Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (26 commits)
  sched: Resched proper CPU on yield_to()
  sched: Allow users with sufficient RLIMIT_NICE to change from SCHED_IDLE policy
  sched: Allow SCHED_BATCH to preempt SCHED_IDLE tasks
  sched: Clean up the IRQ_TIME_ACCOUNTING code
  sched: Add #ifdef around irq time accounting functions
  sched, autogroup: Stop claiming ownership of the root task group
  sched, autogroup: Stop going ahead if autogroup is disabled
  sched, autogroup, sysctl: Use proc_dointvec_minmax() instead
  sched: Fix the group_imb logic
  sched: Clean up some f_b_g() comments
  sched: Clean up remnants of sd_idle
  sched: Wholesale removal of sd_idle logic
  sched: Add yield_to(task, preempt) functionality
  sched: Use a buddy to implement yield_task_fair()
  sched: Limit the scope of clear_buddies
  sched: Check the right ->nr_running in yield_task_fair()
  sched: Avoid expensive initial update_cfs_load(), on UP too
  sched: Fix switch_from_fair()
  sched: Simplify the idle scheduling class
  softirqs: Account ksoftirqd time as cpustat softirq
  ...
This commit is contained in:
Linus Torvalds 2011-03-15 18:37:30 -07:00
Родитель a926021cb1 6d1cafd8b5
Коммит 9620639b7e
15 изменённых файлов: 564 добавлений и 260 удалений

Просмотреть файл

@ -30,6 +30,9 @@ typedef u64 cputime64_t;
#define cputime64_to_jiffies64(__ct) (__ct) #define cputime64_to_jiffies64(__ct) (__ct)
#define jiffies64_to_cputime64(__jif) (__jif) #define jiffies64_to_cputime64(__jif) (__jif)
#define cputime_to_cputime64(__ct) ((u64) __ct) #define cputime_to_cputime64(__ct) ((u64) __ct)
#define cputime64_gt(__a, __b) ((__a) > (__b))
#define nsecs_to_cputime64(__ct) nsecs_to_jiffies64(__ct)
/* /*

Просмотреть файл

@ -427,6 +427,13 @@ extern void raise_softirq(unsigned int nr);
*/ */
DECLARE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); DECLARE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list);
DECLARE_PER_CPU(struct task_struct *, ksoftirqd);
static inline struct task_struct *this_cpu_ksoftirqd(void)
{
return this_cpu_read(ksoftirqd);
}
/* Try to send a softirq to a remote cpu. If this cannot be done, the /* Try to send a softirq to a remote cpu. If this cannot be done, the
* work will be queued to the local cpu. * work will be queued to the local cpu.
*/ */

Просмотреть файл

@ -307,6 +307,7 @@ extern clock_t jiffies_to_clock_t(long x);
extern unsigned long clock_t_to_jiffies(unsigned long x); extern unsigned long clock_t_to_jiffies(unsigned long x);
extern u64 jiffies_64_to_clock_t(u64 x); extern u64 jiffies_64_to_clock_t(u64 x);
extern u64 nsec_to_clock_t(u64 x); extern u64 nsec_to_clock_t(u64 x);
extern u64 nsecs_to_jiffies64(u64 n);
extern unsigned long nsecs_to_jiffies(u64 n); extern unsigned long nsecs_to_jiffies(u64 n);
#define TIMESTAMP_SIZE 30 #define TIMESTAMP_SIZE 30

Просмотреть файл

@ -1058,6 +1058,7 @@ struct sched_class {
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*yield_task) (struct rq *rq); void (*yield_task) (struct rq *rq);
bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
@ -1084,12 +1085,10 @@ struct sched_class {
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
void (*task_fork) (struct task_struct *p); void (*task_fork) (struct task_struct *p);
void (*switched_from) (struct rq *this_rq, struct task_struct *task, void (*switched_from) (struct rq *this_rq, struct task_struct *task);
int running); void (*switched_to) (struct rq *this_rq, struct task_struct *task);
void (*switched_to) (struct rq *this_rq, struct task_struct *task,
int running);
void (*prio_changed) (struct rq *this_rq, struct task_struct *task, void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
int oldprio, int running); int oldprio);
unsigned int (*get_rr_interval) (struct rq *rq, unsigned int (*get_rr_interval) (struct rq *rq,
struct task_struct *task); struct task_struct *task);
@ -1715,7 +1714,6 @@ extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *
/* /*
* Per process flags * Per process flags
*/ */
#define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
#define PF_STARTING 0x00000002 /* being created */ #define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */ #define PF_EXITING 0x00000004 /* getting shut down */
#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
@ -1945,8 +1943,6 @@ int sched_rt_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, void __user *buffer, size_t *lenp,
loff_t *ppos); loff_t *ppos);
extern unsigned int sysctl_sched_compat_yield;
#ifdef CONFIG_SCHED_AUTOGROUP #ifdef CONFIG_SCHED_AUTOGROUP
extern unsigned int sysctl_sched_autogroup_enabled; extern unsigned int sysctl_sched_autogroup_enabled;
@ -1977,6 +1973,7 @@ static inline int rt_mutex_getprio(struct task_struct *p)
# define rt_mutex_adjust_pi(p) do { } while (0) # define rt_mutex_adjust_pi(p) do { } while (0)
#endif #endif
extern bool yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice); extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p); extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p); extern int task_nice(const struct task_struct *p);

Просмотреть файл

@ -324,7 +324,7 @@ struct cfs_rq {
* 'curr' points to currently running entity on this cfs_rq. * 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running). * It is set to NULL otherwise (i.e when none are currently running).
*/ */
struct sched_entity *curr, *next, *last; struct sched_entity *curr, *next, *last, *skip;
unsigned int nr_spread_over; unsigned int nr_spread_over;
@ -1683,6 +1683,39 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__release(rq2->lock); __release(rq2->lock);
} }
#else /* CONFIG_SMP */
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
BUG_ON(rq1 != rq2);
raw_spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
BUG_ON(rq1 != rq2);
raw_spin_unlock(&rq1->lock);
__release(rq2->lock);
}
#endif #endif
static void calc_load_account_idle(struct rq *this_rq); static void calc_load_account_idle(struct rq *this_rq);
@ -1877,7 +1910,7 @@ void account_system_vtime(struct task_struct *curr)
*/ */
if (hardirq_count()) if (hardirq_count())
__this_cpu_add(cpu_hardirq_time, delta); __this_cpu_add(cpu_hardirq_time, delta);
else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
__this_cpu_add(cpu_softirq_time, delta); __this_cpu_add(cpu_softirq_time, delta);
irq_time_write_end(); irq_time_write_end();
@ -1917,8 +1950,40 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
sched_rt_avg_update(rq, irq_delta); sched_rt_avg_update(rq, irq_delta);
} }
static int irqtime_account_hi_update(void)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
unsigned long flags;
u64 latest_ns;
int ret = 0;
local_irq_save(flags);
latest_ns = this_cpu_read(cpu_hardirq_time);
if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
ret = 1;
local_irq_restore(flags);
return ret;
}
static int irqtime_account_si_update(void)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
unsigned long flags;
u64 latest_ns;
int ret = 0;
local_irq_save(flags);
latest_ns = this_cpu_read(cpu_softirq_time);
if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
ret = 1;
local_irq_restore(flags);
return ret;
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */ #else /* CONFIG_IRQ_TIME_ACCOUNTING */
#define sched_clock_irqtime (0)
static void update_rq_clock_task(struct rq *rq, s64 delta) static void update_rq_clock_task(struct rq *rq, s64 delta)
{ {
rq->clock_task += delta; rq->clock_task += delta;
@ -2022,14 +2087,14 @@ inline int task_curr(const struct task_struct *p)
static inline void check_class_changed(struct rq *rq, struct task_struct *p, static inline void check_class_changed(struct rq *rq, struct task_struct *p,
const struct sched_class *prev_class, const struct sched_class *prev_class,
int oldprio, int running) int oldprio)
{ {
if (prev_class != p->sched_class) { if (prev_class != p->sched_class) {
if (prev_class->switched_from) if (prev_class->switched_from)
prev_class->switched_from(rq, p, running); prev_class->switched_from(rq, p);
p->sched_class->switched_to(rq, p, running); p->sched_class->switched_to(rq, p);
} else } else if (oldprio != p->prio)
p->sched_class->prio_changed(rq, p, oldprio, running); p->sched_class->prio_changed(rq, p, oldprio);
} }
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
@ -2542,6 +2607,7 @@ static void __sched_fork(struct task_struct *p)
p->se.sum_exec_runtime = 0; p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0;
p->se.nr_migrations = 0; p->se.nr_migrations = 0;
p->se.vruntime = 0;
#ifdef CONFIG_SCHEDSTATS #ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics)); memset(&p->se.statistics, 0, sizeof(p->se.statistics));
@ -3546,6 +3612,32 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
} }
} }
/*
* Account system cpu time to a process and desired cpustat field
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
* @target_cputime64: pointer to cpustat field that has to be updated
*/
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
cputime64_t tmp = cputime_to_cputime64(cputime);
/* Add system time to process. */
p->stime = cputime_add(p->stime, cputime);
p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
*target_cputime64 = cputime64_add(*target_cputime64, tmp);
cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
/* Account for system time used */
acct_update_integrals(p);
}
/* /*
* Account system cpu time to a process. * Account system cpu time to a process.
* @p: the process that the cpu time gets accounted to * @p: the process that the cpu time gets accounted to
@ -3557,36 +3649,26 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime, cputime_t cputime_scaled) cputime_t cputime, cputime_t cputime_scaled)
{ {
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp; cputime64_t *target_cputime64;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
account_guest_time(p, cputime, cputime_scaled); account_guest_time(p, cputime, cputime_scaled);
return; return;
} }
/* Add system time to process. */
p->stime = cputime_add(p->stime, cputime);
p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (hardirq_count() - hardirq_offset) if (hardirq_count() - hardirq_offset)
cpustat->irq = cputime64_add(cpustat->irq, tmp); target_cputime64 = &cpustat->irq;
else if (in_serving_softirq()) else if (in_serving_softirq())
cpustat->softirq = cputime64_add(cpustat->softirq, tmp); target_cputime64 = &cpustat->softirq;
else else
cpustat->system = cputime64_add(cpustat->system, tmp); target_cputime64 = &cpustat->system;
cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); __account_system_time(p, cputime, cputime_scaled, target_cputime64);
/* Account for system time used */
acct_update_integrals(p);
} }
/* /*
* Account for involuntary wait time. * Account for involuntary wait time.
* @steal: the cpu time spent in involuntary wait * @cputime: the cpu time spent in involuntary wait
*/ */
void account_steal_time(cputime_t cputime) void account_steal_time(cputime_t cputime)
{ {
@ -3614,6 +3696,73 @@ void account_idle_time(cputime_t cputime)
#ifndef CONFIG_VIRT_CPU_ACCOUNTING #ifndef CONFIG_VIRT_CPU_ACCOUNTING
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
* Account a tick to a process and cpustat
* @p: the process that the cpu time gets accounted to
* @user_tick: is the tick from userspace
* @rq: the pointer to rq
*
* Tick demultiplexing follows the order
* - pending hardirq update
* - pending softirq update
* - user_time
* - idle_time
* - system time
* - check for guest_time
* - else account as system_time
*
* Check for hardirq is done both for system and user time as there is
* no timer going off while we are on hardirq and hence we may never get an
* opportunity to update it solely in system time.
* p->stime and friends are only updated on system time and not on irq
* softirq as those do not count in task exec_runtime any more.
*/
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq)
{
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
if (irqtime_account_hi_update()) {
cpustat->irq = cputime64_add(cpustat->irq, tmp);
} else if (irqtime_account_si_update()) {
cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
} else if (this_cpu_ksoftirqd() == p) {
/*
* ksoftirqd time do not get accounted in cpu_softirq_time.
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
&cpustat->softirq);
} else if (user_tick) {
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
} else if (p == rq->idle) {
account_idle_time(cputime_one_jiffy);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
} else {
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
&cpustat->system);
}
}
static void irqtime_account_idle_ticks(int ticks)
{
int i;
struct rq *rq = this_rq();
for (i = 0; i < ticks; i++)
irqtime_account_process_tick(current, 0, rq);
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq) {}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
/* /*
* Account a single tick of cpu time. * Account a single tick of cpu time.
* @p: the process that the cpu time gets accounted to * @p: the process that the cpu time gets accounted to
@ -3624,6 +3773,11 @@ void account_process_tick(struct task_struct *p, int user_tick)
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
struct rq *rq = this_rq(); struct rq *rq = this_rq();
if (sched_clock_irqtime) {
irqtime_account_process_tick(p, user_tick, rq);
return;
}
if (user_tick) if (user_tick)
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
@ -3649,6 +3803,12 @@ void account_steal_ticks(unsigned long ticks)
*/ */
void account_idle_ticks(unsigned long ticks) void account_idle_ticks(unsigned long ticks)
{ {
if (sched_clock_irqtime) {
irqtime_account_idle_ticks(ticks);
return;
}
account_idle_time(jiffies_to_cputime(ticks)); account_idle_time(jiffies_to_cputime(ticks));
} }
@ -4547,11 +4707,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
if (running) if (running)
p->sched_class->set_curr_task(rq); p->sched_class->set_curr_task(rq);
if (on_rq) { if (on_rq)
enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
check_class_changed(rq, p, prev_class, oldprio, running); check_class_changed(rq, p, prev_class, oldprio);
}
task_rq_unlock(rq, &flags); task_rq_unlock(rq, &flags);
} }
@ -4799,12 +4958,15 @@ recheck:
param->sched_priority > rlim_rtprio) param->sched_priority > rlim_rtprio)
return -EPERM; return -EPERM;
} }
/* /*
* Like positive nice levels, dont allow tasks to * Treat SCHED_IDLE as nice 20. Only allow a switch to
* move out of SCHED_IDLE either: * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
*/ */
if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
return -EPERM; if (!can_nice(p, TASK_NICE(p)))
return -EPERM;
}
/* can't change other user's priorities */ /* can't change other user's priorities */
if (!check_same_owner(p)) if (!check_same_owner(p))
@ -4879,11 +5041,10 @@ recheck:
if (running) if (running)
p->sched_class->set_curr_task(rq); p->sched_class->set_curr_task(rq);
if (on_rq) { if (on_rq)
activate_task(rq, p, 0); activate_task(rq, p, 0);
check_class_changed(rq, p, prev_class, oldprio, running); check_class_changed(rq, p, prev_class, oldprio);
}
__task_rq_unlock(rq); __task_rq_unlock(rq);
raw_spin_unlock_irqrestore(&p->pi_lock, flags); raw_spin_unlock_irqrestore(&p->pi_lock, flags);
@ -5300,6 +5461,65 @@ void __sched yield(void)
} }
EXPORT_SYMBOL(yield); EXPORT_SYMBOL(yield);
/**
* yield_to - yield the current processor to another thread in
* your thread group, or accelerate that thread toward the
* processor it's on.
*
* It's the caller's job to ensure that the target task struct
* can't go away on us before we can do any checks.
*
* Returns true if we indeed boosted the target task.
*/
bool __sched yield_to(struct task_struct *p, bool preempt)
{
struct task_struct *curr = current;
struct rq *rq, *p_rq;
unsigned long flags;
bool yielded = 0;
local_irq_save(flags);
rq = this_rq();
again:
p_rq = task_rq(p);
double_rq_lock(rq, p_rq);
while (task_rq(p) != p_rq) {
double_rq_unlock(rq, p_rq);
goto again;
}
if (!curr->sched_class->yield_to_task)
goto out;
if (curr->sched_class != p->sched_class)
goto out;
if (task_running(p_rq, p) || p->state)
goto out;
yielded = curr->sched_class->yield_to_task(rq, p, preempt);
if (yielded) {
schedstat_inc(rq, yld_count);
/*
* Make p's CPU reschedule; pick_next_entity takes care of
* fairness.
*/
if (preempt && rq != p_rq)
resched_task(p_rq->curr);
}
out:
double_rq_unlock(rq, p_rq);
local_irq_restore(flags);
if (yielded)
schedule();
return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);
/* /*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so * This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state. * that process accounting knows that this is a task in IO wait state.
@ -7773,6 +7993,10 @@ static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
INIT_LIST_HEAD(&cfs_rq->tasks); INIT_LIST_HEAD(&cfs_rq->tasks);
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->rq = rq; cfs_rq->rq = rq;
/* allow initial update_cfs_load() to truncate */
#ifdef CONFIG_SMP
cfs_rq->load_stamp = 1;
#endif
#endif #endif
cfs_rq->min_vruntime = (u64)(-(1LL << 20)); cfs_rq->min_vruntime = (u64)(-(1LL << 20));
} }
@ -8086,6 +8310,8 @@ EXPORT_SYMBOL(__might_sleep);
#ifdef CONFIG_MAGIC_SYSRQ #ifdef CONFIG_MAGIC_SYSRQ
static void normalize_task(struct rq *rq, struct task_struct *p) static void normalize_task(struct rq *rq, struct task_struct *p)
{ {
const struct sched_class *prev_class = p->sched_class;
int old_prio = p->prio;
int on_rq; int on_rq;
on_rq = p->se.on_rq; on_rq = p->se.on_rq;
@ -8096,6 +8322,8 @@ static void normalize_task(struct rq *rq, struct task_struct *p)
activate_task(rq, p, 0); activate_task(rq, p, 0);
resched_task(rq->curr); resched_task(rq->curr);
} }
check_class_changed(rq, p, prev_class, old_prio);
} }
void normalize_rt_tasks(void) void normalize_rt_tasks(void)
@ -8487,7 +8715,7 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
/* Propagate contribution to hierarchy */ /* Propagate contribution to hierarchy */
raw_spin_lock_irqsave(&rq->lock, flags); raw_spin_lock_irqsave(&rq->lock, flags);
for_each_sched_entity(se) for_each_sched_entity(se)
update_cfs_shares(group_cfs_rq(se), 0); update_cfs_shares(group_cfs_rq(se));
raw_spin_unlock_irqrestore(&rq->lock, flags); raw_spin_unlock_irqrestore(&rq->lock, flags);
} }

Просмотреть файл

@ -12,7 +12,6 @@ static atomic_t autogroup_seq_nr;
static void __init autogroup_init(struct task_struct *init_task) static void __init autogroup_init(struct task_struct *init_task)
{ {
autogroup_default.tg = &root_task_group; autogroup_default.tg = &root_task_group;
root_task_group.autogroup = &autogroup_default;
kref_init(&autogroup_default.kref); kref_init(&autogroup_default.kref);
init_rwsem(&autogroup_default.lock); init_rwsem(&autogroup_default.lock);
init_task->signal->autogroup = &autogroup_default; init_task->signal->autogroup = &autogroup_default;
@ -130,7 +129,7 @@ task_wants_autogroup(struct task_struct *p, struct task_group *tg)
static inline bool task_group_is_autogroup(struct task_group *tg) static inline bool task_group_is_autogroup(struct task_group *tg)
{ {
return tg != &root_task_group && tg->autogroup; return !!tg->autogroup;
} }
static inline struct task_group * static inline struct task_group *
@ -161,11 +160,15 @@ autogroup_move_group(struct task_struct *p, struct autogroup *ag)
p->signal->autogroup = autogroup_kref_get(ag); p->signal->autogroup = autogroup_kref_get(ag);
if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled))
goto out;
t = p; t = p;
do { do {
sched_move_task(t); sched_move_task(t);
} while_each_thread(p, t); } while_each_thread(p, t);
out:
unlock_task_sighand(p, &flags); unlock_task_sighand(p, &flags);
autogroup_kref_put(prev); autogroup_kref_put(prev);
} }
@ -247,10 +250,14 @@ void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
{ {
struct autogroup *ag = autogroup_task_get(p); struct autogroup *ag = autogroup_task_get(p);
if (!task_group_is_autogroup(ag->tg))
goto out;
down_read(&ag->lock); down_read(&ag->lock);
seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice); seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
up_read(&ag->lock); up_read(&ag->lock);
out:
autogroup_kref_put(ag); autogroup_kref_put(ag);
} }
#endif /* CONFIG_PROC_FS */ #endif /* CONFIG_PROC_FS */
@ -258,9 +265,7 @@ void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
#ifdef CONFIG_SCHED_DEBUG #ifdef CONFIG_SCHED_DEBUG
static inline int autogroup_path(struct task_group *tg, char *buf, int buflen) static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
{ {
int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled); if (!task_group_is_autogroup(tg))
if (!enabled || !tg->autogroup)
return 0; return 0;
return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id); return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);

Просмотреть файл

@ -1,6 +1,11 @@
#ifdef CONFIG_SCHED_AUTOGROUP #ifdef CONFIG_SCHED_AUTOGROUP
struct autogroup { struct autogroup {
/*
* reference doesn't mean how many thread attach to this
* autogroup now. It just stands for the number of task
* could use this autogroup.
*/
struct kref kref; struct kref kref;
struct task_group *tg; struct task_group *tg;
struct rw_semaphore lock; struct rw_semaphore lock;

Просмотреть файл

@ -179,7 +179,7 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
raw_spin_lock_irqsave(&rq->lock, flags); raw_spin_lock_irqsave(&rq->lock, flags);
if (cfs_rq->rb_leftmost) if (cfs_rq->rb_leftmost)
MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime; MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
last = __pick_last_entity(cfs_rq); last = __pick_last_entity(cfs_rq);
if (last) if (last)
max_vruntime = last->vruntime; max_vruntime = last->vruntime;

Просмотреть файл

@ -68,14 +68,6 @@ static unsigned int sched_nr_latency = 8;
*/ */
unsigned int sysctl_sched_child_runs_first __read_mostly; unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* sys_sched_yield() compat mode
*
* This option switches the agressive yield implementation of the
* old scheduler back on.
*/
unsigned int __read_mostly sysctl_sched_compat_yield;
/* /*
* SCHED_OTHER wake-up granularity. * SCHED_OTHER wake-up granularity.
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
@ -419,7 +411,7 @@ static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
rb_erase(&se->run_node, &cfs_rq->tasks_timeline); rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
} }
static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{ {
struct rb_node *left = cfs_rq->rb_leftmost; struct rb_node *left = cfs_rq->rb_leftmost;
@ -429,6 +421,17 @@ static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
return rb_entry(left, struct sched_entity, run_node); return rb_entry(left, struct sched_entity, run_node);
} }
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
struct rb_node *next = rb_next(&se->run_node);
if (!next)
return NULL;
return rb_entry(next, struct sched_entity, run_node);
}
#ifdef CONFIG_SCHED_DEBUG
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{ {
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
@ -443,7 +446,6 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
* Scheduling class statistics methods: * Scheduling class statistics methods:
*/ */
#ifdef CONFIG_SCHED_DEBUG
int sched_proc_update_handler(struct ctl_table *table, int write, int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, void __user *buffer, size_t *lenp,
loff_t *ppos) loff_t *ppos)
@ -540,7 +542,7 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
} }
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta); static void update_cfs_shares(struct cfs_rq *cfs_rq);
/* /*
* Update the current task's runtime statistics. Skip current tasks that * Update the current task's runtime statistics. Skip current tasks that
@ -733,6 +735,7 @@ static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
now - cfs_rq->load_last > 4 * period) { now - cfs_rq->load_last > 4 * period) {
cfs_rq->load_period = 0; cfs_rq->load_period = 0;
cfs_rq->load_avg = 0; cfs_rq->load_avg = 0;
delta = period - 1;
} }
cfs_rq->load_stamp = now; cfs_rq->load_stamp = now;
@ -763,16 +766,15 @@ static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
list_del_leaf_cfs_rq(cfs_rq); list_del_leaf_cfs_rq(cfs_rq);
} }
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg, static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
long weight_delta)
{ {
long load_weight, load, shares; long load_weight, load, shares;
load = cfs_rq->load.weight + weight_delta; load = cfs_rq->load.weight;
load_weight = atomic_read(&tg->load_weight); load_weight = atomic_read(&tg->load_weight);
load_weight -= cfs_rq->load_contribution;
load_weight += load; load_weight += load;
load_weight -= cfs_rq->load_contribution;
shares = (tg->shares * load); shares = (tg->shares * load);
if (load_weight) if (load_weight)
@ -790,7 +792,7 @@ static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{ {
if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
update_cfs_load(cfs_rq, 0); update_cfs_load(cfs_rq, 0);
update_cfs_shares(cfs_rq, 0); update_cfs_shares(cfs_rq);
} }
} }
# else /* CONFIG_SMP */ # else /* CONFIG_SMP */
@ -798,8 +800,7 @@ static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{ {
} }
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg, static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
long weight_delta)
{ {
return tg->shares; return tg->shares;
} }
@ -824,7 +825,7 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
account_entity_enqueue(cfs_rq, se); account_entity_enqueue(cfs_rq, se);
} }
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta) static void update_cfs_shares(struct cfs_rq *cfs_rq)
{ {
struct task_group *tg; struct task_group *tg;
struct sched_entity *se; struct sched_entity *se;
@ -838,7 +839,7 @@ static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
if (likely(se->load.weight == tg->shares)) if (likely(se->load.weight == tg->shares))
return; return;
#endif #endif
shares = calc_cfs_shares(cfs_rq, tg, weight_delta); shares = calc_cfs_shares(cfs_rq, tg);
reweight_entity(cfs_rq_of(se), se, shares); reweight_entity(cfs_rq_of(se), se, shares);
} }
@ -847,7 +848,7 @@ static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{ {
} }
static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta) static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
{ {
} }
@ -978,8 +979,8 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*/ */
update_curr(cfs_rq); update_curr(cfs_rq);
update_cfs_load(cfs_rq, 0); update_cfs_load(cfs_rq, 0);
update_cfs_shares(cfs_rq, se->load.weight);
account_entity_enqueue(cfs_rq, se); account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
if (flags & ENQUEUE_WAKEUP) { if (flags & ENQUEUE_WAKEUP) {
place_entity(cfs_rq, se, 0); place_entity(cfs_rq, se, 0);
@ -996,19 +997,49 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
list_add_leaf_cfs_rq(cfs_rq); list_add_leaf_cfs_rq(cfs_rq);
} }
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) static void __clear_buddies_last(struct sched_entity *se)
{ {
if (!se || cfs_rq->last == se) for_each_sched_entity(se) {
cfs_rq->last = NULL; struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->last == se)
cfs_rq->last = NULL;
else
break;
}
}
if (!se || cfs_rq->next == se) static void __clear_buddies_next(struct sched_entity *se)
cfs_rq->next = NULL; {
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->next == se)
cfs_rq->next = NULL;
else
break;
}
}
static void __clear_buddies_skip(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->skip == se)
cfs_rq->skip = NULL;
else
break;
}
} }
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
for_each_sched_entity(se) if (cfs_rq->last == se)
__clear_buddies(cfs_rq_of(se), se); __clear_buddies_last(se);
if (cfs_rq->next == se)
__clear_buddies_next(se);
if (cfs_rq->skip == se)
__clear_buddies_skip(se);
} }
static void static void
@ -1041,7 +1072,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
update_cfs_load(cfs_rq, 0); update_cfs_load(cfs_rq, 0);
account_entity_dequeue(cfs_rq, se); account_entity_dequeue(cfs_rq, se);
update_min_vruntime(cfs_rq); update_min_vruntime(cfs_rq);
update_cfs_shares(cfs_rq, 0); update_cfs_shares(cfs_rq);
/* /*
* Normalize the entity after updating the min_vruntime because the * Normalize the entity after updating the min_vruntime because the
@ -1084,7 +1115,7 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
return; return;
if (cfs_rq->nr_running > 1) { if (cfs_rq->nr_running > 1) {
struct sched_entity *se = __pick_next_entity(cfs_rq); struct sched_entity *se = __pick_first_entity(cfs_rq);
s64 delta = curr->vruntime - se->vruntime; s64 delta = curr->vruntime - se->vruntime;
if (delta < 0) if (delta < 0)
@ -1128,13 +1159,27 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
static int static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
* 2) pick the "next" process, since someone really wants that to run
* 3) pick the "last" process, for cache locality
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
{ {
struct sched_entity *se = __pick_next_entity(cfs_rq); struct sched_entity *se = __pick_first_entity(cfs_rq);
struct sched_entity *left = se; struct sched_entity *left = se;
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) /*
se = cfs_rq->next; * Avoid running the skip buddy, if running something else can
* be done without getting too unfair.
*/
if (cfs_rq->skip == se) {
struct sched_entity *second = __pick_next_entity(se);
if (second && wakeup_preempt_entity(second, left) < 1)
se = second;
}
/* /*
* Prefer last buddy, try to return the CPU to a preempted task. * Prefer last buddy, try to return the CPU to a preempted task.
@ -1142,6 +1187,12 @@ static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
se = cfs_rq->last; se = cfs_rq->last;
/*
* Someone really wants this to run. If it's not unfair, run it.
*/
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
se = cfs_rq->next;
clear_buddies(cfs_rq, se); clear_buddies(cfs_rq, se);
return se; return se;
@ -1282,7 +1333,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
struct cfs_rq *cfs_rq = cfs_rq_of(se); struct cfs_rq *cfs_rq = cfs_rq_of(se);
update_cfs_load(cfs_rq, 0); update_cfs_load(cfs_rq, 0);
update_cfs_shares(cfs_rq, 0); update_cfs_shares(cfs_rq);
} }
hrtick_update(rq); hrtick_update(rq);
@ -1312,58 +1363,12 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
struct cfs_rq *cfs_rq = cfs_rq_of(se); struct cfs_rq *cfs_rq = cfs_rq_of(se);
update_cfs_load(cfs_rq, 0); update_cfs_load(cfs_rq, 0);
update_cfs_shares(cfs_rq, 0); update_cfs_shares(cfs_rq);
} }
hrtick_update(rq); hrtick_update(rq);
} }
/*
* sched_yield() support is very simple - we dequeue and enqueue.
*
* If compat_yield is turned on then we requeue to the end of the tree.
*/
static void yield_task_fair(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *rightmost, *se = &curr->se;
/*
* Are we the only task in the tree?
*/
if (unlikely(cfs_rq->nr_running == 1))
return;
clear_buddies(cfs_rq, se);
if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
update_rq_clock(rq);
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
return;
}
/*
* Find the rightmost entry in the rbtree:
*/
rightmost = __pick_last_entity(cfs_rq);
/*
* Already in the rightmost position?
*/
if (unlikely(!rightmost || entity_before(rightmost, se)))
return;
/*
* Minimally necessary key value to be last in the tree:
* Upon rescheduling, sched_class::put_prev_task() will place
* 'current' within the tree based on its new key value.
*/
se->vruntime = rightmost->vruntime + 1;
}
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
static void task_waking_fair(struct rq *rq, struct task_struct *p) static void task_waking_fair(struct rq *rq, struct task_struct *p)
@ -1834,6 +1839,14 @@ static void set_next_buddy(struct sched_entity *se)
} }
} }
static void set_skip_buddy(struct sched_entity *se)
{
if (likely(task_of(se)->policy != SCHED_IDLE)) {
for_each_sched_entity(se)
cfs_rq_of(se)->skip = se;
}
}
/* /*
* Preempt the current task with a newly woken task if needed: * Preempt the current task with a newly woken task if needed:
*/ */
@ -1857,16 +1870,18 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
if (test_tsk_need_resched(curr)) if (test_tsk_need_resched(curr))
return; return;
/* Idle tasks are by definition preempted by non-idle tasks. */
if (unlikely(curr->policy == SCHED_IDLE) &&
likely(p->policy != SCHED_IDLE))
goto preempt;
/* /*
* Batch and idle tasks do not preempt (their preemption is driven by * Batch and idle tasks do not preempt non-idle tasks (their preemption
* the tick): * is driven by the tick):
*/ */
if (unlikely(p->policy != SCHED_NORMAL)) if (unlikely(p->policy != SCHED_NORMAL))
return; return;
/* Idle tasks are by definition preempted by everybody. */
if (unlikely(curr->policy == SCHED_IDLE))
goto preempt;
if (!sched_feat(WAKEUP_PREEMPT)) if (!sched_feat(WAKEUP_PREEMPT))
return; return;
@ -1932,6 +1947,51 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
} }
} }
/*
* sched_yield() is very simple
*
* The magic of dealing with the ->skip buddy is in pick_next_entity.
*/
static void yield_task_fair(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se;
/*
* Are we the only task in the tree?
*/
if (unlikely(rq->nr_running == 1))
return;
clear_buddies(cfs_rq, se);
if (curr->policy != SCHED_BATCH) {
update_rq_clock(rq);
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
}
set_skip_buddy(se);
}
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
struct sched_entity *se = &p->se;
if (!se->on_rq)
return false;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy(se);
yield_task_fair(rq);
return true;
}
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/************************************************** /**************************************************
* Fair scheduling class load-balancing methods: * Fair scheduling class load-balancing methods:
@ -2123,7 +2183,7 @@ static int update_shares_cpu(struct task_group *tg, int cpu)
* We need to update shares after updating tg->load_weight in * We need to update shares after updating tg->load_weight in
* order to adjust the weight of groups with long running tasks. * order to adjust the weight of groups with long running tasks.
*/ */
update_cfs_shares(cfs_rq, 0); update_cfs_shares(cfs_rq);
raw_spin_unlock_irqrestore(&rq->lock, flags); raw_spin_unlock_irqrestore(&rq->lock, flags);
@ -2610,7 +2670,6 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
* @this_cpu: Cpu for which load balance is currently performed. * @this_cpu: Cpu for which load balance is currently performed.
* @idle: Idle status of this_cpu * @idle: Idle status of this_cpu
* @load_idx: Load index of sched_domain of this_cpu for load calc. * @load_idx: Load index of sched_domain of this_cpu for load calc.
* @sd_idle: Idle status of the sched_domain containing group.
* @local_group: Does group contain this_cpu. * @local_group: Does group contain this_cpu.
* @cpus: Set of cpus considered for load balancing. * @cpus: Set of cpus considered for load balancing.
* @balance: Should we balance. * @balance: Should we balance.
@ -2618,7 +2677,7 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
*/ */
static inline void update_sg_lb_stats(struct sched_domain *sd, static inline void update_sg_lb_stats(struct sched_domain *sd,
struct sched_group *group, int this_cpu, struct sched_group *group, int this_cpu,
enum cpu_idle_type idle, int load_idx, int *sd_idle, enum cpu_idle_type idle, int load_idx,
int local_group, const struct cpumask *cpus, int local_group, const struct cpumask *cpus,
int *balance, struct sg_lb_stats *sgs) int *balance, struct sg_lb_stats *sgs)
{ {
@ -2638,9 +2697,6 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
for_each_cpu_and(i, sched_group_cpus(group), cpus) { for_each_cpu_and(i, sched_group_cpus(group), cpus) {
struct rq *rq = cpu_rq(i); struct rq *rq = cpu_rq(i);
if (*sd_idle && rq->nr_running)
*sd_idle = 0;
/* Bias balancing toward cpus of our domain */ /* Bias balancing toward cpus of our domain */
if (local_group) { if (local_group) {
if (idle_cpu(i) && !first_idle_cpu) { if (idle_cpu(i) && !first_idle_cpu) {
@ -2685,7 +2741,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
/* /*
* Consider the group unbalanced when the imbalance is larger * Consider the group unbalanced when the imbalance is larger
* than the average weight of two tasks. * than the average weight of a task.
* *
* APZ: with cgroup the avg task weight can vary wildly and * APZ: with cgroup the avg task weight can vary wildly and
* might not be a suitable number - should we keep a * might not be a suitable number - should we keep a
@ -2695,7 +2751,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
if (sgs->sum_nr_running) if (sgs->sum_nr_running)
avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1) if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
sgs->group_imb = 1; sgs->group_imb = 1;
sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
@ -2755,15 +2811,13 @@ static bool update_sd_pick_busiest(struct sched_domain *sd,
* @sd: sched_domain whose statistics are to be updated. * @sd: sched_domain whose statistics are to be updated.
* @this_cpu: Cpu for which load balance is currently performed. * @this_cpu: Cpu for which load balance is currently performed.
* @idle: Idle status of this_cpu * @idle: Idle status of this_cpu
* @sd_idle: Idle status of the sched_domain containing sg.
* @cpus: Set of cpus considered for load balancing. * @cpus: Set of cpus considered for load balancing.
* @balance: Should we balance. * @balance: Should we balance.
* @sds: variable to hold the statistics for this sched_domain. * @sds: variable to hold the statistics for this sched_domain.
*/ */
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
enum cpu_idle_type idle, int *sd_idle, enum cpu_idle_type idle, const struct cpumask *cpus,
const struct cpumask *cpus, int *balance, int *balance, struct sd_lb_stats *sds)
struct sd_lb_stats *sds)
{ {
struct sched_domain *child = sd->child; struct sched_domain *child = sd->child;
struct sched_group *sg = sd->groups; struct sched_group *sg = sd->groups;
@ -2781,7 +2835,7 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
memset(&sgs, 0, sizeof(sgs)); memset(&sgs, 0, sizeof(sgs));
update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle, update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
local_group, cpus, balance, &sgs); local_group, cpus, balance, &sgs);
if (local_group && !(*balance)) if (local_group && !(*balance))
@ -3033,7 +3087,6 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
* @imbalance: Variable which stores amount of weighted load which should * @imbalance: Variable which stores amount of weighted load which should
* be moved to restore balance/put a group to idle. * be moved to restore balance/put a group to idle.
* @idle: The idle status of this_cpu. * @idle: The idle status of this_cpu.
* @sd_idle: The idleness of sd
* @cpus: The set of CPUs under consideration for load-balancing. * @cpus: The set of CPUs under consideration for load-balancing.
* @balance: Pointer to a variable indicating if this_cpu * @balance: Pointer to a variable indicating if this_cpu
* is the appropriate cpu to perform load balancing at this_level. * is the appropriate cpu to perform load balancing at this_level.
@ -3046,7 +3099,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
static struct sched_group * static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu, find_busiest_group(struct sched_domain *sd, int this_cpu,
unsigned long *imbalance, enum cpu_idle_type idle, unsigned long *imbalance, enum cpu_idle_type idle,
int *sd_idle, const struct cpumask *cpus, int *balance) const struct cpumask *cpus, int *balance)
{ {
struct sd_lb_stats sds; struct sd_lb_stats sds;
@ -3056,22 +3109,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
* Compute the various statistics relavent for load balancing at * Compute the various statistics relavent for load balancing at
* this level. * this level.
*/ */
update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
balance, &sds);
/* Cases where imbalance does not exist from POV of this_cpu */ /*
/* 1) this_cpu is not the appropriate cpu to perform load balancing * this_cpu is not the appropriate cpu to perform load balancing at
* at this level. * this level.
* 2) There is no busy sibling group to pull from.
* 3) This group is the busiest group.
* 4) This group is more busy than the avg busieness at this
* sched_domain.
* 5) The imbalance is within the specified limit.
*
* Note: when doing newidle balance, if the local group has excess
* capacity (i.e. nr_running < group_capacity) and the busiest group
* does not have any capacity, we force a load balance to pull tasks
* to the local group. In this case, we skip past checks 3, 4 and 5.
*/ */
if (!(*balance)) if (!(*balance))
goto ret; goto ret;
@ -3080,41 +3122,55 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
check_asym_packing(sd, &sds, this_cpu, imbalance)) check_asym_packing(sd, &sds, this_cpu, imbalance))
return sds.busiest; return sds.busiest;
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest || sds.busiest_nr_running == 0) if (!sds.busiest || sds.busiest_nr_running == 0)
goto out_balanced; goto out_balanced;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ /*
* If the busiest group is imbalanced the below checks don't
* work because they assumes all things are equal, which typically
* isn't true due to cpus_allowed constraints and the like.
*/
if (sds.group_imb)
goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
!sds.busiest_has_capacity) !sds.busiest_has_capacity)
goto force_balance; goto force_balance;
/*
* If the local group is more busy than the selected busiest group
* don't try and pull any tasks.
*/
if (sds.this_load >= sds.max_load) if (sds.this_load >= sds.max_load)
goto out_balanced; goto out_balanced;
/*
* Don't pull any tasks if this group is already above the domain
* average load.
*/
sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
if (sds.this_load >= sds.avg_load) if (sds.this_load >= sds.avg_load)
goto out_balanced; goto out_balanced;
/* if (idle == CPU_IDLE) {
* In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
* And to check for busy balance use !idle_cpu instead of
* CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
* even when they are idle.
*/
if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
goto out_balanced;
} else {
/* /*
* This cpu is idle. If the busiest group load doesn't * This cpu is idle. If the busiest group load doesn't
* have more tasks than the number of available cpu's and * have more tasks than the number of available cpu's and
* there is no imbalance between this and busiest group * there is no imbalance between this and busiest group
* wrt to idle cpu's, it is balanced. * wrt to idle cpu's, it is balanced.
*/ */
if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
sds.busiest_nr_running <= sds.busiest_group_weight) sds.busiest_nr_running <= sds.busiest_group_weight)
goto out_balanced; goto out_balanced;
} else {
/*
* In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
* imbalance_pct to be conservative.
*/
if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
goto out_balanced;
} }
force_balance: force_balance:
@ -3193,7 +3249,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
/* Working cpumask for load_balance and load_balance_newidle. */ /* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle, static int need_active_balance(struct sched_domain *sd, int idle,
int busiest_cpu, int this_cpu) int busiest_cpu, int this_cpu)
{ {
if (idle == CPU_NEWLY_IDLE) { if (idle == CPU_NEWLY_IDLE) {
@ -3225,10 +3281,6 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
* move_tasks() will succeed. ld_moved will be true and this * move_tasks() will succeed. ld_moved will be true and this
* active balance code will not be triggered. * active balance code will not be triggered.
*/ */
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return 0;
if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
return 0; return 0;
} }
@ -3246,7 +3298,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle, struct sched_domain *sd, enum cpu_idle_type idle,
int *balance) int *balance)
{ {
int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; int ld_moved, all_pinned = 0, active_balance = 0;
struct sched_group *group; struct sched_group *group;
unsigned long imbalance; unsigned long imbalance;
struct rq *busiest; struct rq *busiest;
@ -3255,20 +3307,10 @@ static int load_balance(int this_cpu, struct rq *this_rq,
cpumask_copy(cpus, cpu_active_mask); cpumask_copy(cpus, cpu_active_mask);
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as CPU_IDLE, instead of
* portraying it as CPU_NOT_IDLE.
*/
if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
schedstat_inc(sd, lb_count[idle]); schedstat_inc(sd, lb_count[idle]);
redo: redo:
group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, group = find_busiest_group(sd, this_cpu, &imbalance, idle,
cpus, balance); cpus, balance);
if (*balance == 0) if (*balance == 0)
@ -3330,8 +3372,7 @@ redo:
if (idle != CPU_NEWLY_IDLE) if (idle != CPU_NEWLY_IDLE)
sd->nr_balance_failed++; sd->nr_balance_failed++;
if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest), if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
this_cpu)) {
raw_spin_lock_irqsave(&busiest->lock, flags); raw_spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the active_load_balance_cpu_stop, /* don't kick the active_load_balance_cpu_stop,
@ -3386,10 +3427,6 @@ redo:
sd->balance_interval *= 2; sd->balance_interval *= 2;
} }
if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1;
goto out; goto out;
out_balanced: out_balanced:
@ -3403,11 +3440,7 @@ out_one_pinned:
(sd->balance_interval < sd->max_interval)) (sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2; sd->balance_interval *= 2;
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && ld_moved = 0;
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1;
else
ld_moved = 0;
out: out:
return ld_moved; return ld_moved;
} }
@ -3831,8 +3864,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
if (load_balance(cpu, rq, sd, idle, &balance)) { if (load_balance(cpu, rq, sd, idle, &balance)) {
/* /*
* We've pulled tasks over so either we're no * We've pulled tasks over so either we're no
* longer idle, or one of our SMT siblings is * longer idle.
* not idle.
*/ */
idle = CPU_NOT_IDLE; idle = CPU_NOT_IDLE;
} }
@ -4079,33 +4111,62 @@ static void task_fork_fair(struct task_struct *p)
* Priority of the task has changed. Check to see if we preempt * Priority of the task has changed. Check to see if we preempt
* the current task. * the current task.
*/ */
static void prio_changed_fair(struct rq *rq, struct task_struct *p, static void
int oldprio, int running) prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{ {
if (!p->se.on_rq)
return;
/* /*
* Reschedule if we are currently running on this runqueue and * Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on * our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's * this runqueue and our priority is higher than the current's
*/ */
if (running) { if (rq->curr == p) {
if (p->prio > oldprio) if (p->prio > oldprio)
resched_task(rq->curr); resched_task(rq->curr);
} else } else
check_preempt_curr(rq, p, 0); check_preempt_curr(rq, p, 0);
} }
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/*
* Ensure the task's vruntime is normalized, so that when its
* switched back to the fair class the enqueue_entity(.flags=0) will
* do the right thing.
*
* If it was on_rq, then the dequeue_entity(.flags=0) will already
* have normalized the vruntime, if it was !on_rq, then only when
* the task is sleeping will it still have non-normalized vruntime.
*/
if (!se->on_rq && p->state != TASK_RUNNING) {
/*
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
*/
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
}
}
/* /*
* We switched to the sched_fair class. * We switched to the sched_fair class.
*/ */
static void switched_to_fair(struct rq *rq, struct task_struct *p, static void switched_to_fair(struct rq *rq, struct task_struct *p)
int running)
{ {
if (!p->se.on_rq)
return;
/* /*
* We were most likely switched from sched_rt, so * We were most likely switched from sched_rt, so
* kick off the schedule if running, otherwise just see * kick off the schedule if running, otherwise just see
* if we can still preempt the current task. * if we can still preempt the current task.
*/ */
if (running) if (rq->curr == p)
resched_task(rq->curr); resched_task(rq->curr);
else else
check_preempt_curr(rq, p, 0); check_preempt_curr(rq, p, 0);
@ -4171,6 +4232,7 @@ static const struct sched_class fair_sched_class = {
.enqueue_task = enqueue_task_fair, .enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair, .dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair, .yield_task = yield_task_fair,
.yield_to_task = yield_to_task_fair,
.check_preempt_curr = check_preempt_wakeup, .check_preempt_curr = check_preempt_wakeup,
@ -4191,6 +4253,7 @@ static const struct sched_class fair_sched_class = {
.task_fork = task_fork_fair, .task_fork = task_fork_fair,
.prio_changed = prio_changed_fair, .prio_changed = prio_changed_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair, .switched_to = switched_to_fair,
.get_rr_interval = get_rr_interval_fair, .get_rr_interval = get_rr_interval_fair,

Просмотреть файл

@ -52,31 +52,15 @@ static void set_curr_task_idle(struct rq *rq)
{ {
} }
static void switched_to_idle(struct rq *rq, struct task_struct *p, static void switched_to_idle(struct rq *rq, struct task_struct *p)
int running)
{ {
/* Can this actually happen?? */ BUG();
if (running)
resched_task(rq->curr);
else
check_preempt_curr(rq, p, 0);
} }
static void prio_changed_idle(struct rq *rq, struct task_struct *p, static void
int oldprio, int running) prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
{ {
/* This can happen for hot plug CPUS */ BUG();
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (running) {
if (p->prio > oldprio)
resched_task(rq->curr);
} else
check_preempt_curr(rq, p, 0);
} }
static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task)

Просмотреть файл

@ -1599,8 +1599,7 @@ static void rq_offline_rt(struct rq *rq)
* When switch from the rt queue, we bring ourselves to a position * When switch from the rt queue, we bring ourselves to a position
* that we might want to pull RT tasks from other runqueues. * that we might want to pull RT tasks from other runqueues.
*/ */
static void switched_from_rt(struct rq *rq, struct task_struct *p, static void switched_from_rt(struct rq *rq, struct task_struct *p)
int running)
{ {
/* /*
* If there are other RT tasks then we will reschedule * If there are other RT tasks then we will reschedule
@ -1609,7 +1608,7 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p,
* we may need to handle the pulling of RT tasks * we may need to handle the pulling of RT tasks
* now. * now.
*/ */
if (!rq->rt.rt_nr_running) if (p->se.on_rq && !rq->rt.rt_nr_running)
pull_rt_task(rq); pull_rt_task(rq);
} }
@ -1628,8 +1627,7 @@ static inline void init_sched_rt_class(void)
* with RT tasks. In this case we try to push them off to * with RT tasks. In this case we try to push them off to
* other runqueues. * other runqueues.
*/ */
static void switched_to_rt(struct rq *rq, struct task_struct *p, static void switched_to_rt(struct rq *rq, struct task_struct *p)
int running)
{ {
int check_resched = 1; int check_resched = 1;
@ -1640,7 +1638,7 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p,
* If that current running task is also an RT task * If that current running task is also an RT task
* then see if we can move to another run queue. * then see if we can move to another run queue.
*/ */
if (!running) { if (p->se.on_rq && rq->curr != p) {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (rq->rt.overloaded && push_rt_task(rq) && if (rq->rt.overloaded && push_rt_task(rq) &&
/* Don't resched if we changed runqueues */ /* Don't resched if we changed runqueues */
@ -1656,10 +1654,13 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p,
* Priority of the task has changed. This may cause * Priority of the task has changed. This may cause
* us to initiate a push or pull. * us to initiate a push or pull.
*/ */
static void prio_changed_rt(struct rq *rq, struct task_struct *p, static void
int oldprio, int running) prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
{ {
if (running) { if (!p->se.on_rq)
return;
if (rq->curr == p) {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/* /*
* If our priority decreases while running, we * If our priority decreases while running, we

Просмотреть файл

@ -59,14 +59,13 @@ static void set_curr_task_stop(struct rq *rq)
{ {
} }
static void switched_to_stop(struct rq *rq, struct task_struct *p, static void switched_to_stop(struct rq *rq, struct task_struct *p)
int running)
{ {
BUG(); /* its impossible to change to this class */ BUG(); /* its impossible to change to this class */
} }
static void prio_changed_stop(struct rq *rq, struct task_struct *p, static void
int oldprio, int running) prio_changed_stop(struct rq *rq, struct task_struct *p, int oldprio)
{ {
BUG(); /* how!?, what priority? */ BUG(); /* how!?, what priority? */
} }

Просмотреть файл

@ -54,7 +54,7 @@ EXPORT_SYMBOL(irq_stat);
static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp; static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); DEFINE_PER_CPU(struct task_struct *, ksoftirqd);
char *softirq_to_name[NR_SOFTIRQS] = { char *softirq_to_name[NR_SOFTIRQS] = {
"HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL",
@ -721,7 +721,6 @@ static int run_ksoftirqd(void * __bind_cpu)
{ {
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
current->flags |= PF_KSOFTIRQD;
while (!kthread_should_stop()) { while (!kthread_should_stop()) {
preempt_disable(); preempt_disable();
if (!local_softirq_pending()) { if (!local_softirq_pending()) {

Просмотреть файл

@ -361,20 +361,13 @@ static struct ctl_table kern_table[] = {
.mode = 0644, .mode = 0644,
.proc_handler = sched_rt_handler, .proc_handler = sched_rt_handler,
}, },
{
.procname = "sched_compat_yield",
.data = &sysctl_sched_compat_yield,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_SCHED_AUTOGROUP #ifdef CONFIG_SCHED_AUTOGROUP
{ {
.procname = "sched_autogroup_enabled", .procname = "sched_autogroup_enabled",
.data = &sysctl_sched_autogroup_enabled, .data = &sysctl_sched_autogroup_enabled,
.maxlen = sizeof(unsigned int), .maxlen = sizeof(unsigned int),
.mode = 0644, .mode = 0644,
.proc_handler = proc_dointvec, .proc_handler = proc_dointvec_minmax,
.extra1 = &zero, .extra1 = &zero,
.extra2 = &one, .extra2 = &one,
}, },

Просмотреть файл

@ -645,7 +645,7 @@ u64 nsec_to_clock_t(u64 x)
} }
/** /**
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
* *
* @n: nsecs in u64 * @n: nsecs in u64
* *
@ -657,7 +657,7 @@ u64 nsec_to_clock_t(u64 x)
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
*/ */
unsigned long nsecs_to_jiffies(u64 n) u64 nsecs_to_jiffies64(u64 n)
{ {
#if (NSEC_PER_SEC % HZ) == 0 #if (NSEC_PER_SEC % HZ) == 0
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
@ -674,6 +674,25 @@ unsigned long nsecs_to_jiffies(u64 n)
#endif #endif
} }
/**
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
*
* @n: nsecs in u64
*
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
* for scheduler, not for use in device drivers to calculate timeout value.
*
* note:
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
*/
unsigned long nsecs_to_jiffies(u64 n)
{
return (unsigned long)nsecs_to_jiffies64(n);
}
#if (BITS_PER_LONG < 64) #if (BITS_PER_LONG < 64)
u64 get_jiffies_64(void) u64 get_jiffies_64(void)
{ {