hugetlb: add support for gigantic page allocation at runtime

HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order.  This is so because HugeTLB allocates hugepages via the
buddy allocator.  Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.

However, boottime allocation has at least two serious problems.  First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.

This commit solves both issues by adding support for allocating gigantic
pages during runtime.  It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.

For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:

 # echo 2 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

And to free them all:

 # echo 0 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator.  To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region.  When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation.  For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region.  When one is found, it's allocated by alloc_contig_range().

One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by.  The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script.  Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.

It's also important to note the following:

 1. Gigantic pages allocated at boottime by the hugepages= command-line
    option can be freed at runtime just fine

 2. This commit adds support for gigantic pages only to x86_64. The
    reason is that I don't have access to nor experience with other archs.
    The code is arch indepedent though, so it should be simple to add
    support to different archs

 3. I didn't add support for hugepage overcommit, that is allocating
    a gigantic page on demand when
   /proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
   think it's reasonable to do the hard and long work required for
   allocating a gigantic page at fault time. But it should be simple
   to add this if wanted

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Luiz Capitulino 2014-06-04 16:07:13 -07:00 коммит произвёл Linus Torvalds
Родитель 1cac6f2c07
Коммит 944d9fec8d
1 изменённых файлов: 155 добавлений и 11 удалений

Просмотреть файл

@ -680,11 +680,150 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
((node = hstate_next_node_to_free(hs, mask)) || 1); \ ((node = hstate_next_node_to_free(hs, mask)) || 1); \
nr_nodes--) nr_nodes--)
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
unsigned long order)
{
int i;
int nr_pages = 1 << order;
struct page *p = page + 1;
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__ClearPageTail(p);
set_page_refcounted(p);
p->first_page = NULL;
}
set_compound_order(page, 0);
__ClearPageHead(page);
}
static void free_gigantic_page(struct page *page, unsigned order)
{
free_contig_range(page_to_pfn(page), 1 << order);
}
static int __alloc_gigantic_page(unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long end_pfn = start_pfn + nr_pages;
return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}
static bool pfn_range_valid_gigantic(unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long i, end_pfn = start_pfn + nr_pages;
struct page *page;
for (i = start_pfn; i < end_pfn; i++) {
if (!pfn_valid(i))
return false;
page = pfn_to_page(i);
if (PageReserved(page))
return false;
if (page_count(page) > 0)
return false;
if (PageHuge(page))
return false;
}
return true;
}
static bool zone_spans_last_pfn(const struct zone *zone,
unsigned long start_pfn, unsigned long nr_pages)
{
unsigned long last_pfn = start_pfn + nr_pages - 1;
return zone_spans_pfn(zone, last_pfn);
}
static struct page *alloc_gigantic_page(int nid, unsigned order)
{
unsigned long nr_pages = 1 << order;
unsigned long ret, pfn, flags;
struct zone *z;
z = NODE_DATA(nid)->node_zones;
for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
spin_lock_irqsave(&z->lock, flags);
pfn = ALIGN(z->zone_start_pfn, nr_pages);
while (zone_spans_last_pfn(z, pfn, nr_pages)) {
if (pfn_range_valid_gigantic(pfn, nr_pages)) {
/*
* We release the zone lock here because
* alloc_contig_range() will also lock the zone
* at some point. If there's an allocation
* spinning on this lock, it may win the race
* and cause alloc_contig_range() to fail...
*/
spin_unlock_irqrestore(&z->lock, flags);
ret = __alloc_gigantic_page(pfn, nr_pages);
if (!ret)
return pfn_to_page(pfn);
spin_lock_irqsave(&z->lock, flags);
}
pfn += nr_pages;
}
spin_unlock_irqrestore(&z->lock, flags);
}
return NULL;
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);
static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
struct page *page;
page = alloc_gigantic_page(nid, huge_page_order(h));
if (page) {
prep_compound_gigantic_page(page, huge_page_order(h));
prep_new_huge_page(h, page, nid);
}
return page;
}
static int alloc_fresh_gigantic_page(struct hstate *h,
nodemask_t *nodes_allowed)
{
struct page *page = NULL;
int nr_nodes, node;
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
page = alloc_fresh_gigantic_page_node(h, node);
if (page)
return 1;
}
return 0;
}
static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
nodemask_t *nodes_allowed) { return 0; }
#endif
static void update_and_free_page(struct hstate *h, struct page *page) static void update_and_free_page(struct hstate *h, struct page *page)
{ {
int i; int i;
VM_BUG_ON(hstate_is_gigantic(h)); if (hstate_is_gigantic(h) && !gigantic_page_supported())
return;
h->nr_huge_pages--; h->nr_huge_pages--;
h->nr_huge_pages_node[page_to_nid(page)]--; h->nr_huge_pages_node[page_to_nid(page)]--;
@ -697,9 +836,14 @@ static void update_and_free_page(struct hstate *h, struct page *page)
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
set_compound_page_dtor(page, NULL); set_compound_page_dtor(page, NULL);
set_page_refcounted(page); set_page_refcounted(page);
if (hstate_is_gigantic(h)) {
destroy_compound_gigantic_page(page, huge_page_order(h));
free_gigantic_page(page, huge_page_order(h));
} else {
arch_release_hugepage(page); arch_release_hugepage(page);
__free_pages(page, huge_page_order(h)); __free_pages(page, huge_page_order(h));
} }
}
struct hstate *size_to_hstate(unsigned long size) struct hstate *size_to_hstate(unsigned long size)
{ {
@ -737,7 +881,7 @@ static void free_huge_page(struct page *page)
if (restore_reserve) if (restore_reserve)
h->resv_huge_pages++; h->resv_huge_pages++;
if (h->surplus_huge_pages_node[nid] && !hstate_is_gigantic(h)) { if (h->surplus_huge_pages_node[nid]) {
/* remove the page from active list */ /* remove the page from active list */
list_del(&page->lru); list_del(&page->lru);
update_and_free_page(h, page); update_and_free_page(h, page);
@ -841,9 +985,6 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{ {
struct page *page; struct page *page;
if (hstate_is_gigantic(h))
return NULL;
page = alloc_pages_exact_node(nid, page = alloc_pages_exact_node(nid,
htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN, __GFP_REPEAT|__GFP_NOWARN,
@ -1478,7 +1619,7 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
{ {
unsigned long min_count, ret; unsigned long min_count, ret;
if (hstate_is_gigantic(h)) if (hstate_is_gigantic(h) && !gigantic_page_supported())
return h->max_huge_pages; return h->max_huge_pages;
/* /*
@ -1505,6 +1646,9 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
* and reducing the surplus. * and reducing the surplus.
*/ */
spin_unlock(&hugetlb_lock); spin_unlock(&hugetlb_lock);
if (hstate_is_gigantic(h))
ret = alloc_fresh_gigantic_page(h, nodes_allowed);
else
ret = alloc_fresh_huge_page(h, nodes_allowed); ret = alloc_fresh_huge_page(h, nodes_allowed);
spin_lock(&hugetlb_lock); spin_lock(&hugetlb_lock);
if (!ret) if (!ret)
@ -1605,7 +1749,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
goto out; goto out;
h = kobj_to_hstate(kobj, &nid); h = kobj_to_hstate(kobj, &nid);
if (hstate_is_gigantic(h)) { if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
err = -EINVAL; err = -EINVAL;
goto out; goto out;
} }
@ -2112,7 +2256,7 @@ static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
tmp = h->max_huge_pages; tmp = h->max_huge_pages;
if (write && hstate_is_gigantic(h)) if (write && hstate_is_gigantic(h) && !gigantic_page_supported())
return -EINVAL; return -EINVAL;
table->data = &tmp; table->data = &tmp;