info info;
struct request_list *req_list;
u32 feature_report_size;
u32 input_report_size;
struct device *dev;
int rc, i, status;
u8 cl_idx;
req_list = &cl_data->req_list;
dev = &privdata->pdev->dev;
amd_sfh1_1_set_desc_ops(mp2_ops);
cl_data->num_hid_devices = amd_sfh_get_sensor_num(privdata, &cl_data->sensor_idx[0]);
INIT_DELAYED_WORK(&cl_data->work, amd_sfh_work);
INIT_DELAYED_WORK(&cl_data->work_buffer, amd_sfh_work_buffer);
INIT_LIST_HEAD(&req_list->list);
cl_data->in_data = in_data;
for (i = 0; i < cl_data->num_hid_devices; i++) {
cl_data->sensor_sts[i] = SENSOR_DISABLED;
cl_data->sensor_requested_cnt[i] = 0;
cl_data->cur_hid_dev = i;
cl_idx = cl_data->sensor_idx[i];
cl_data->report_descr_sz[i] = mp2_ops->get_desc_sz(cl_idx, descr_size);
if (!cl_data->report_descr_sz[i]) {
rc = -EINVAL;
goto cleanup;
}
feature_report_size = mp2_ops->get_desc_sz(cl_idx, feature_size);
if (!feature_report_size) {
rc = -EINVAL;
goto cleanup;
}
input_report_size = mp2_ops->get_desc_sz(cl_idx, input_size);
if (!input_report_size) {
rc = -EINVAL;
goto cleanup;
}
cl_data->feature_report[i] = devm_kzalloc(dev, feature_report_size, GFP_KERNEL);
if (!cl_data->feature_report[i]) {
rc = -ENOMEM;
goto cleanup;
}
in_data->input_report[i] = devm_kzalloc(dev, input_report_size, GFP_KERNEL);
if (!in_data->input_report[i]) {
rc = -ENOMEM;
goto cleanup;
}
info.sensor_idx = cl_idx;
cl_data->report_descr[i] =
devm_kzalloc(dev, cl_data->report_descr_sz[i], GFP_KERNEL);
if (!cl_data->report_descr[i]) {
rc = -ENOMEM;
goto cleanup;
}
rc = mp2_ops->get_rep_desc(cl_idx, cl_data->report_descr[i]);
if (rc)
return rc;
writel(0, privdata->mmio + AMD_P2C_MSG(0));
mp2_ops->start(privdata, info);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], ENABLE_SENSOR);
status = (status == 0) ? SENSOR_ENABLED : SENSOR_DISABLED;
if (status == SENSOR_ENABLED) {
cl_data->sensor_sts[i] = SENSOR_ENABLED;
rc = amdtp_hid_probe(i, cl_data);
if (rc) {
mp2_ops->stop(privdata, cl_data->sensor_idx[i]);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], DISABLE_SENSOR);
if (status == 0)
status = SENSOR_DISABLED;
if (status != SENSOR_ENABLED)
cl_data->sensor_sts[i] = SENSOR_DISABLED;
dev_dbg(dev, "sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i],
get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
goto cleanup;
}
}
dev_dbg(dev, "sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
schedule_delayed_work(&cl_data->work_buffer, msecs_to_jiffies(AMD_SFH_IDLE_LOOP));
return 0;
cleanup:
amd_sfh_hid_client_deinit(privdata);
for (i = 0; i < cl_data->num_hid_devices; i++) {
devm_kfree(dev, cl_data->feature_report[i]);
devm_kfree(dev, in_data->input_report[i]);
devm_kfree(dev, cl_data->report_descr[i]);
}
return rc;
}
static void amd_sfh_resume(struct amd_mp2_dev *mp2)
{
struct amdtp_cl_data *cl_data = mp2->cl_data;
struct amd_mp2_sensor_info info;
int i, status;
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (cl_data->sensor_sts[i] == SENSOR_DISABLED) {
info.sensor_idx = cl_data->sensor_idx[i];
mp2->mp2_ops->start(mp2, info);
status = amd_sfh_wait_for_response
(mp2, cl_data->sensor_idx[i], ENABLE_SENSOR);
if (status == 0)
status = SENSOR_ENABLED;
if (status == SENSOR_ENABLED)
cl_data->sensor_sts[i] = SENSOR_ENABLED;
dev_dbg(&mp2->pdev->dev, "resume sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
}
schedule_delayed_work(&cl_data->work_buffer, msecs_to_jiffies(AMD_SFH_IDLE_LOOP));
amd_sfh_clear_intr(mp2);
}
static void amd_sfh_suspend(struct amd_mp2_dev *mp2)
{
struct amdtp_cl_data *cl_data = mp2->cl_data;
int i, status;
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (cl_data->sensor_idx[i] != HPD_IDX &&
cl_data->sensor_sts[i] == SENSOR_ENABLED) {
mp2->mp2_ops->stop(mp2, cl_data->sensor_idx[i]);
status = amd_sfh_wait_for_response
(mp2, cl_data->sensor_idx[i], DISABLE_SENSOR);
if (status == 0)
status = SENSOR_DISABLED;
if (status != SENSOR_ENABLED)
cl_data->sensor_sts[i] = SENSOR_DISABLED;
dev_dbg(&mp2->pdev->dev, "suspend sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
}
cancel_delayed_work_sync(&cl_data->work_buffer);
amd_sfh_clear_intr(mp2);
}
static void amd_mp2_pci_remove(void *privdata)
{
struct amd_mp2_dev *mp2 = privdata;
amd_sfh_hid_client_deinit(privdata);
mp2->mp2_ops->stop_all(mp2);
pci_intx(mp2->pdev, false);
amd_sfh_clear_intr(mp2);
}
static void amd_sfh_set_ops(struct amd_mp2_dev *mp2)
{
struct amd_mp2_ops *mp2_ops;
sfh_interface_init(mp2);
mp2_ops = mp2->mp2_ops;
mp2_ops->clear_intr = amd_sfh_clear_intr_v2,
mp2_ops->init_intr = amd_sfh_irq_init_v2,
mp2_ops->suspend = amd_sfh_suspend;
mp2_ops->resume = amd_sfh_resume;
mp2_ops->remove = amd_mp2_pci_remove;
}
int amd_sfh1_1_init(struct amd_mp2_dev *mp2)
{
u32 phy_base = readl(mp2->mmio + AMD_C2P_MSG(22));
struct device *dev = &mp2->pdev->dev;
struct sfh_base_info binfo;
int rc;
phy_base <<= 21;
if (!devm_request_mem_region(dev, phy_base, 128 * 1024, "amd_sfh")) {
dev_err(dev, "can't reserve mmio registers\n");
return -ENOMEM;
}
mp2->vsbase = devm_ioremap(dev, phy_base, 128 * 1024);
if (!mp2->vsbase) {
dev_err(dev, "failed to remap vsbase\n");
return -ENOMEM;
}
/* Before accessing give time for SFH firmware for processing configuration */
msleep(5000);
memcpy_fromio(&binfo, mp2->vsbase, sizeof(struct sfh_base_info));
if (binfo.sbase.fw_info.fw_ver == 0 || binfo.sbase.s_list.sl.sensors == 0) {
dev_err(dev, "failed to get sensors\n");
return -EOPNOTSUPP;
}
dev_dbg(dev, "firmware version 0x%x\n", binfo.sbase.fw_info.fw_ver);
amd_sfh_set_ops(mp2);
rc = amd_sfh_irq_init(mp2);
if (rc) {
dev_err(dev, "amd_sfh_irq_init failed\n");
return rc;
}
rc = amd_sfh1_1_hid_client_init(mp2);
if (rc) {
dev_err(dev, "amd_sfh1_1_hid_client_init failed\n");
return rc;
}
return rc;
}

Просмотреть файл

@ -0,0 +1,26 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* AMD MP2 1.1 initialization structures
*
* Copyright (c) 2022, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#ifndef AMD_SFH_INIT_H
#define AMD_SFH_INIT_H
#include "../amd_sfh_common.h"
struct amd_sfh1_1_ops {
int (*init)(struct amd_mp2_dev *mp2);
};
int amd_sfh1_1_init(struct amd_mp2_dev *mp2);
static const struct amd_sfh1_1_ops __maybe_unused sfh1_1_ops = {
.init = amd_sfh1_1_init,
};
#endif

Просмотреть файл

@ -0,0 +1,73 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD MP2 1.1 communication interfaces
*
* Copyright (c) 2022, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include <linux/iopoll.h>
#include "amd_sfh_interface.h"
static int amd_sfh_wait_response(struct amd_mp2_dev *mp2, u8 sid, u32 cmd_id)
{
struct sfh_cmd_response cmd_resp;
/* Get response with status within a max of 1600 ms timeout */
if (!readl_poll_timeout(mp2->mmio + AMD_P2C_MSG(0), cmd_resp.resp,
(cmd_resp.response.response == 0 &&
cmd_resp.response.cmd_id == cmd_id && (sid == 0xff ||
cmd_resp.response.sensor_id == sid)), 500, 1600000))
return cmd_resp.response.response;
return -1;
}
static void amd_start_sensor(struct amd_mp2_dev *privdata, struct amd_mp2_sensor_info info)
{
struct sfh_cmd_base cmd_base;
cmd_base.ul = 0;
cmd_base.cmd.cmd_id = ENABLE_SENSOR;
cmd_base.cmd.intr_disable = 0;
cmd_base.cmd.sensor_id = info.sensor_idx;
writel(cmd_base.ul, privdata->mmio + AMD_C2P_MSG(0));
}
static void amd_stop_sensor(struct amd_mp2_dev *privdata, u16 sensor_idx)
{
struct sfh_cmd_base cmd_base;
cmd_base.ul = 0;
cmd_base.cmd.cmd_id = DISABLE_SENSOR;
cmd_base.cmd.intr_disable = 0;
cmd_base.cmd.sensor_id = sensor_idx;
writeq(0x0, privdata->mmio + AMD_C2P_MSG(1));
writel(cmd_base.ul, privdata->mmio + AMD_C2P_MSG(0));
}
static void amd_stop_all_sensor(struct amd_mp2_dev *privdata)
{
struct sfh_cmd_base cmd_base;
cmd_base.ul = 0;
cmd_base.cmd.cmd_id = STOP_ALL_SENSORS;
cmd_base.cmd.intr_disable = 0;
writel(cmd_base.ul, privdata->mmio + AMD_C2P_MSG(0));
}
static struct amd_mp2_ops amd_sfh_ops = {
.start = amd_start_sensor,
.stop = amd_stop_sensor,
.stop_all = amd_stop_all_sensor,
.response = amd_sfh_wait_response,
};
void sfh_interface_init(struct amd_mp2_dev *mp2)
{
mp2->mp2_ops = &amd_sfh_ops;
}

Просмотреть файл

@ -0,0 +1,154 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* AMD MP2 1.1 communication interfaces
*
* Copyright (c) 2022, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#ifndef AMD_SFH_INTERFACE_H
#define AMD_SFH_INTERFACE_H
#include "../amd_sfh_common.h"
#define SENSOR_DATA_MEM_SIZE_DEFAULT 256
#define TOTAL_STATIC_MEM_DEFAULT 1024
#define OFFSET_SFH_INFO_BASE_DEFAULT 0
#define OFFSET_SENSOR_DATA_DEFAULT (OFFSET_SFH_INFO_BASE_DEFAULT + \
TOTAL_STATIC_MEM_DEFAULT)
enum sensor_index {
ACCEL_IDX,
GYRO_IDX,
MAG_IDX,
ALS_IDX = 4,
HPD_IDX = 5,
MAX_IDX = 15,
};
struct sfh_cmd_base {
union {
u32 ul;
struct {
u32 sensor_id : 4;
u32 cmd_id : 4;
u32 sub_cmd_id : 6;
u32 length : 12;
u32 rsvd : 5;
u32 intr_disable : 1;
} cmd;
};
};
struct sfh_cmd_response {
union {
u32 resp;
struct {
u32 response : 8;
u32 sensor_id : 4;
u32 cmd_id : 4;
u32 sub_cmd : 6;
u32 rsvd2 : 10;
} response;
};
};
struct sfh_platform_info {
union {
u32 pi;
struct {
u32 cust_id : 16;
u32 plat_id : 6;
u32 interface_id : 4;
u32 rsvd : 6;
} pinfo;
};
};
struct sfh_firmware_info {
union {
u32 fw_ver;
struct {
u32 minor_rev : 8;
u32 major_rev : 8;
u32 minor_ver : 8;
u32 major_ver : 8;
} fver;
};
};
struct sfh_sensor_list {
union {
u32 slist;
struct {
u32 sensors : 16;
u32 rsvd : 16;
} sl;
};
};
struct sfh_base_info {
union {
u32 sfh_base[24];
struct {
struct sfh_platform_info plat_info;
struct sfh_firmware_info fw_info;
struct sfh_sensor_list s_list;
} sbase;
};
};
struct sfh_common_data {
u64 timestamp;
u32 intr_cnt;
u32 featvalid : 16;
u32 rsvd : 13;
u32 sensor_state : 3;
};
struct sfh_float32 {
u32 x;
u32 y;
u32 z;
};
struct sfh_accel_data {
struct sfh_common_data commondata;
struct sfh_float32 acceldata;
u32 accelstatus;
};
struct sfh_gyro_data {
struct sfh_common_data commondata;
struct sfh_float32 gyrodata;
u32 result;
};
struct sfh_mag_data {
struct sfh_common_data commondata;
struct sfh_float32 magdata;
u32 accuracy;
};
struct sfh_als_data {
struct sfh_common_data commondata;
u16 lux;
};
struct hpd_status {
union {
struct {
u32 distance : 16;
u32 probablity : 8;
u32 presence : 2;
u32 rsvd : 5;
u32 state : 1;
} shpd;
u32 val;
};
};
void sfh_interface_init(struct amd_mp2_dev *mp2);
void amd_sfh1_1_set_desc_ops(struct amd_mp2_ops *mp2_ops);
#endif