Merge branch 'slab-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/christoph/vm
* 'slab-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/christoph/vm: slub: fix possible NULL pointer dereference slub: Add kmalloc_large_node() to support kmalloc_node fallback slub: look up object from the freelist once slub: Fix up comments slub: Rearrange #ifdef CONFIG_SLUB_DEBUG in calculate_sizes() slub: Remove BUG_ON() from ksize and omit checks for !SLUB_DEBUG slub: Use the objsize from the kmem_cache_cpu structure slub: Remove useless checks in alloc_debug_processing slub: Remove objsize check in kmem_cache_flags() slub: rename slab_objects to show_slab_objects Revert "unique end pointer" patch slab: avoid double initialization & do initialization in 1 place
This commit is contained in:
Коммит
976dde010e
|
@ -64,10 +64,7 @@ struct page {
|
|||
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
|
||||
spinlock_t ptl;
|
||||
#endif
|
||||
struct {
|
||||
struct kmem_cache *slab; /* SLUB: Pointer to slab */
|
||||
void *end; /* SLUB: end marker */
|
||||
};
|
||||
struct kmem_cache *slab; /* SLUB: Pointer to slab */
|
||||
struct page *first_page; /* Compound tail pages */
|
||||
};
|
||||
union {
|
||||
|
|
|
@ -61,7 +61,7 @@ struct kmem_cache {
|
|||
int size; /* The size of an object including meta data */
|
||||
int objsize; /* The size of an object without meta data */
|
||||
int offset; /* Free pointer offset. */
|
||||
int order;
|
||||
int order; /* Current preferred allocation order */
|
||||
|
||||
/*
|
||||
* Avoid an extra cache line for UP, SMP and for the node local to
|
||||
|
@ -138,11 +138,11 @@ static __always_inline int kmalloc_index(size_t size)
|
|||
if (size <= 512) return 9;
|
||||
if (size <= 1024) return 10;
|
||||
if (size <= 2 * 1024) return 11;
|
||||
if (size <= 4 * 1024) return 12;
|
||||
/*
|
||||
* The following is only needed to support architectures with a larger page
|
||||
* size than 4k.
|
||||
*/
|
||||
if (size <= 4 * 1024) return 12;
|
||||
if (size <= 8 * 1024) return 13;
|
||||
if (size <= 16 * 1024) return 14;
|
||||
if (size <= 32 * 1024) return 15;
|
||||
|
|
204
mm/slub.c
204
mm/slub.c
|
@ -291,32 +291,16 @@ static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
|
|||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* The end pointer in a slab is special. It points to the first object in the
|
||||
* slab but has bit 0 set to mark it.
|
||||
*
|
||||
* Note that SLUB relies on page_mapping returning NULL for pages with bit 0
|
||||
* in the mapping set.
|
||||
*/
|
||||
static inline int is_end(void *addr)
|
||||
{
|
||||
return (unsigned long)addr & PAGE_MAPPING_ANON;
|
||||
}
|
||||
|
||||
static void *slab_address(struct page *page)
|
||||
{
|
||||
return page->end - PAGE_MAPPING_ANON;
|
||||
}
|
||||
|
||||
/* Verify that a pointer has an address that is valid within a slab page */
|
||||
static inline int check_valid_pointer(struct kmem_cache *s,
|
||||
struct page *page, const void *object)
|
||||
{
|
||||
void *base;
|
||||
|
||||
if (object == page->end)
|
||||
if (!object)
|
||||
return 1;
|
||||
|
||||
base = slab_address(page);
|
||||
base = page_address(page);
|
||||
if (object < base || object >= base + s->objects * s->size ||
|
||||
(object - base) % s->size) {
|
||||
return 0;
|
||||
|
@ -349,8 +333,7 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
|
|||
|
||||
/* Scan freelist */
|
||||
#define for_each_free_object(__p, __s, __free) \
|
||||
for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
|
||||
__p))
|
||||
for (__p = (__free); __p; __p = get_freepointer((__s), __p))
|
||||
|
||||
/* Determine object index from a given position */
|
||||
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
|
||||
|
@ -502,7 +485,7 @@ static void slab_fix(struct kmem_cache *s, char *fmt, ...)
|
|||
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
|
||||
{
|
||||
unsigned int off; /* Offset of last byte */
|
||||
u8 *addr = slab_address(page);
|
||||
u8 *addr = page_address(page);
|
||||
|
||||
print_tracking(s, p);
|
||||
|
||||
|
@ -637,7 +620,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
|
|||
* A. Free pointer (if we cannot overwrite object on free)
|
||||
* B. Tracking data for SLAB_STORE_USER
|
||||
* C. Padding to reach required alignment boundary or at mininum
|
||||
* one word if debuggin is on to be able to detect writes
|
||||
* one word if debugging is on to be able to detect writes
|
||||
* before the word boundary.
|
||||
*
|
||||
* Padding is done using 0x5a (POISON_INUSE)
|
||||
|
@ -680,7 +663,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
|
|||
if (!(s->flags & SLAB_POISON))
|
||||
return 1;
|
||||
|
||||
start = slab_address(page);
|
||||
start = page_address(page);
|
||||
end = start + (PAGE_SIZE << s->order);
|
||||
length = s->objects * s->size;
|
||||
remainder = end - (start + length);
|
||||
|
@ -748,7 +731,7 @@ static int check_object(struct kmem_cache *s, struct page *page,
|
|||
* of the free objects in this slab. May cause
|
||||
* another error because the object count is now wrong.
|
||||
*/
|
||||
set_freepointer(s, p, page->end);
|
||||
set_freepointer(s, p, NULL);
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
|
@ -782,18 +765,18 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
|||
void *fp = page->freelist;
|
||||
void *object = NULL;
|
||||
|
||||
while (fp != page->end && nr <= s->objects) {
|
||||
while (fp && nr <= s->objects) {
|
||||
if (fp == search)
|
||||
return 1;
|
||||
if (!check_valid_pointer(s, page, fp)) {
|
||||
if (object) {
|
||||
object_err(s, page, object,
|
||||
"Freechain corrupt");
|
||||
set_freepointer(s, object, page->end);
|
||||
set_freepointer(s, object, NULL);
|
||||
break;
|
||||
} else {
|
||||
slab_err(s, page, "Freepointer corrupt");
|
||||
page->freelist = page->end;
|
||||
page->freelist = NULL;
|
||||
page->inuse = s->objects;
|
||||
slab_fix(s, "Freelist cleared");
|
||||
return 0;
|
||||
|
@ -870,7 +853,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
|
|||
if (!check_slab(s, page))
|
||||
goto bad;
|
||||
|
||||
if (object && !on_freelist(s, page, object)) {
|
||||
if (!on_freelist(s, page, object)) {
|
||||
object_err(s, page, object, "Object already allocated");
|
||||
goto bad;
|
||||
}
|
||||
|
@ -880,7 +863,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
|
|||
goto bad;
|
||||
}
|
||||
|
||||
if (object && !check_object(s, page, object, 0))
|
||||
if (!check_object(s, page, object, 0))
|
||||
goto bad;
|
||||
|
||||
/* Success perform special debug activities for allocs */
|
||||
|
@ -899,7 +882,7 @@ bad:
|
|||
*/
|
||||
slab_fix(s, "Marking all objects used");
|
||||
page->inuse = s->objects;
|
||||
page->freelist = page->end;
|
||||
page->freelist = NULL;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -939,7 +922,7 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page,
|
|||
}
|
||||
|
||||
/* Special debug activities for freeing objects */
|
||||
if (!SlabFrozen(page) && page->freelist == page->end)
|
||||
if (!SlabFrozen(page) && !page->freelist)
|
||||
remove_full(s, page);
|
||||
if (s->flags & SLAB_STORE_USER)
|
||||
set_track(s, object, TRACK_FREE, addr);
|
||||
|
@ -1015,30 +998,11 @@ static unsigned long kmem_cache_flags(unsigned long objsize,
|
|||
void (*ctor)(struct kmem_cache *, void *))
|
||||
{
|
||||
/*
|
||||
* The page->offset field is only 16 bit wide. This is an offset
|
||||
* in units of words from the beginning of an object. If the slab
|
||||
* size is bigger then we cannot move the free pointer behind the
|
||||
* object anymore.
|
||||
*
|
||||
* On 32 bit platforms the limit is 256k. On 64bit platforms
|
||||
* the limit is 512k.
|
||||
*
|
||||
* Debugging or ctor may create a need to move the free
|
||||
* pointer. Fail if this happens.
|
||||
* Enable debugging if selected on the kernel commandline.
|
||||
*/
|
||||
if (objsize >= 65535 * sizeof(void *)) {
|
||||
BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
|
||||
SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
|
||||
BUG_ON(ctor);
|
||||
} else {
|
||||
/*
|
||||
* Enable debugging if selected on the kernel commandline.
|
||||
*/
|
||||
if (slub_debug && (!slub_debug_slabs ||
|
||||
strncmp(slub_debug_slabs, name,
|
||||
strlen(slub_debug_slabs)) == 0))
|
||||
flags |= slub_debug;
|
||||
}
|
||||
if (slub_debug && (!slub_debug_slabs ||
|
||||
strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
|
||||
flags |= slub_debug;
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
@ -1124,7 +1088,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
|
|||
SetSlabDebug(page);
|
||||
|
||||
start = page_address(page);
|
||||
page->end = start + 1;
|
||||
|
||||
if (unlikely(s->flags & SLAB_POISON))
|
||||
memset(start, POISON_INUSE, PAGE_SIZE << s->order);
|
||||
|
@ -1136,7 +1099,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
|
|||
last = p;
|
||||
}
|
||||
setup_object(s, page, last);
|
||||
set_freepointer(s, last, page->end);
|
||||
set_freepointer(s, last, NULL);
|
||||
|
||||
page->freelist = start;
|
||||
page->inuse = 0;
|
||||
|
@ -1152,7 +1115,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
|
|||
void *p;
|
||||
|
||||
slab_pad_check(s, page);
|
||||
for_each_object(p, s, slab_address(page))
|
||||
for_each_object(p, s, page_address(page))
|
||||
check_object(s, page, p, 0);
|
||||
ClearSlabDebug(page);
|
||||
}
|
||||
|
@ -1162,7 +1125,6 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
|
|||
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
|
||||
-pages);
|
||||
|
||||
page->mapping = NULL;
|
||||
__free_pages(page, s->order);
|
||||
}
|
||||
|
||||
|
@ -1307,7 +1269,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
|
|||
* may return off node objects because partial slabs are obtained
|
||||
* from other nodes and filled up.
|
||||
*
|
||||
* If /sys/slab/xx/defrag_ratio is set to 100 (which makes
|
||||
* If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
|
||||
* defrag_ratio = 1000) then every (well almost) allocation will
|
||||
* first attempt to defrag slab caches on other nodes. This means
|
||||
* scanning over all nodes to look for partial slabs which may be
|
||||
|
@ -1366,7 +1328,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
|||
ClearSlabFrozen(page);
|
||||
if (page->inuse) {
|
||||
|
||||
if (page->freelist != page->end) {
|
||||
if (page->freelist) {
|
||||
add_partial(n, page, tail);
|
||||
stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
|
||||
} else {
|
||||
|
@ -1382,9 +1344,11 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
|||
* Adding an empty slab to the partial slabs in order
|
||||
* to avoid page allocator overhead. This slab needs
|
||||
* to come after the other slabs with objects in
|
||||
* order to fill them up. That way the size of the
|
||||
* partial list stays small. kmem_cache_shrink can
|
||||
* reclaim empty slabs from the partial list.
|
||||
* so that the others get filled first. That way the
|
||||
* size of the partial list stays small.
|
||||
*
|
||||
* kmem_cache_shrink can reclaim any empty slabs from the
|
||||
* partial list.
|
||||
*/
|
||||
add_partial(n, page, 1);
|
||||
slab_unlock(page);
|
||||
|
@ -1407,15 +1371,11 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
if (c->freelist)
|
||||
stat(c, DEACTIVATE_REMOTE_FREES);
|
||||
/*
|
||||
* Merge cpu freelist into freelist. Typically we get here
|
||||
* Merge cpu freelist into slab freelist. Typically we get here
|
||||
* because both freelists are empty. So this is unlikely
|
||||
* to occur.
|
||||
*
|
||||
* We need to use _is_end here because deactivate slab may
|
||||
* be called for a debug slab. Then c->freelist may contain
|
||||
* a dummy pointer.
|
||||
*/
|
||||
while (unlikely(!is_end(c->freelist))) {
|
||||
while (unlikely(c->freelist)) {
|
||||
void **object;
|
||||
|
||||
tail = 0; /* Hot objects. Put the slab first */
|
||||
|
@ -1442,6 +1402,7 @@ static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
|
||||
/*
|
||||
* Flush cpu slab.
|
||||
*
|
||||
* Called from IPI handler with interrupts disabled.
|
||||
*/
|
||||
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
|
||||
|
@ -1500,7 +1461,8 @@ static inline int node_match(struct kmem_cache_cpu *c, int node)
|
|||
* rest of the freelist to the lockless freelist.
|
||||
*
|
||||
* And if we were unable to get a new slab from the partial slab lists then
|
||||
* we need to allocate a new slab. This is slowest path since we may sleep.
|
||||
* we need to allocate a new slab. This is the slowest path since it involves
|
||||
* a call to the page allocator and the setup of a new slab.
|
||||
*/
|
||||
static void *__slab_alloc(struct kmem_cache *s,
|
||||
gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
|
||||
|
@ -1514,18 +1476,19 @@ static void *__slab_alloc(struct kmem_cache *s,
|
|||
slab_lock(c->page);
|
||||
if (unlikely(!node_match(c, node)))
|
||||
goto another_slab;
|
||||
|
||||
stat(c, ALLOC_REFILL);
|
||||
|
||||
load_freelist:
|
||||
object = c->page->freelist;
|
||||
if (unlikely(object == c->page->end))
|
||||
if (unlikely(!object))
|
||||
goto another_slab;
|
||||
if (unlikely(SlabDebug(c->page)))
|
||||
goto debug;
|
||||
|
||||
object = c->page->freelist;
|
||||
c->freelist = object[c->offset];
|
||||
c->page->inuse = s->objects;
|
||||
c->page->freelist = c->page->end;
|
||||
c->page->freelist = NULL;
|
||||
c->node = page_to_nid(c->page);
|
||||
unlock_out:
|
||||
slab_unlock(c->page);
|
||||
|
@ -1578,7 +1541,6 @@ new_slab:
|
|||
|
||||
return NULL;
|
||||
debug:
|
||||
object = c->page->freelist;
|
||||
if (!alloc_debug_processing(s, c->page, object, addr))
|
||||
goto another_slab;
|
||||
|
||||
|
@ -1607,7 +1569,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
|
|||
|
||||
local_irq_save(flags);
|
||||
c = get_cpu_slab(s, smp_processor_id());
|
||||
if (unlikely(is_end(c->freelist) || !node_match(c, node)))
|
||||
if (unlikely(!c->freelist || !node_match(c, node)))
|
||||
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c);
|
||||
|
||||
|
@ -1659,6 +1621,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
|||
|
||||
if (unlikely(SlabDebug(page)))
|
||||
goto debug;
|
||||
|
||||
checks_ok:
|
||||
prior = object[offset] = page->freelist;
|
||||
page->freelist = object;
|
||||
|
@ -1673,11 +1636,10 @@ checks_ok:
|
|||
goto slab_empty;
|
||||
|
||||
/*
|
||||
* Objects left in the slab. If it
|
||||
* was not on the partial list before
|
||||
* Objects left in the slab. If it was not on the partial list before
|
||||
* then add it.
|
||||
*/
|
||||
if (unlikely(prior == page->end)) {
|
||||
if (unlikely(!prior)) {
|
||||
add_partial(get_node(s, page_to_nid(page)), page, 1);
|
||||
stat(c, FREE_ADD_PARTIAL);
|
||||
}
|
||||
|
@ -1687,7 +1649,7 @@ out_unlock:
|
|||
return;
|
||||
|
||||
slab_empty:
|
||||
if (prior != page->end) {
|
||||
if (prior) {
|
||||
/*
|
||||
* Slab still on the partial list.
|
||||
*/
|
||||
|
@ -1724,8 +1686,8 @@ static __always_inline void slab_free(struct kmem_cache *s,
|
|||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
debug_check_no_locks_freed(object, s->objsize);
|
||||
c = get_cpu_slab(s, smp_processor_id());
|
||||
debug_check_no_locks_freed(object, c->objsize);
|
||||
if (likely(page == c->page && c->node >= 0)) {
|
||||
object[c->offset] = c->freelist;
|
||||
c->freelist = object;
|
||||
|
@ -1888,13 +1850,11 @@ static unsigned long calculate_alignment(unsigned long flags,
|
|||
unsigned long align, unsigned long size)
|
||||
{
|
||||
/*
|
||||
* If the user wants hardware cache aligned objects then
|
||||
* follow that suggestion if the object is sufficiently
|
||||
* large.
|
||||
* If the user wants hardware cache aligned objects then follow that
|
||||
* suggestion if the object is sufficiently large.
|
||||
*
|
||||
* The hardware cache alignment cannot override the
|
||||
* specified alignment though. If that is greater
|
||||
* then use it.
|
||||
* The hardware cache alignment cannot override the specified
|
||||
* alignment though. If that is greater then use it.
|
||||
*/
|
||||
if ((flags & SLAB_HWCACHE_ALIGN) &&
|
||||
size > cache_line_size() / 2)
|
||||
|
@ -1910,7 +1870,7 @@ static void init_kmem_cache_cpu(struct kmem_cache *s,
|
|||
struct kmem_cache_cpu *c)
|
||||
{
|
||||
c->page = NULL;
|
||||
c->freelist = (void *)PAGE_MAPPING_ANON;
|
||||
c->freelist = NULL;
|
||||
c->node = 0;
|
||||
c->offset = s->offset / sizeof(void *);
|
||||
c->objsize = s->objsize;
|
||||
|
@ -2092,6 +2052,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
|
|||
#endif
|
||||
init_kmem_cache_node(n);
|
||||
atomic_long_inc(&n->nr_slabs);
|
||||
|
||||
/*
|
||||
* lockdep requires consistent irq usage for each lock
|
||||
* so even though there cannot be a race this early in
|
||||
|
@ -2172,6 +2133,14 @@ static int calculate_sizes(struct kmem_cache *s)
|
|||
unsigned long size = s->objsize;
|
||||
unsigned long align = s->align;
|
||||
|
||||
/*
|
||||
* Round up object size to the next word boundary. We can only
|
||||
* place the free pointer at word boundaries and this determines
|
||||
* the possible location of the free pointer.
|
||||
*/
|
||||
size = ALIGN(size, sizeof(void *));
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* Determine if we can poison the object itself. If the user of
|
||||
* the slab may touch the object after free or before allocation
|
||||
|
@ -2183,14 +2152,7 @@ static int calculate_sizes(struct kmem_cache *s)
|
|||
else
|
||||
s->flags &= ~__OBJECT_POISON;
|
||||
|
||||
/*
|
||||
* Round up object size to the next word boundary. We can only
|
||||
* place the free pointer at word boundaries and this determines
|
||||
* the possible location of the free pointer.
|
||||
*/
|
||||
size = ALIGN(size, sizeof(void *));
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* If we are Redzoning then check if there is some space between the
|
||||
* end of the object and the free pointer. If not then add an
|
||||
|
@ -2343,7 +2305,7 @@ int kmem_ptr_validate(struct kmem_cache *s, const void *object)
|
|||
/*
|
||||
* We could also check if the object is on the slabs freelist.
|
||||
* But this would be too expensive and it seems that the main
|
||||
* purpose of kmem_ptr_valid is to check if the object belongs
|
||||
* purpose of kmem_ptr_valid() is to check if the object belongs
|
||||
* to a certain slab.
|
||||
*/
|
||||
return 1;
|
||||
|
@ -2630,13 +2592,24 @@ void *__kmalloc(size_t size, gfp_t flags)
|
|||
}
|
||||
EXPORT_SYMBOL(__kmalloc);
|
||||
|
||||
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
|
||||
{
|
||||
struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
|
||||
get_order(size));
|
||||
|
||||
if (page)
|
||||
return page_address(page);
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
||||
{
|
||||
struct kmem_cache *s;
|
||||
|
||||
if (unlikely(size > PAGE_SIZE))
|
||||
return kmalloc_large(size, flags);
|
||||
return kmalloc_large_node(size, flags, node);
|
||||
|
||||
s = get_slab(size, flags);
|
||||
|
||||
|
@ -2653,19 +2626,17 @@ size_t ksize(const void *object)
|
|||
struct page *page;
|
||||
struct kmem_cache *s;
|
||||
|
||||
BUG_ON(!object);
|
||||
if (unlikely(object == ZERO_SIZE_PTR))
|
||||
return 0;
|
||||
|
||||
page = virt_to_head_page(object);
|
||||
BUG_ON(!page);
|
||||
|
||||
if (unlikely(!PageSlab(page)))
|
||||
return PAGE_SIZE << compound_order(page);
|
||||
|
||||
s = page->slab;
|
||||
BUG_ON(!s);
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* Debugging requires use of the padding between object
|
||||
* and whatever may come after it.
|
||||
|
@ -2673,6 +2644,7 @@ size_t ksize(const void *object)
|
|||
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
||||
return s->objsize;
|
||||
|
||||
#endif
|
||||
/*
|
||||
* If we have the need to store the freelist pointer
|
||||
* back there or track user information then we can
|
||||
|
@ -2680,7 +2652,6 @@ size_t ksize(const void *object)
|
|||
*/
|
||||
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
||||
return s->inuse;
|
||||
|
||||
/*
|
||||
* Else we can use all the padding etc for the allocation
|
||||
*/
|
||||
|
@ -2957,7 +2928,7 @@ void __init kmem_cache_init(void)
|
|||
/*
|
||||
* Patch up the size_index table if we have strange large alignment
|
||||
* requirements for the kmalloc array. This is only the case for
|
||||
* mips it seems. The standard arches will not generate any code here.
|
||||
* MIPS it seems. The standard arches will not generate any code here.
|
||||
*
|
||||
* Largest permitted alignment is 256 bytes due to the way we
|
||||
* handle the index determination for the smaller caches.
|
||||
|
@ -2986,7 +2957,6 @@ void __init kmem_cache_init(void)
|
|||
kmem_size = sizeof(struct kmem_cache);
|
||||
#endif
|
||||
|
||||
|
||||
printk(KERN_INFO
|
||||
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
|
||||
" CPUs=%d, Nodes=%d\n",
|
||||
|
@ -3083,12 +3053,15 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
|
|||
*/
|
||||
for_each_online_cpu(cpu)
|
||||
get_cpu_slab(s, cpu)->objsize = s->objsize;
|
||||
|
||||
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
|
||||
up_write(&slub_lock);
|
||||
|
||||
if (sysfs_slab_alias(s, name))
|
||||
goto err;
|
||||
return s;
|
||||
}
|
||||
|
||||
s = kmalloc(kmem_size, GFP_KERNEL);
|
||||
if (s) {
|
||||
if (kmem_cache_open(s, GFP_KERNEL, name,
|
||||
|
@ -3184,7 +3157,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
|
|||
struct kmem_cache *s;
|
||||
|
||||
if (unlikely(size > PAGE_SIZE))
|
||||
return kmalloc_large(size, gfpflags);
|
||||
return kmalloc_large_node(size, gfpflags, node);
|
||||
|
||||
s = get_slab(size, gfpflags);
|
||||
|
||||
|
@ -3199,7 +3172,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
|
|||
unsigned long *map)
|
||||
{
|
||||
void *p;
|
||||
void *addr = slab_address(page);
|
||||
void *addr = page_address(page);
|
||||
|
||||
if (!check_slab(s, page) ||
|
||||
!on_freelist(s, page, NULL))
|
||||
|
@ -3482,7 +3455,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
|
|||
static void process_slab(struct loc_track *t, struct kmem_cache *s,
|
||||
struct page *page, enum track_item alloc)
|
||||
{
|
||||
void *addr = slab_address(page);
|
||||
void *addr = page_address(page);
|
||||
DECLARE_BITMAP(map, s->objects);
|
||||
void *p;
|
||||
|
||||
|
@ -3591,8 +3564,8 @@ enum slab_stat_type {
|
|||
#define SO_CPU (1 << SL_CPU)
|
||||
#define SO_OBJECTS (1 << SL_OBJECTS)
|
||||
|
||||
static unsigned long slab_objects(struct kmem_cache *s,
|
||||
char *buf, unsigned long flags)
|
||||
static ssize_t show_slab_objects(struct kmem_cache *s,
|
||||
char *buf, unsigned long flags)
|
||||
{
|
||||
unsigned long total = 0;
|
||||
int cpu;
|
||||
|
@ -3602,6 +3575,8 @@ static unsigned long slab_objects(struct kmem_cache *s,
|
|||
unsigned long *per_cpu;
|
||||
|
||||
nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
|
||||
if (!nodes)
|
||||
return -ENOMEM;
|
||||
per_cpu = nodes + nr_node_ids;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
|
@ -3754,25 +3729,25 @@ SLAB_ATTR_RO(aliases);
|
|||
|
||||
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
|
||||
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
|
||||
}
|
||||
SLAB_ATTR_RO(slabs);
|
||||
|
||||
static ssize_t partial_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return slab_objects(s, buf, SO_PARTIAL);
|
||||
return show_slab_objects(s, buf, SO_PARTIAL);
|
||||
}
|
||||
SLAB_ATTR_RO(partial);
|
||||
|
||||
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return slab_objects(s, buf, SO_CPU);
|
||||
return show_slab_objects(s, buf, SO_CPU);
|
||||
}
|
||||
SLAB_ATTR_RO(cpu_slabs);
|
||||
|
||||
static ssize_t objects_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
|
||||
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
|
||||
}
|
||||
SLAB_ATTR_RO(objects);
|
||||
|
||||
|
@ -3971,7 +3946,6 @@ SLAB_ATTR(remote_node_defrag_ratio);
|
|||
#endif
|
||||
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
|
||||
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
|
||||
{
|
||||
unsigned long sum = 0;
|
||||
|
@ -4155,8 +4129,8 @@ static struct kset *slab_kset;
|
|||
#define ID_STR_LENGTH 64
|
||||
|
||||
/* Create a unique string id for a slab cache:
|
||||
* format
|
||||
* :[flags-]size:[memory address of kmemcache]
|
||||
*
|
||||
* Format :[flags-]size
|
||||
*/
|
||||
static char *create_unique_id(struct kmem_cache *s)
|
||||
{
|
||||
|
|
Загрузка…
Ссылка в новой задаче