ALSA: usb: initial USB Audio Device Class 3.0 support

Recently released USB Audio Class 3.0 specification
introduces many significant changes comparing to
previous versions, like
 - new Power Domains, support for LPM/L1
 - new Cluster descriptor
 - changed layout of all class-specific descriptors
 - new High Capability descriptors
 - New class-specific String descriptors
 - new and removed units
 - additional sources for interrupts
 - removed Type II Audio Data Formats
 - ... and many other things (check spec)

It also provides backward compatibility through
multiple configurations, as well as requires
mandatory support for BADD (Basic Audio Device
Definition) on each ADC3.0 compliant device

This patch adds initial support of UAC3 specification
that is enough for Generic I/O Profile (BAOF, BAIF)
device support from BADD document.

Signed-off-by: Ruslan Bilovol <ruslan.bilovol@gmail.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit is contained in:
Ruslan Bilovol 2018-03-21 02:03:59 +02:00 коммит произвёл Takashi Iwai
Родитель ceb18f511b
Коммит 9a2fe9b801
11 изменённых файлов: 1244 добавлений и 192 удалений

Просмотреть файл

@ -34,12 +34,12 @@
* *
*/ */
static inline bool uac2_control_is_readable(u32 bmControls, u8 control) static inline bool uac_v2v3_control_is_readable(u32 bmControls, u8 control)
{ {
return (bmControls >> (control * 2)) & 0x1; return (bmControls >> (control * 2)) & 0x1;
} }
static inline bool uac2_control_is_writeable(u32 bmControls, u8 control) static inline bool uac_v2v3_control_is_writeable(u32 bmControls, u8 control)
{ {
return (bmControls >> (control * 2)) & 0x2; return (bmControls >> (control * 2)) & 0x2;
} }

Просмотреть файл

@ -0,0 +1,395 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017 Ruslan Bilovol <ruslan.bilovol@gmail.com>
*
* This file holds USB constants and structures defined
* by the USB DEVICE CLASS DEFINITION FOR AUDIO DEVICES Release 3.0.
*/
#ifndef __LINUX_USB_AUDIO_V3_H
#define __LINUX_USB_AUDIO_V3_H
#include <linux/types.h>
/*
* v1.0, v2.0 and v3.0 of this standard have many things in common. For the rest
* of the definitions, please refer to audio.h and audio-v2.h
*/
/* All High Capability descriptors have these 2 fields at the beginning */
struct uac3_hc_descriptor_header {
__le16 wLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__le16 wDescriptorID;
} __attribute__ ((packed));
/* 4.3.1 CLUSTER DESCRIPTOR HEADER */
struct uac3_cluster_header_descriptor {
__le16 wLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__le16 wDescriptorID;
__u8 bNrChannels;
} __attribute__ ((packed));
/* 4.3.2.1 SEGMENTS */
struct uac3_cluster_segment_descriptor {
__le16 wLength;
__u8 bSegmentType;
/* __u8[0]; segment-specific data */
} __attribute__ ((packed));
/* 4.3.2.1.1 END SEGMENT */
struct uac3_cluster_end_segment_descriptor {
__le16 wLength;
__u8 bSegmentType; /* Constant END_SEGMENT */
} __attribute__ ((packed));
/* 4.3.2.1.3.1 INFORMATION SEGMENT */
struct uac3_cluster_information_segment_descriptor {
__le16 wLength;
__u8 bSegmentType;
__u8 bChPurpose;
__u8 bChRelationship;
__u8 bChGroupID;
} __attribute__ ((packed));
/* 4.5.2 CLASS-SPECIFIC AC INTERFACE DESCRIPTOR */
struct uac3_ac_header_descriptor {
__u8 bLength; /* 10 */
__u8 bDescriptorType; /* CS_INTERFACE descriptor type */
__u8 bDescriptorSubtype; /* HEADER descriptor subtype */
__u8 bCategory;
/* includes Clock Source, Unit, Terminal, and Power Domain desc. */
__le16 wTotalLength;
__le32 bmControls;
} __attribute__ ((packed));
/* 4.5.2.1 INPUT TERMINAL DESCRIPTOR */
struct uac3_input_terminal_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bTerminalID;
__le16 wTerminalType;
__u8 bAssocTerminal;
__u8 bCSourceID;
__le32 bmControls;
__le16 wClusterDescrID;
__le16 wExTerminalDescrID;
__le16 wConnectorsDescrID;
__le16 wTerminalDescrStr;
} __attribute__((packed));
/* 4.5.2.2 OUTPUT TERMINAL DESCRIPTOR */
struct uac3_output_terminal_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bTerminalID;
__le16 wTerminalType;
__u8 bAssocTerminal;
__u8 bSourceID;
__u8 bCSourceID;
__le32 bmControls;
__le16 wExTerminalDescrID;
__le16 wConnectorsDescrID;
__le16 wTerminalDescrStr;
} __attribute__((packed));
/* 4.5.2.7 FEATURE UNIT DESCRIPTOR */
struct uac3_feature_unit_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bUnitID;
__u8 bSourceID;
/* bmaControls is actually u32,
* but u8 is needed for the hybrid parser */
__u8 bmaControls[0]; /* variable length */
/* wFeatureDescrStr omitted */
} __attribute__((packed));
#define UAC3_DT_FEATURE_UNIT_SIZE(ch) (7 + ((ch) + 1) * 4)
/* As above, but more useful for defining your own descriptors */
#define DECLARE_UAC3_FEATURE_UNIT_DESCRIPTOR(ch) \
struct uac3_feature_unit_descriptor_##ch { \
__u8 bLength; \
__u8 bDescriptorType; \
__u8 bDescriptorSubtype; \
__u8 bUnitID; \
__u8 bSourceID; \
__le32 bmaControls[ch + 1]; \
__le16 wFeatureDescrStr; \
} __attribute__ ((packed))
/* 4.5.2.12 CLOCK SOURCE DESCRIPTOR */
struct uac3_clock_source_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bClockID;
__u8 bmAttributes;
__le32 bmControls;
__u8 bReferenceTerminal;
__le16 wClockSourceStr;
} __attribute__((packed));
/* bmAttribute fields */
#define UAC3_CLOCK_SOURCE_TYPE_EXT 0x0
#define UAC3_CLOCK_SOURCE_TYPE_INT 0x1
#define UAC3_CLOCK_SOURCE_ASYNC (0 << 2)
#define UAC3_CLOCK_SOURCE_SYNCED_TO_SOF (1 << 1)
/* 4.5.2.13 CLOCK SELECTOR DESCRIPTOR */
struct uac3_clock_selector_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bClockID;
__u8 bNrInPins;
__u8 baCSourceID[];
/* bmControls and wCSelectorDescrStr omitted */
} __attribute__((packed));
/* 4.5.2.14 CLOCK MULTIPLIER DESCRIPTOR */
struct uac3_clock_multiplier_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bClockID;
__u8 bCSourceID;
__le32 bmControls;
__le16 wCMultiplierDescrStr;
} __attribute__((packed));
/* 4.5.2.15 POWER DOMAIN DESCRIPTOR */
struct uac3_power_domain_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bPowerDomainID;
__le16 waRecoveryTime1;
__le16 waRecoveryTime2;
__u8 bNrEntities;
__u8 baEntityID[];
/* wPDomainDescrStr omitted */
} __attribute__((packed));
/* As above, but more useful for defining your own descriptors */
#define DECLARE_UAC3_POWER_DOMAIN_DESCRIPTOR(n) \
struct uac3_power_domain_descriptor_##n { \
__u8 bLength; \
__u8 bDescriptorType; \
__u8 bDescriptorSubtype; \
__u8 bPowerDomainID; \
__le16 waRecoveryTime1; \
__le16 waRecoveryTime2; \
__u8 bNrEntities; \
__u8 baEntityID[n]; \
__le16 wPDomainDescrStr; \
} __attribute__ ((packed))
/* 4.7.2 CLASS-SPECIFIC AS INTERFACE DESCRIPTOR */
struct uac3_as_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bTerminalLink;
__le32 bmControls;
__le16 wClusterDescrID;
__le64 bmFormats;
__u8 bSubslotSize;
__u8 bBitResolution;
__le16 bmAuxProtocols;
__u8 bControlSize;
} __attribute__((packed));
#define UAC3_FORMAT_TYPE_I_RAW_DATA (1 << 6)
/* 4.8.1.2 CLASS-SPECIFIC AS ISOCHRONOUS AUDIO DATA ENDPOINT DESCRIPTOR */
struct uac3_iso_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__le32 bmControls;
__u8 bLockDelayUnits;
__le16 wLockDelay;
} __attribute__((packed));
/* 6.1 INTERRUPT DATA MESSAGE */
struct uac3_interrupt_data_msg {
__u8 bInfo;
__u8 bSourceType;
__le16 wValue;
__le16 wIndex;
} __attribute__((packed));
/* A.2 AUDIO AUDIO FUNCTION SUBCLASS CODES */
#define UAC3_FUNCTION_SUBCLASS_UNDEFINED 0x00
#define UAC3_FUNCTION_SUBCLASS_FULL_ADC_3_0 0x01
/* BADD profiles */
#define UAC3_FUNCTION_SUBCLASS_GENERIC_IO 0x20
#define UAC3_FUNCTION_SUBCLASS_HEADPHONE 0x21
#define UAC3_FUNCTION_SUBCLASS_SPEAKER 0x22
#define UAC3_FUNCTION_SUBCLASS_MICROPHONE 0x23
#define UAC3_FUNCTION_SUBCLASS_HEADSET 0x24
#define UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER 0x25
#define UAC3_FUNCTION_SUBCLASS_SPEAKERPHONE 0x26
/* A.7 AUDIO FUNCTION CATEGORY CODES */
#define UAC3_FUNCTION_SUBCLASS_UNDEFINED 0x00
#define UAC3_FUNCTION_DESKTOP_SPEAKER 0x01
#define UAC3_FUNCTION_HOME_THEATER 0x02
#define UAC3_FUNCTION_MICROPHONE 0x03
#define UAC3_FUNCTION_HEADSET 0x04
#define UAC3_FUNCTION_TELEPHONE 0x05
#define UAC3_FUNCTION_CONVERTER 0x06
#define UAC3_FUNCTION_SOUND_RECORDER 0x07
#define UAC3_FUNCTION_IO_BOX 0x08
#define UAC3_FUNCTION_MUSICAL_INSTRUMENT 0x09
#define UAC3_FUNCTION_PRO_AUDIO 0x0a
#define UAC3_FUNCTION_AUDIO_VIDEO 0x0b
#define UAC3_FUNCTION_CONTROL_PANEL 0x0c
#define UAC3_FUNCTION_HEADPHONE 0x0d
#define UAC3_FUNCTION_GENERIC_SPEAKER 0x0e
#define UAC3_FUNCTION_HEADSET_ADAPTER 0x0f
#define UAC3_FUNCTION_SPEAKERPHONE 0x10
#define UAC3_FUNCTION_OTHER 0xff
/* A.8 AUDIO CLASS-SPECIFIC DESCRIPTOR TYPES */
#define UAC3_CS_UNDEFINED 0x20
#define UAC3_CS_DEVICE 0x21
#define UAC3_CS_CONFIGURATION 0x22
#define UAC3_CS_STRING 0x23
#define UAC3_CS_INTERFACE 0x24
#define UAC3_CS_ENDPOINT 0x25
#define UAC3_CS_CLUSTER 0x26
/* A.10 CLUSTER DESCRIPTOR SEGMENT TYPES */
#define UAC3_SEGMENT_UNDEFINED 0x00
#define UAC3_CLUSTER_DESCRIPTION 0x01
#define UAC3_CLUSTER_VENDOR_DEFINED 0x1F
#define UAC3_CHANNEL_INFORMATION 0x20
#define UAC3_CHANNEL_AMBISONIC 0x21
#define UAC3_CHANNEL_DESCRIPTION 0x22
#define UAC3_CHANNEL_VENDOR_DEFINED 0xFE
#define UAC3_END_SEGMENT 0xFF
/* A.11 CHANNEL PURPOSE DEFINITIONS */
#define UAC3_PURPOSE_UNDEFINED 0x00
#define UAC3_PURPOSE_GENERIC_AUDIO 0x01
#define UAC3_PURPOSE_VOICE 0x02
#define UAC3_PURPOSE_SPEECH 0x03
#define UAC3_PURPOSE_AMBIENT 0x04
#define UAC3_PURPOSE_REFERENCE 0x05
#define UAC3_PURPOSE_ULTRASONIC 0x06
#define UAC3_PURPOSE_VIBROKINETIC 0x07
#define UAC3_PURPOSE_NON_AUDIO 0xFF
/* A.12 CHANNEL RELATIONSHIP DEFINITIONS */
#define UAC3_CH_RELATIONSHIP_UNDEFINED 0x00
#define UAC3_CH_MONO 0x01
#define UAC3_CH_LEFT 0x02
#define UAC3_CH_RIGHT 0x03
#define UAC3_CH_ARRAY 0x04
#define UAC3_CH_PATTERN_X 0x20
#define UAC3_CH_PATTERN_Y 0x21
#define UAC3_CH_PATTERN_A 0x22
#define UAC3_CH_PATTERN_B 0x23
#define UAC3_CH_PATTERN_M 0x24
#define UAC3_CH_PATTERN_S 0x25
#define UAC3_CH_FRONT_LEFT 0x80
#define UAC3_CH_FRONT_RIGHT 0x81
#define UAC3_CH_FRONT_CENTER 0x82
#define UAC3_CH_FRONT_LEFT_OF_CENTER 0x83
#define UAC3_CH_FRONT_RIGHT_OF_CENTER 0x84
#define UAC3_CH_FRONT_WIDE_LEFT 0x85
#define UAC3_CH_FRONT_WIDE_RIGHT 0x86
#define UAC3_CH_SIDE_LEFT 0x87
#define UAC3_CH_SIDE_RIGHT 0x88
#define UAC3_CH_SURROUND_ARRAY_LEFT 0x89
#define UAC3_CH_SURROUND_ARRAY_RIGHT 0x8A
#define UAC3_CH_BACK_LEFT 0x8B
#define UAC3_CH_BACK_RIGHT 0x8C
#define UAC3_CH_BACK_CENTER 0x8D
#define UAC3_CH_BACK_LEFT_OF_CENTER 0x8E
#define UAC3_CH_BACK_RIGHT_OF_CENTER 0x8F
#define UAC3_CH_BACK_WIDE_LEFT 0x90
#define UAC3_CH_BACK_WIDE_RIGHT 0x91
#define UAC3_CH_TOP_CENTER 0x92
#define UAC3_CH_TOP_FRONT_LEFT 0x93
#define UAC3_CH_TOP_FRONT_RIGHT 0x94
#define UAC3_CH_TOP_FRONT_CENTER 0x95
#define UAC3_CH_TOP_FRONT_LOC 0x96
#define UAC3_CH_TOP_FRONT_ROC 0x97
#define UAC3_CH_TOP_FRONT_WIDE_LEFT 0x98
#define UAC3_CH_TOP_FRONT_WIDE_RIGHT 0x99
#define UAC3_CH_TOP_SIDE_LEFT 0x9A
#define UAC3_CH_TOP_SIDE_RIGHT 0x9B
#define UAC3_CH_TOP_SURR_ARRAY_LEFT 0x9C
#define UAC3_CH_TOP_SURR_ARRAY_RIGHT 0x9D
#define UAC3_CH_TOP_BACK_LEFT 0x9E
#define UAC3_CH_TOP_BACK_RIGHT 0x9F
#define UAC3_CH_TOP_BACK_CENTER 0xA0
#define UAC3_CH_TOP_BACK_LOC 0xA1
#define UAC3_CH_TOP_BACK_ROC 0xA2
#define UAC3_CH_TOP_BACK_WIDE_LEFT 0xA3
#define UAC3_CH_TOP_BACK_WIDE_RIGHT 0xA4
#define UAC3_CH_BOTTOM_CENTER 0xA5
#define UAC3_CH_BOTTOM_FRONT_LEFT 0xA6
#define UAC3_CH_BOTTOM_FRONT_RIGHT 0xA7
#define UAC3_CH_BOTTOM_FRONT_CENTER 0xA8
#define UAC3_CH_BOTTOM_FRONT_LOC 0xA9
#define UAC3_CH_BOTTOM_FRONT_ROC 0xAA
#define UAC3_CH_BOTTOM_FRONT_WIDE_LEFT 0xAB
#define UAC3_CH_BOTTOM_FRONT_WIDE_RIGHT 0xAC
#define UAC3_CH_BOTTOM_SIDE_LEFT 0xAD
#define UAC3_CH_BOTTOM_SIDE_RIGHT 0xAE
#define UAC3_CH_BOTTOM_SURR_ARRAY_LEFT 0xAF
#define UAC3_CH_BOTTOM_SURR_ARRAY_RIGHT 0xB0
#define UAC3_CH_BOTTOM_BACK_LEFT 0xB1
#define UAC3_CH_BOTTOM_BACK_RIGHT 0xB2
#define UAC3_CH_BOTTOM_BACK_CENTER 0xB3
#define UAC3_CH_BOTTOM_BACK_LOC 0xB4
#define UAC3_CH_BOTTOM_BACK_ROC 0xB5
#define UAC3_CH_BOTTOM_BACK_WIDE_LEFT 0xB6
#define UAC3_CH_BOTTOM_BACK_WIDE_RIGHT 0xB7
#define UAC3_CH_LOW_FREQUENCY_EFFECTS 0xB8
#define UAC3_CH_LFE_LEFT 0xB9
#define UAC3_CH_LFE_RIGHT 0xBA
#define UAC3_CH_HEADPHONE_LEFT 0xBB
#define UAC3_CH_HEADPHONE_RIGHT 0xBC
/* A.15 AUDIO CLASS-SPECIFIC AC INTERFACE DESCRIPTOR SUBTYPES */
/* see audio.h for the rest, which is identical to v1 */
#define UAC3_EXTENDED_TERMINAL 0x04
#define UAC3_MIXER_UNIT 0x05
#define UAC3_SELECTOR_UNIT 0x06
#define UAC3_FEATURE_UNIT 0x07
#define UAC3_EFFECT_UNIT 0x08
#define UAC3_PROCESSING_UNIT 0x09
#define UAC3_EXTENSION_UNIT 0x0a
#define UAC3_CLOCK_SOURCE 0x0b
#define UAC3_CLOCK_SELECTOR 0x0c
#define UAC3_CLOCK_MULTIPLIER 0x0d
#define UAC3_SAMPLE_RATE_CONVERTER 0x0e
#define UAC3_CONNECTORS 0x0f
#define UAC3_POWER_DOMAIN 0x10
/* A.22 AUDIO CLASS-SPECIFIC REQUEST CODES */
/* see audio-v2.h for the rest, which is identical to v2 */
#define UAC3_CS_REQ_INTEN 0x04
#define UAC3_CS_REQ_STRING 0x05
#define UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR 0x06
/* A.23.1 AUDIOCONTROL INTERFACE CONTROL SELECTORS */
#define UAC3_AC_CONTROL_UNDEFINED 0x00
#define UAC3_AC_ACTIVE_INTERFACE_CONTROL 0x01
#define UAC3_AC_POWER_DOMAIN_CONTROL 0x02
#endif /* __LINUX_USB_AUDIO_V3_H */

Просмотреть файл

@ -27,6 +27,7 @@
/* bInterfaceProtocol values to denote the version of the standard used */ /* bInterfaceProtocol values to denote the version of the standard used */
#define UAC_VERSION_1 0x00 #define UAC_VERSION_1 0x00
#define UAC_VERSION_2 0x20 #define UAC_VERSION_2 0x20
#define UAC_VERSION_3 0x30
/* A.2 Audio Interface Subclass Codes */ /* A.2 Audio Interface Subclass Codes */
#define USB_SUBCLASS_AUDIOCONTROL 0x01 #define USB_SUBCLASS_AUDIOCONTROL 0x01

Просмотреть файл

@ -7,6 +7,7 @@
* Alan Cox (alan@lxorguk.ukuu.org.uk) * Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch) * Thomas Sailer (sailer@ife.ee.ethz.ch)
* *
* Audio Class 3.0 support by Ruslan Bilovol <ruslan.bilovol@gmail.com>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
@ -44,6 +45,7 @@
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/usb/audio.h> #include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h> #include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <linux/module.h> #include <linux/module.h>
#include <sound/control.h> #include <sound/control.h>
@ -281,7 +283,8 @@ static int snd_usb_create_streams(struct snd_usb_audio *chip, int ctrlif)
break; break;
} }
case UAC_VERSION_2: { case UAC_VERSION_2:
case UAC_VERSION_3: {
struct usb_interface_assoc_descriptor *assoc = struct usb_interface_assoc_descriptor *assoc =
usb_ifnum_to_if(dev, ctrlif)->intf_assoc; usb_ifnum_to_if(dev, ctrlif)->intf_assoc;
@ -301,7 +304,7 @@ static int snd_usb_create_streams(struct snd_usb_audio *chip, int ctrlif)
} }
if (!assoc) { if (!assoc) {
dev_err(&dev->dev, "Audio class v2 interfaces need an interface association\n"); dev_err(&dev->dev, "Audio class v2/v3 interfaces need an interface association\n");
return -EINVAL; return -EINVAL;
} }

Просмотреть файл

@ -22,7 +22,7 @@ struct audioformat {
unsigned char endpoint; /* endpoint */ unsigned char endpoint; /* endpoint */
unsigned char ep_attr; /* endpoint attributes */ unsigned char ep_attr; /* endpoint attributes */
unsigned char datainterval; /* log_2 of data packet interval */ unsigned char datainterval; /* log_2 of data packet interval */
unsigned char protocol; /* UAC_VERSION_1/2 */ unsigned char protocol; /* UAC_VERSION_1/2/3 */
unsigned int maxpacksize; /* max. packet size */ unsigned int maxpacksize; /* max. packet size */
unsigned int rates; /* rate bitmasks */ unsigned int rates; /* rate bitmasks */
unsigned int rate_min, rate_max; /* min/max rates */ unsigned int rate_min, rate_max; /* min/max rates */

Просмотреть файл

@ -23,6 +23,7 @@
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/audio.h> #include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h> #include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h> #include <sound/core.h>
#include <sound/info.h> #include <sound/info.h>
@ -50,6 +51,22 @@ static struct uac_clock_source_descriptor *
return NULL; return NULL;
} }
static struct uac3_clock_source_descriptor *
snd_usb_find_clock_source_v3(struct usb_host_interface *ctrl_iface,
int clock_id)
{
struct uac3_clock_source_descriptor *cs = NULL;
while ((cs = snd_usb_find_csint_desc(ctrl_iface->extra,
ctrl_iface->extralen,
cs, UAC3_CLOCK_SOURCE))) {
if (cs->bClockID == clock_id)
return cs;
}
return NULL;
}
static struct uac_clock_selector_descriptor * static struct uac_clock_selector_descriptor *
snd_usb_find_clock_selector(struct usb_host_interface *ctrl_iface, snd_usb_find_clock_selector(struct usb_host_interface *ctrl_iface,
int clock_id) int clock_id)
@ -69,6 +86,22 @@ static struct uac_clock_selector_descriptor *
return NULL; return NULL;
} }
static struct uac3_clock_selector_descriptor *
snd_usb_find_clock_selector_v3(struct usb_host_interface *ctrl_iface,
int clock_id)
{
struct uac3_clock_selector_descriptor *cs = NULL;
while ((cs = snd_usb_find_csint_desc(ctrl_iface->extra,
ctrl_iface->extralen,
cs, UAC3_CLOCK_SELECTOR))) {
if (cs->bClockID == clock_id)
return cs;
}
return NULL;
}
static struct uac_clock_multiplier_descriptor * static struct uac_clock_multiplier_descriptor *
snd_usb_find_clock_multiplier(struct usb_host_interface *ctrl_iface, snd_usb_find_clock_multiplier(struct usb_host_interface *ctrl_iface,
int clock_id) int clock_id)
@ -85,6 +118,22 @@ static struct uac_clock_multiplier_descriptor *
return NULL; return NULL;
} }
static struct uac3_clock_multiplier_descriptor *
snd_usb_find_clock_multiplier_v3(struct usb_host_interface *ctrl_iface,
int clock_id)
{
struct uac3_clock_multiplier_descriptor *cs = NULL;
while ((cs = snd_usb_find_csint_desc(ctrl_iface->extra,
ctrl_iface->extralen,
cs, UAC3_CLOCK_MULTIPLIER))) {
if (cs->bClockID == clock_id)
return cs;
}
return NULL;
}
static int uac_clock_selector_get_val(struct snd_usb_audio *chip, int selector_id) static int uac_clock_selector_get_val(struct snd_usb_audio *chip, int selector_id)
{ {
unsigned char buf; unsigned char buf;
@ -138,19 +187,33 @@ static int uac_clock_selector_set_val(struct snd_usb_audio *chip, int selector_i
return ret; return ret;
} }
static bool uac_clock_source_is_valid(struct snd_usb_audio *chip, int source_id) static bool uac_clock_source_is_valid(struct snd_usb_audio *chip,
int protocol,
int source_id)
{ {
int err; int err;
unsigned char data; unsigned char data;
struct usb_device *dev = chip->dev; struct usb_device *dev = chip->dev;
struct uac_clock_source_descriptor *cs_desc = u32 bmControls;
snd_usb_find_clock_source(chip->ctrl_intf, source_id);
if (!cs_desc) if (protocol == UAC_VERSION_3) {
return 0; struct uac3_clock_source_descriptor *cs_desc =
snd_usb_find_clock_source_v3(chip->ctrl_intf, source_id);
if (!cs_desc)
return 0;
bmControls = le32_to_cpu(cs_desc->bmControls);
} else { /* UAC_VERSION_1/2 */
struct uac_clock_source_descriptor *cs_desc =
snd_usb_find_clock_source(chip->ctrl_intf, source_id);
if (!cs_desc)
return 0;
bmControls = cs_desc->bmControls;
}
/* If a clock source can't tell us whether it's valid, we assume it is */ /* If a clock source can't tell us whether it's valid, we assume it is */
if (!uac2_control_is_readable(cs_desc->bmControls, if (!uac_v2v3_control_is_readable(bmControls,
UAC2_CS_CONTROL_CLOCK_VALID - 1)) UAC2_CS_CONTROL_CLOCK_VALID - 1))
return 1; return 1;
@ -170,9 +233,8 @@ static bool uac_clock_source_is_valid(struct snd_usb_audio *chip, int source_id)
return !!data; return !!data;
} }
static int __uac_clock_find_source(struct snd_usb_audio *chip, static int __uac_clock_find_source(struct snd_usb_audio *chip, int entity_id,
int entity_id, unsigned long *visited, unsigned long *visited, bool validate)
bool validate)
{ {
struct uac_clock_source_descriptor *source; struct uac_clock_source_descriptor *source;
struct uac_clock_selector_descriptor *selector; struct uac_clock_selector_descriptor *selector;
@ -191,7 +253,8 @@ static int __uac_clock_find_source(struct snd_usb_audio *chip,
source = snd_usb_find_clock_source(chip->ctrl_intf, entity_id); source = snd_usb_find_clock_source(chip->ctrl_intf, entity_id);
if (source) { if (source) {
entity_id = source->bClockID; entity_id = source->bClockID;
if (validate && !uac_clock_source_is_valid(chip, entity_id)) { if (validate && !uac_clock_source_is_valid(chip, UAC_VERSION_2,
entity_id)) {
usb_audio_err(chip, usb_audio_err(chip,
"clock source %d is not valid, cannot use\n", "clock source %d is not valid, cannot use\n",
entity_id); entity_id);
@ -260,6 +323,97 @@ static int __uac_clock_find_source(struct snd_usb_audio *chip,
return -EINVAL; return -EINVAL;
} }
static int __uac3_clock_find_source(struct snd_usb_audio *chip, int entity_id,
unsigned long *visited, bool validate)
{
struct uac3_clock_source_descriptor *source;
struct uac3_clock_selector_descriptor *selector;
struct uac3_clock_multiplier_descriptor *multiplier;
entity_id &= 0xff;
if (test_and_set_bit(entity_id, visited)) {
usb_audio_warn(chip,
"%s(): recursive clock topology detected, id %d.\n",
__func__, entity_id);
return -EINVAL;
}
/* first, see if the ID we're looking for is a clock source already */
source = snd_usb_find_clock_source_v3(chip->ctrl_intf, entity_id);
if (source) {
entity_id = source->bClockID;
if (validate && !uac_clock_source_is_valid(chip, UAC_VERSION_3,
entity_id)) {
usb_audio_err(chip,
"clock source %d is not valid, cannot use\n",
entity_id);
return -ENXIO;
}
return entity_id;
}
selector = snd_usb_find_clock_selector_v3(chip->ctrl_intf, entity_id);
if (selector) {
int ret, i, cur;
/* the entity ID we are looking for is a selector.
* find out what it currently selects */
ret = uac_clock_selector_get_val(chip, selector->bClockID);
if (ret < 0)
return ret;
/* Selector values are one-based */
if (ret > selector->bNrInPins || ret < 1) {
usb_audio_err(chip,
"%s(): selector reported illegal value, id %d, ret %d\n",
__func__, selector->bClockID, ret);
return -EINVAL;
}
cur = ret;
ret = __uac3_clock_find_source(chip, selector->baCSourceID[ret - 1],
visited, validate);
if (!validate || ret > 0 || !chip->autoclock)
return ret;
/* The current clock source is invalid, try others. */
for (i = 1; i <= selector->bNrInPins; i++) {
int err;
if (i == cur)
continue;
ret = __uac3_clock_find_source(chip, selector->baCSourceID[i - 1],
visited, true);
if (ret < 0)
continue;
err = uac_clock_selector_set_val(chip, entity_id, i);
if (err < 0)
continue;
usb_audio_info(chip,
"found and selected valid clock source %d\n",
ret);
return ret;
}
return -ENXIO;
}
/* FIXME: multipliers only act as pass-thru element for now */
multiplier = snd_usb_find_clock_multiplier_v3(chip->ctrl_intf,
entity_id);
if (multiplier)
return __uac3_clock_find_source(chip, multiplier->bCSourceID,
visited, validate);
return -EINVAL;
}
/* /*
* For all kinds of sample rate settings and other device queries, * For all kinds of sample rate settings and other device queries,
* the clock source (end-leaf) must be used. However, clock selectors, * the clock source (end-leaf) must be used. However, clock selectors,
@ -271,12 +425,22 @@ static int __uac_clock_find_source(struct snd_usb_audio *chip,
* *
* Returns the clock source UnitID (>=0) on success, or an error. * Returns the clock source UnitID (>=0) on success, or an error.
*/ */
int snd_usb_clock_find_source(struct snd_usb_audio *chip, int entity_id, int snd_usb_clock_find_source(struct snd_usb_audio *chip, int protocol,
bool validate) int entity_id, bool validate)
{ {
DECLARE_BITMAP(visited, 256); DECLARE_BITMAP(visited, 256);
memset(visited, 0, sizeof(visited)); memset(visited, 0, sizeof(visited));
return __uac_clock_find_source(chip, entity_id, visited, validate);
switch (protocol) {
case UAC_VERSION_2:
return __uac_clock_find_source(chip, entity_id, visited,
validate);
case UAC_VERSION_3:
return __uac3_clock_find_source(chip, entity_id, visited,
validate);
default:
return -EINVAL;
}
} }
static int set_sample_rate_v1(struct snd_usb_audio *chip, int iface, static int set_sample_rate_v1(struct snd_usb_audio *chip, int iface,
@ -335,7 +499,7 @@ static int set_sample_rate_v1(struct snd_usb_audio *chip, int iface,
return 0; return 0;
} }
static int get_sample_rate_v2(struct snd_usb_audio *chip, int iface, static int get_sample_rate_v2v3(struct snd_usb_audio *chip, int iface,
int altsetting, int clock) int altsetting, int clock)
{ {
struct usb_device *dev = chip->dev; struct usb_device *dev = chip->dev;
@ -348,7 +512,7 @@ static int get_sample_rate_v2(struct snd_usb_audio *chip, int iface,
snd_usb_ctrl_intf(chip) | (clock << 8), snd_usb_ctrl_intf(chip) | (clock << 8),
&data, sizeof(data)); &data, sizeof(data));
if (err < 0) { if (err < 0) {
dev_warn(&dev->dev, "%d:%d: cannot get freq (v2): err %d\n", dev_warn(&dev->dev, "%d:%d: cannot get freq (v2/v3): err %d\n",
iface, altsetting, err); iface, altsetting, err);
return 0; return 0;
} }
@ -356,7 +520,7 @@ static int get_sample_rate_v2(struct snd_usb_audio *chip, int iface,
return le32_to_cpu(data); return le32_to_cpu(data);
} }
static int set_sample_rate_v2(struct snd_usb_audio *chip, int iface, static int set_sample_rate_v2v3(struct snd_usb_audio *chip, int iface,
struct usb_host_interface *alts, struct usb_host_interface *alts,
struct audioformat *fmt, int rate) struct audioformat *fmt, int rate)
{ {
@ -365,18 +529,30 @@ static int set_sample_rate_v2(struct snd_usb_audio *chip, int iface,
int err, cur_rate, prev_rate; int err, cur_rate, prev_rate;
int clock; int clock;
bool writeable; bool writeable;
struct uac_clock_source_descriptor *cs_desc; u32 bmControls;
clock = snd_usb_clock_find_source(chip, fmt->clock, true); clock = snd_usb_clock_find_source(chip, fmt->protocol,
fmt->clock, true);
if (clock < 0) if (clock < 0)
return clock; return clock;
prev_rate = get_sample_rate_v2(chip, iface, fmt->altsetting, clock); prev_rate = get_sample_rate_v2v3(chip, iface, fmt->altsetting, clock);
if (prev_rate == rate) if (prev_rate == rate)
return 0; return 0;
cs_desc = snd_usb_find_clock_source(chip->ctrl_intf, clock); if (fmt->protocol == UAC_VERSION_3) {
writeable = uac2_control_is_writeable(cs_desc->bmControls, UAC2_CS_CONTROL_SAM_FREQ - 1); struct uac3_clock_source_descriptor *cs_desc;
cs_desc = snd_usb_find_clock_source_v3(chip->ctrl_intf, clock);
bmControls = le32_to_cpu(cs_desc->bmControls);
} else {
struct uac_clock_source_descriptor *cs_desc;
cs_desc = snd_usb_find_clock_source(chip->ctrl_intf, clock);
bmControls = cs_desc->bmControls;
}
writeable = uac_v2v3_control_is_writeable(bmControls, UAC2_CS_CONTROL_SAM_FREQ - 1);
if (writeable) { if (writeable) {
data = cpu_to_le32(rate); data = cpu_to_le32(rate);
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), UAC2_CS_CUR, err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), UAC2_CS_CUR,
@ -386,12 +562,13 @@ static int set_sample_rate_v2(struct snd_usb_audio *chip, int iface,
&data, sizeof(data)); &data, sizeof(data));
if (err < 0) { if (err < 0) {
usb_audio_err(chip, usb_audio_err(chip,
"%d:%d: cannot set freq %d (v2): err %d\n", "%d:%d: cannot set freq %d (v2/v3): err %d\n",
iface, fmt->altsetting, rate, err); iface, fmt->altsetting, rate, err);
return err; return err;
} }
cur_rate = get_sample_rate_v2(chip, iface, fmt->altsetting, clock); cur_rate = get_sample_rate_v2v3(chip, iface,
fmt->altsetting, clock);
} else { } else {
cur_rate = prev_rate; cur_rate = prev_rate;
} }
@ -430,7 +607,8 @@ int snd_usb_init_sample_rate(struct snd_usb_audio *chip, int iface,
return set_sample_rate_v1(chip, iface, alts, fmt, rate); return set_sample_rate_v1(chip, iface, alts, fmt, rate);
case UAC_VERSION_2: case UAC_VERSION_2:
return set_sample_rate_v2(chip, iface, alts, fmt, rate); case UAC_VERSION_3:
return set_sample_rate_v2v3(chip, iface, alts, fmt, rate);
} }
} }

Просмотреть файл

@ -6,7 +6,7 @@ int snd_usb_init_sample_rate(struct snd_usb_audio *chip, int iface,
struct usb_host_interface *alts, struct usb_host_interface *alts,
struct audioformat *fmt, int rate); struct audioformat *fmt, int rate);
int snd_usb_clock_find_source(struct snd_usb_audio *chip, int entity_id, int snd_usb_clock_find_source(struct snd_usb_audio *chip, int protocol,
bool validate); int entity_id, bool validate);
#endif /* __USBAUDIO_CLOCK_H */ #endif /* __USBAUDIO_CLOCK_H */

Просмотреть файл

@ -20,6 +20,7 @@
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/audio.h> #include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h> #include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h> #include <sound/core.h>
#include <sound/pcm.h> #include <sound/pcm.h>
@ -39,11 +40,11 @@
* @dev: usb device * @dev: usb device
* @fp: audioformat record * @fp: audioformat record
* @format: the format tag (wFormatTag) * @format: the format tag (wFormatTag)
* @fmt: the format type descriptor * @fmt: the format type descriptor (v1/v2) or AudioStreaming descriptor (v3)
*/ */
static u64 parse_audio_format_i_type(struct snd_usb_audio *chip, static u64 parse_audio_format_i_type(struct snd_usb_audio *chip,
struct audioformat *fp, struct audioformat *fp,
unsigned int format, void *_fmt) u64 format, void *_fmt)
{ {
int sample_width, sample_bytes; int sample_width, sample_bytes;
u64 pcm_formats = 0; u64 pcm_formats = 0;
@ -69,6 +70,18 @@ static u64 parse_audio_format_i_type(struct snd_usb_audio *chip,
format <<= 1; format <<= 1;
break; break;
} }
case UAC_VERSION_3: {
struct uac3_as_header_descriptor *as = _fmt;
sample_width = as->bBitResolution;
sample_bytes = as->bSubslotSize;
if (format & UAC3_FORMAT_TYPE_I_RAW_DATA)
pcm_formats |= SNDRV_PCM_FMTBIT_SPECIAL;
format <<= 1;
break;
}
} }
if ((pcm_formats == 0) && if ((pcm_formats == 0) &&
@ -137,7 +150,7 @@ static u64 parse_audio_format_i_type(struct snd_usb_audio *chip,
} }
if (format & ~0x3f) { if (format & ~0x3f) {
usb_audio_info(chip, usb_audio_info(chip,
"%u:%d : unsupported format bits %#x\n", "%u:%d : unsupported format bits %#llx\n",
fp->iface, fp->altsetting, format); fp->iface, fp->altsetting, format);
} }
@ -281,15 +294,16 @@ static int parse_uac2_sample_rate_range(struct snd_usb_audio *chip,
/* /*
* parse the format descriptor and stores the possible sample rates * parse the format descriptor and stores the possible sample rates
* on the audioformat table (audio class v2). * on the audioformat table (audio class v2 and v3).
*/ */
static int parse_audio_format_rates_v2(struct snd_usb_audio *chip, static int parse_audio_format_rates_v2v3(struct snd_usb_audio *chip,
struct audioformat *fp) struct audioformat *fp)
{ {
struct usb_device *dev = chip->dev; struct usb_device *dev = chip->dev;
unsigned char tmp[2], *data; unsigned char tmp[2], *data;
int nr_triplets, data_size, ret = 0; int nr_triplets, data_size, ret = 0;
int clock = snd_usb_clock_find_source(chip, fp->clock, false); int clock = snd_usb_clock_find_source(chip, fp->protocol,
fp->clock, false);
if (clock < 0) { if (clock < 0) {
dev_err(&dev->dev, dev_err(&dev->dev,
@ -368,13 +382,30 @@ err:
* parse the format type I and III descriptors * parse the format type I and III descriptors
*/ */
static int parse_audio_format_i(struct snd_usb_audio *chip, static int parse_audio_format_i(struct snd_usb_audio *chip,
struct audioformat *fp, unsigned int format, struct audioformat *fp, u64 format,
struct uac_format_type_i_continuous_descriptor *fmt) void *_fmt)
{ {
snd_pcm_format_t pcm_format; snd_pcm_format_t pcm_format;
unsigned int fmt_type;
int ret; int ret;
if (fmt->bFormatType == UAC_FORMAT_TYPE_III) { switch (fp->protocol) {
default:
case UAC_VERSION_1:
case UAC_VERSION_2: {
struct uac_format_type_i_continuous_descriptor *fmt = _fmt;
fmt_type = fmt->bFormatType;
break;
}
case UAC_VERSION_3: {
/* fp->fmt_type is already set in this case */
fmt_type = fp->fmt_type;
break;
}
}
if (fmt_type == UAC_FORMAT_TYPE_III) {
/* FIXME: the format type is really IECxxx /* FIXME: the format type is really IECxxx
* but we give normal PCM format to get the existing * but we give normal PCM format to get the existing
* apps working... * apps working...
@ -393,7 +424,7 @@ static int parse_audio_format_i(struct snd_usb_audio *chip,
} }
fp->formats = pcm_format_to_bits(pcm_format); fp->formats = pcm_format_to_bits(pcm_format);
} else { } else {
fp->formats = parse_audio_format_i_type(chip, fp, format, fmt); fp->formats = parse_audio_format_i_type(chip, fp, format, _fmt);
if (!fp->formats) if (!fp->formats)
return -EINVAL; return -EINVAL;
} }
@ -405,15 +436,20 @@ static int parse_audio_format_i(struct snd_usb_audio *chip,
*/ */
switch (fp->protocol) { switch (fp->protocol) {
default: default:
case UAC_VERSION_1: case UAC_VERSION_1: {
struct uac_format_type_i_continuous_descriptor *fmt = _fmt;
fp->channels = fmt->bNrChannels; fp->channels = fmt->bNrChannels;
ret = parse_audio_format_rates_v1(chip, fp, (unsigned char *) fmt, 7); ret = parse_audio_format_rates_v1(chip, fp, (unsigned char *) fmt, 7);
break; break;
}
case UAC_VERSION_2: case UAC_VERSION_2:
case UAC_VERSION_3: {
/* fp->channels is already set in this case */ /* fp->channels is already set in this case */
ret = parse_audio_format_rates_v2(chip, fp); ret = parse_audio_format_rates_v2v3(chip, fp);
break; break;
} }
}
if (fp->channels < 1) { if (fp->channels < 1) {
usb_audio_err(chip, usb_audio_err(chip,
@ -430,7 +466,7 @@ static int parse_audio_format_i(struct snd_usb_audio *chip,
*/ */
static int parse_audio_format_ii(struct snd_usb_audio *chip, static int parse_audio_format_ii(struct snd_usb_audio *chip,
struct audioformat *fp, struct audioformat *fp,
int format, void *_fmt) u64 format, void *_fmt)
{ {
int brate, framesize, ret; int brate, framesize, ret;
@ -445,7 +481,7 @@ static int parse_audio_format_ii(struct snd_usb_audio *chip,
break; break;
default: default:
usb_audio_info(chip, usb_audio_info(chip,
"%u:%d : unknown format tag %#x is detected. processed as MPEG.\n", "%u:%d : unknown format tag %#llx is detected. processed as MPEG.\n",
fp->iface, fp->altsetting, format); fp->iface, fp->altsetting, format);
fp->formats = SNDRV_PCM_FMTBIT_MPEG; fp->formats = SNDRV_PCM_FMTBIT_MPEG;
break; break;
@ -470,7 +506,7 @@ static int parse_audio_format_ii(struct snd_usb_audio *chip,
framesize = le16_to_cpu(fmt->wSamplesPerFrame); framesize = le16_to_cpu(fmt->wSamplesPerFrame);
usb_audio_info(chip, "found format II with max.bitrate = %d, frame size=%d\n", brate, framesize); usb_audio_info(chip, "found format II with max.bitrate = %d, frame size=%d\n", brate, framesize);
fp->frame_size = framesize; fp->frame_size = framesize;
ret = parse_audio_format_rates_v2(chip, fp); ret = parse_audio_format_rates_v2v3(chip, fp);
break; break;
} }
} }
@ -479,7 +515,7 @@ static int parse_audio_format_ii(struct snd_usb_audio *chip,
} }
int snd_usb_parse_audio_format(struct snd_usb_audio *chip, int snd_usb_parse_audio_format(struct snd_usb_audio *chip,
struct audioformat *fp, unsigned int format, struct audioformat *fp, u64 format,
struct uac_format_type_i_continuous_descriptor *fmt, struct uac_format_type_i_continuous_descriptor *fmt,
int stream) int stream)
{ {
@ -520,3 +556,26 @@ int snd_usb_parse_audio_format(struct snd_usb_audio *chip,
return 0; return 0;
} }
int snd_usb_parse_audio_format_v3(struct snd_usb_audio *chip,
struct audioformat *fp,
struct uac3_as_header_descriptor *as,
int stream)
{
u64 format = le64_to_cpu(as->bmFormats);
int err;
/*
* Type I format bits are D0..D6
* This test works because type IV is not supported
*/
if (format & 0x7f)
fp->fmt_type = UAC_FORMAT_TYPE_I;
else
fp->fmt_type = UAC_FORMAT_TYPE_III;
err = parse_audio_format_i(chip, fp, format, as);
if (err < 0)
return err;
return 0;
}

Просмотреть файл

@ -3,8 +3,12 @@
#define __USBAUDIO_FORMAT_H #define __USBAUDIO_FORMAT_H
int snd_usb_parse_audio_format(struct snd_usb_audio *chip, int snd_usb_parse_audio_format(struct snd_usb_audio *chip,
struct audioformat *fp, unsigned int format, struct audioformat *fp, u64 format,
struct uac_format_type_i_continuous_descriptor *fmt, struct uac_format_type_i_continuous_descriptor *fmt,
int stream); int stream);
int snd_usb_parse_audio_format_v3(struct snd_usb_audio *chip,
struct audioformat *fp,
struct uac3_as_header_descriptor *as,
int stream);
#endif /* __USBAUDIO_FORMAT_H */ #endif /* __USBAUDIO_FORMAT_H */

Просмотреть файл

@ -51,6 +51,7 @@
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/audio.h> #include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h> #include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h> #include <sound/core.h>
#include <sound/control.h> #include <sound/control.h>
@ -189,7 +190,7 @@ static void *find_audio_control_unit(struct mixer_build *state,
USB_DT_CS_INTERFACE)) != NULL) { USB_DT_CS_INTERFACE)) != NULL) {
if (hdr->bLength >= 4 && if (hdr->bLength >= 4 &&
hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL && hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
hdr->bDescriptorSubtype <= UAC2_SAMPLE_RATE_CONVERTER && hdr->bDescriptorSubtype <= UAC3_SAMPLE_RATE_CONVERTER &&
hdr->bUnitID == unit) hdr->bUnitID == unit)
return hdr; return hdr;
} }
@ -468,9 +469,10 @@ int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
validx += cval->idx_off; validx += cval->idx_off;
if (cval->head.mixer->protocol == UAC_VERSION_1) { if (cval->head.mixer->protocol == UAC_VERSION_1) {
val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1; val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
} else { /* UAC_VERSION_2 */ } else { /* UAC_VERSION_2/3 */
val_len = uac2_ctl_value_size(cval->val_type); val_len = uac2_ctl_value_size(cval->val_type);
/* FIXME */ /* FIXME */
@ -723,6 +725,7 @@ static int get_term_name(struct mixer_build *state, struct usb_audio_term *iterm
static int check_input_term(struct mixer_build *state, int id, static int check_input_term(struct mixer_build *state, int id,
struct usb_audio_term *term) struct usb_audio_term *term)
{ {
int protocol = state->mixer->protocol;
int err; int err;
void *p1; void *p1;
@ -730,16 +733,104 @@ static int check_input_term(struct mixer_build *state, int id,
while ((p1 = find_audio_control_unit(state, id)) != NULL) { while ((p1 = find_audio_control_unit(state, id)) != NULL) {
unsigned char *hdr = p1; unsigned char *hdr = p1;
term->id = id; term->id = id;
switch (hdr[2]) {
case UAC_INPUT_TERMINAL: if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
if (state->mixer->protocol == UAC_VERSION_1) { switch (hdr[2]) {
struct uac_input_terminal_descriptor *d = p1; case UAC_INPUT_TERMINAL:
term->type = le16_to_cpu(d->wTerminalType); if (protocol == UAC_VERSION_1) {
term->channels = d->bNrChannels; struct uac_input_terminal_descriptor *d = p1;
term->chconfig = le16_to_cpu(d->wChannelConfig);
term->name = d->iTerminal; term->type = le16_to_cpu(d->wTerminalType);
} else { /* UAC_VERSION_2 */ term->channels = d->bNrChannels;
struct uac2_input_terminal_descriptor *d = p1; term->chconfig = le16_to_cpu(d->wChannelConfig);
term->name = d->iTerminal;
} else { /* UAC_VERSION_2 */
struct uac2_input_terminal_descriptor *d = p1;
/* call recursively to verify that the
* referenced clock entity is valid */
err = check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
/* save input term properties after recursion,
* to ensure they are not overriden by the
* recursion calls */
term->id = id;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le32_to_cpu(d->bmChannelConfig);
term->name = d->iTerminal;
}
return 0;
case UAC_FEATURE_UNIT: {
/* the header is the same for v1 and v2 */
struct uac_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case UAC_MIXER_UNIT: {
struct uac_mixer_unit_descriptor *d = p1;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->channels = uac_mixer_unit_bNrChannels(d);
term->chconfig = uac_mixer_unit_wChannelConfig(d, protocol);
term->name = uac_mixer_unit_iMixer(d);
return 0;
}
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR: {
struct uac_selector_unit_descriptor *d = p1;
/* call recursively to retrieve the channel info */
err = check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->id = id;
term->name = uac_selector_unit_iSelector(d);
return 0;
}
case UAC1_PROCESSING_UNIT:
case UAC1_EXTENSION_UNIT:
/* UAC2_PROCESSING_UNIT_V2 */
/* UAC2_EFFECT_UNIT */
case UAC2_EXTENSION_UNIT_V2: {
struct uac_processing_unit_descriptor *d = p1;
if (protocol == UAC_VERSION_2 &&
hdr[2] == UAC2_EFFECT_UNIT) {
/* UAC2/UAC1 unit IDs overlap here in an
* uncompatible way. Ignore this unit for now.
*/
return 0;
}
if (d->bNrInPins) {
id = d->baSourceID[0];
break; /* continue to parse */
}
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->channels = uac_processing_unit_bNrChannels(d);
term->chconfig = uac_processing_unit_wChannelConfig(d, protocol);
term->name = uac_processing_unit_iProcessing(d, protocol);
return 0;
}
case UAC2_CLOCK_SOURCE: {
struct uac_clock_source_descriptor *d = p1;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->id = id;
term->name = d->iClockSource;
return 0;
}
default:
return -ENODEV;
}
} else { /* UAC_VERSION_3 */
switch (hdr[2]) {
case UAC_INPUT_TERMINAL: {
struct uac3_input_terminal_descriptor *d = p1;
/* call recursively to verify that the /* call recursively to verify that the
* referenced clock entity is valid */ * referenced clock entity is valid */
@ -752,71 +843,31 @@ static int check_input_term(struct mixer_build *state, int id,
* recursion calls */ * recursion calls */
term->id = id; term->id = id;
term->type = le16_to_cpu(d->wTerminalType); term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le32_to_cpu(d->bmChannelConfig);
term->name = d->iTerminal;
}
return 0;
case UAC_FEATURE_UNIT: {
/* the header is the same for v1 and v2 */
struct uac_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case UAC_MIXER_UNIT: {
struct uac_mixer_unit_descriptor *d = p1;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->channels = uac_mixer_unit_bNrChannels(d);
term->chconfig = uac_mixer_unit_wChannelConfig(d, state->mixer->protocol);
term->name = uac_mixer_unit_iMixer(d);
return 0;
}
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR: {
struct uac_selector_unit_descriptor *d = p1;
/* call recursively to retrieve the channel info */
err = check_input_term(state, d->baSourceID[0], term);
if (err < 0)
return err;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->id = id;
term->name = uac_selector_unit_iSelector(d);
return 0;
}
case UAC1_PROCESSING_UNIT:
case UAC1_EXTENSION_UNIT:
/* UAC2_PROCESSING_UNIT_V2 */
/* UAC2_EFFECT_UNIT */
case UAC2_EXTENSION_UNIT_V2: {
struct uac_processing_unit_descriptor *d = p1;
if (state->mixer->protocol == UAC_VERSION_2 && /* REVISIT: UAC3 IT doesn't have channels/cfg */
hdr[2] == UAC2_EFFECT_UNIT) { term->channels = 0;
/* UAC2/UAC1 unit IDs overlap here in an term->chconfig = 0;
* uncompatible way. Ignore this unit for now.
*/ term->name = le16_to_cpu(d->wTerminalDescrStr);
return 0; return 0;
} }
case UAC3_FEATURE_UNIT: {
struct uac3_feature_unit_descriptor *d = p1;
if (d->bNrInPins) { id = d->bSourceID;
id = d->baSourceID[0];
break; /* continue to parse */ break; /* continue to parse */
} }
term->type = d->bDescriptorSubtype << 16; /* virtual type */ case UAC3_CLOCK_SOURCE: {
term->channels = uac_processing_unit_bNrChannels(d); struct uac3_clock_source_descriptor *d = p1;
term->chconfig = uac_processing_unit_wChannelConfig(d, state->mixer->protocol);
term->name = uac_processing_unit_iProcessing(d, state->mixer->protocol); term->type = d->bDescriptorSubtype << 16; /* virtual type */
return 0; term->id = id;
} term->name = le16_to_cpu(d->wClockSourceStr);
case UAC2_CLOCK_SOURCE: { return 0;
struct uac_clock_source_descriptor *d = p1; }
term->type = d->bDescriptorSubtype << 16; /* virtual type */ default:
term->id = id; return -ENODEV;
term->name = d->iClockSource; }
return 0;
}
default:
return -ENODEV;
} }
} }
return -ENODEV; return -ENODEV;
@ -1423,7 +1474,7 @@ static int parse_clock_source_unit(struct mixer_build *state, int unitid,
* The only property of this unit we are interested in is the * The only property of this unit we are interested in is the
* clock source validity. If that isn't readable, just bail out. * clock source validity. If that isn't readable, just bail out.
*/ */
if (!uac2_control_is_readable(hdr->bmControls, if (!uac_v2v3_control_is_readable(hdr->bmControls,
ilog2(UAC2_CS_CONTROL_CLOCK_VALID))) ilog2(UAC2_CS_CONTROL_CLOCK_VALID)))
return 0; return 0;
@ -1439,7 +1490,7 @@ static int parse_clock_source_unit(struct mixer_build *state, int unitid,
cval->val_type = USB_MIXER_BOOLEAN; cval->val_type = USB_MIXER_BOOLEAN;
cval->control = UAC2_CS_CONTROL_CLOCK_VALID; cval->control = UAC2_CS_CONTROL_CLOCK_VALID;
if (uac2_control_is_writeable(hdr->bmControls, if (uac_v2v3_control_is_writeable(hdr->bmControls,
ilog2(UAC2_CS_CONTROL_CLOCK_VALID))) ilog2(UAC2_CS_CONTROL_CLOCK_VALID)))
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval); kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
else { else {
@ -1502,7 +1553,7 @@ static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
unitid); unitid);
return -EINVAL; return -EINVAL;
} }
} else { } else if (state->mixer->protocol == UAC_VERSION_2) {
struct uac2_feature_unit_descriptor *ftr = _ftr; struct uac2_feature_unit_descriptor *ftr = _ftr;
if (hdr->bLength < 6) { if (hdr->bLength < 6) {
usb_audio_err(state->chip, usb_audio_err(state->chip,
@ -1519,6 +1570,24 @@ static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
unitid); unitid);
return -EINVAL; return -EINVAL;
} }
} else { /* UAC_VERSION_3 */
struct uac3_feature_unit_descriptor *ftr = _ftr;
if (hdr->bLength < 7) {
usb_audio_err(state->chip,
"unit %u: invalid UAC3_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
csize = 4;
channels = (ftr->bLength - 7) / 4 - 1;
bmaControls = ftr->bmaControls;
if (hdr->bLength < 7 + csize) {
usb_audio_err(state->chip,
"unit %u: invalid UAC3_FEATURE_UNIT descriptor\n",
unitid);
return -EINVAL;
}
} }
/* parse the source unit */ /* parse the source unit */
@ -1577,7 +1646,7 @@ static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
build_feature_ctl(state, _ftr, 0, i, &iterm, build_feature_ctl(state, _ftr, 0, i, &iterm,
unitid, 0); unitid, 0);
} }
} else { /* UAC_VERSION_2 */ } else { /* UAC_VERSION_2/3 */
for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) { for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) {
unsigned int ch_bits = 0; unsigned int ch_bits = 0;
unsigned int ch_read_only = 0; unsigned int ch_read_only = 0;
@ -1587,9 +1656,9 @@ static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
mask = snd_usb_combine_bytes(bmaControls + mask = snd_usb_combine_bytes(bmaControls +
csize * (j+1), csize); csize * (j+1), csize);
if (uac2_control_is_readable(mask, i)) { if (uac_v2v3_control_is_readable(mask, i)) {
ch_bits |= (1 << j); ch_bits |= (1 << j);
if (!uac2_control_is_writeable(mask, i)) if (!uac_v2v3_control_is_writeable(mask, i))
ch_read_only |= (1 << j); ch_read_only |= (1 << j);
} }
} }
@ -1610,9 +1679,9 @@ static int parse_audio_feature_unit(struct mixer_build *state, int unitid,
if (ch_bits & 1) if (ch_bits & 1)
build_feature_ctl(state, _ftr, ch_bits, i, build_feature_ctl(state, _ftr, ch_bits, i,
&iterm, unitid, ch_read_only); &iterm, unitid, ch_read_only);
if (uac2_control_is_readable(master_bits, i)) if (uac_v2v3_control_is_readable(master_bits, i))
build_feature_ctl(state, _ftr, 0, i, &iterm, unitid, build_feature_ctl(state, _ftr, 0, i, &iterm, unitid,
!uac2_control_is_writeable(master_bits, i)); !uac_v2v3_control_is_writeable(master_bits, i));
} }
} }
@ -2220,6 +2289,7 @@ static int parse_audio_selector_unit(struct mixer_build *state, int unitid,
static int parse_audio_unit(struct mixer_build *state, int unitid) static int parse_audio_unit(struct mixer_build *state, int unitid)
{ {
unsigned char *p1; unsigned char *p1;
int protocol = state->mixer->protocol;
if (test_and_set_bit(unitid, state->unitbitmap)) if (test_and_set_bit(unitid, state->unitbitmap))
return 0; /* the unit already visited */ return 0; /* the unit already visited */
@ -2230,36 +2300,61 @@ static int parse_audio_unit(struct mixer_build *state, int unitid)
return -EINVAL; return -EINVAL;
} }
switch (p1[2]) { if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
case UAC_INPUT_TERMINAL: switch (p1[2]) {
return 0; /* NOP */ case UAC_INPUT_TERMINAL:
case UAC_MIXER_UNIT: return 0; /* NOP */
return parse_audio_mixer_unit(state, unitid, p1); case UAC_MIXER_UNIT:
case UAC2_CLOCK_SOURCE: return parse_audio_mixer_unit(state, unitid, p1);
return parse_clock_source_unit(state, unitid, p1); case UAC2_CLOCK_SOURCE:
case UAC_SELECTOR_UNIT: return parse_clock_source_unit(state, unitid, p1);
case UAC2_CLOCK_SELECTOR: case UAC_SELECTOR_UNIT:
return parse_audio_selector_unit(state, unitid, p1); case UAC2_CLOCK_SELECTOR:
case UAC_FEATURE_UNIT: return parse_audio_selector_unit(state, unitid, p1);
return parse_audio_feature_unit(state, unitid, p1); case UAC_FEATURE_UNIT:
case UAC1_PROCESSING_UNIT: return parse_audio_feature_unit(state, unitid, p1);
/* UAC2_EFFECT_UNIT has the same value */ case UAC1_PROCESSING_UNIT:
if (state->mixer->protocol == UAC_VERSION_1) /* UAC2_EFFECT_UNIT has the same value */
return parse_audio_processing_unit(state, unitid, p1); if (protocol == UAC_VERSION_1)
else return parse_audio_processing_unit(state, unitid, p1);
return 0; /* FIXME - effect units not implemented yet */ else
case UAC1_EXTENSION_UNIT: return 0; /* FIXME - effect units not implemented yet */
/* UAC2_PROCESSING_UNIT_V2 has the same value */ case UAC1_EXTENSION_UNIT:
if (state->mixer->protocol == UAC_VERSION_1) /* UAC2_PROCESSING_UNIT_V2 has the same value */
if (protocol == UAC_VERSION_1)
return parse_audio_extension_unit(state, unitid, p1);
else /* UAC_VERSION_2 */
return parse_audio_processing_unit(state, unitid, p1);
case UAC2_EXTENSION_UNIT_V2:
return parse_audio_extension_unit(state, unitid, p1); return parse_audio_extension_unit(state, unitid, p1);
else /* UAC_VERSION_2 */ default:
usb_audio_err(state->chip,
"unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return -EINVAL;
}
} else { /* UAC_VERSION_3 */
switch (p1[2]) {
case UAC_INPUT_TERMINAL:
return 0; /* NOP */
case UAC3_MIXER_UNIT:
return parse_audio_mixer_unit(state, unitid, p1);
case UAC3_CLOCK_SOURCE:
return parse_clock_source_unit(state, unitid, p1);
case UAC3_CLOCK_SELECTOR:
return parse_audio_selector_unit(state, unitid, p1);
case UAC3_FEATURE_UNIT:
return parse_audio_feature_unit(state, unitid, p1);
case UAC3_EFFECT_UNIT:
return 0; /* FIXME - effect units not implemented yet */
case UAC3_PROCESSING_UNIT:
return parse_audio_processing_unit(state, unitid, p1); return parse_audio_processing_unit(state, unitid, p1);
case UAC2_EXTENSION_UNIT_V2: case UAC3_EXTENSION_UNIT:
return parse_audio_extension_unit(state, unitid, p1); return parse_audio_extension_unit(state, unitid, p1);
default: default:
usb_audio_err(state->chip, usb_audio_err(state->chip,
"unit %u: unexpected type 0x%02x\n", unitid, p1[2]); "unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return -EINVAL; return -EINVAL;
}
} }
} }
@ -2330,7 +2425,7 @@ static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
err = parse_audio_unit(&state, desc->bSourceID); err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL) if (err < 0 && err != -EINVAL)
return err; return err;
} else { /* UAC_VERSION_2 */ } else if (mixer->protocol == UAC_VERSION_2) {
struct uac2_output_terminal_descriptor *desc = p; struct uac2_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc)) if (desc->bLength < sizeof(*desc))
@ -2351,6 +2446,27 @@ static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
err = parse_audio_unit(&state, desc->bCSourceID); err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL) if (err < 0 && err != -EINVAL)
return err; return err;
} else { /* UAC_VERSION_3 */
struct uac3_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
/* mark terminal ID as visited */
set_bit(desc->bTerminalID, state.unitbitmap);
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = le16_to_cpu(desc->wTerminalDescrStr);
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0 && err != -EINVAL)
return err;
/*
* For UAC3, use the same approach to also add the
* clock selectors
*/
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0 && err != -EINVAL)
return err;
} }
} }
@ -2597,6 +2713,9 @@ int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
case UAC_VERSION_2: case UAC_VERSION_2:
mixer->protocol = UAC_VERSION_2; mixer->protocol = UAC_VERSION_2;
break; break;
case UAC_VERSION_3:
mixer->protocol = UAC_VERSION_3;
break;
} }
if ((err = snd_usb_mixer_controls(mixer)) < 0 || if ((err = snd_usb_mixer_controls(mixer)) < 0 ||

Просмотреть файл

@ -20,6 +20,7 @@
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/audio.h> #include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h> #include <linux/usb/audio-v2.h>
#include <linux/usb/audio-v3.h>
#include <sound/core.h> #include <sound/core.h>
#include <sound/pcm.h> #include <sound/pcm.h>
@ -311,6 +312,153 @@ static struct snd_pcm_chmap_elem *convert_chmap(int channels, unsigned int bits,
return chmap; return chmap;
} }
/* UAC3 device stores channels information in Cluster Descriptors */
static struct
snd_pcm_chmap_elem *convert_chmap_v3(struct uac3_cluster_header_descriptor
*cluster)
{
unsigned int channels = cluster->bNrChannels;
struct snd_pcm_chmap_elem *chmap;
void *p = cluster;
int len, c;
if (channels > ARRAY_SIZE(chmap->map))
return NULL;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (!chmap)
return NULL;
len = le16_to_cpu(cluster->wLength);
c = 0;
p += sizeof(struct uac3_cluster_header_descriptor);
while (((p - (void *)cluster) < len) && (c < channels)) {
struct uac3_cluster_segment_descriptor *cs_desc = p;
u16 cs_len;
u8 cs_type;
cs_len = le16_to_cpu(cs_desc->wLength);
cs_type = cs_desc->bSegmentType;
if (cs_type == UAC3_CHANNEL_INFORMATION) {
struct uac3_cluster_information_segment_descriptor *is = p;
unsigned char map;
/*
* TODO: this conversion is not complete, update it
* after adding UAC3 values to asound.h
*/
switch (is->bChPurpose) {
case UAC3_CH_MONO:
map = SNDRV_CHMAP_MONO;
break;
case UAC3_CH_LEFT:
case UAC3_CH_FRONT_LEFT:
case UAC3_CH_HEADPHONE_LEFT:
map = SNDRV_CHMAP_FL;
break;
case UAC3_CH_RIGHT:
case UAC3_CH_FRONT_RIGHT:
case UAC3_CH_HEADPHONE_RIGHT:
map = SNDRV_CHMAP_FR;
break;
case UAC3_CH_FRONT_CENTER:
map = SNDRV_CHMAP_FC;
break;
case UAC3_CH_FRONT_LEFT_OF_CENTER:
map = SNDRV_CHMAP_FLC;
break;
case UAC3_CH_FRONT_RIGHT_OF_CENTER:
map = SNDRV_CHMAP_FRC;
break;
case UAC3_CH_SIDE_LEFT:
map = SNDRV_CHMAP_SL;
break;
case UAC3_CH_SIDE_RIGHT:
map = SNDRV_CHMAP_SR;
break;
case UAC3_CH_BACK_LEFT:
map = SNDRV_CHMAP_RL;
break;
case UAC3_CH_BACK_RIGHT:
map = SNDRV_CHMAP_RR;
break;
case UAC3_CH_BACK_CENTER:
map = SNDRV_CHMAP_RC;
break;
case UAC3_CH_BACK_LEFT_OF_CENTER:
map = SNDRV_CHMAP_RLC;
break;
case UAC3_CH_BACK_RIGHT_OF_CENTER:
map = SNDRV_CHMAP_RRC;
break;
case UAC3_CH_TOP_CENTER:
map = SNDRV_CHMAP_TC;
break;
case UAC3_CH_TOP_FRONT_LEFT:
map = SNDRV_CHMAP_TFL;
break;
case UAC3_CH_TOP_FRONT_RIGHT:
map = SNDRV_CHMAP_TFR;
break;
case UAC3_CH_TOP_FRONT_CENTER:
map = SNDRV_CHMAP_TFC;
break;
case UAC3_CH_TOP_FRONT_LOC:
map = SNDRV_CHMAP_TFLC;
break;
case UAC3_CH_TOP_FRONT_ROC:
map = SNDRV_CHMAP_TFRC;
break;
case UAC3_CH_TOP_SIDE_LEFT:
map = SNDRV_CHMAP_TSL;
break;
case UAC3_CH_TOP_SIDE_RIGHT:
map = SNDRV_CHMAP_TSR;
break;
case UAC3_CH_TOP_BACK_LEFT:
map = SNDRV_CHMAP_TRL;
break;
case UAC3_CH_TOP_BACK_RIGHT:
map = SNDRV_CHMAP_TRR;
break;
case UAC3_CH_TOP_BACK_CENTER:
map = SNDRV_CHMAP_TRC;
break;
case UAC3_CH_BOTTOM_CENTER:
map = SNDRV_CHMAP_BC;
break;
case UAC3_CH_LOW_FREQUENCY_EFFECTS:
map = SNDRV_CHMAP_LFE;
break;
case UAC3_CH_LFE_LEFT:
map = SNDRV_CHMAP_LLFE;
break;
case UAC3_CH_LFE_RIGHT:
map = SNDRV_CHMAP_RLFE;
break;
case UAC3_CH_RELATIONSHIP_UNDEFINED:
default:
map = SNDRV_CHMAP_UNKNOWN;
break;
}
chmap->map[c++] = map;
}
p += cs_len;
}
if (channels < c)
pr_err("%s: channel number mismatch\n", __func__);
chmap->channels = channels;
for (; c < channels; c++)
chmap->map[c] = SNDRV_CHMAP_UNKNOWN;
return chmap;
}
/* /*
* add this endpoint to the chip instance. * add this endpoint to the chip instance.
* if a stream with the same endpoint already exists, append to it. * if a stream with the same endpoint already exists, append to it.
@ -461,10 +609,11 @@ snd_usb_find_input_terminal_descriptor(struct usb_host_interface *ctrl_iface,
return NULL; return NULL;
} }
static struct uac2_output_terminal_descriptor * static void *
snd_usb_find_output_terminal_descriptor(struct usb_host_interface *ctrl_iface, snd_usb_find_output_terminal_descriptor(struct usb_host_interface *ctrl_iface,
int terminal_id) int terminal_id)
{ {
/* OK to use with both UAC2 and UAC3 */
struct uac2_output_terminal_descriptor *term = NULL; struct uac2_output_terminal_descriptor *term = NULL;
while ((term = snd_usb_find_csint_desc(ctrl_iface->extra, while ((term = snd_usb_find_csint_desc(ctrl_iface->extra,
@ -484,10 +633,12 @@ int snd_usb_parse_audio_interface(struct snd_usb_audio *chip, int iface_no)
struct usb_host_interface *alts; struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd; struct usb_interface_descriptor *altsd;
int i, altno, err, stream; int i, altno, err, stream;
unsigned int format = 0, num_channels = 0; u64 format = 0;
unsigned int num_channels = 0;
struct audioformat *fp = NULL; struct audioformat *fp = NULL;
int num, protocol, clock = 0; int num, protocol, clock = 0;
struct uac_format_type_i_continuous_descriptor *fmt; struct uac_format_type_i_continuous_descriptor *fmt = NULL;
struct snd_pcm_chmap_elem *chmap_v3 = NULL;
unsigned int chconfig; unsigned int chconfig;
dev = chip->dev; dev = chip->dev;
@ -624,38 +775,158 @@ int snd_usb_parse_audio_interface(struct snd_usb_audio *chip, int iface_no)
iface_no, altno, as->bTerminalLink); iface_no, altno, as->bTerminalLink);
continue; continue;
} }
}
/* get format type */ case UAC_VERSION_3: {
fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, UAC_FORMAT_TYPE); struct uac3_input_terminal_descriptor *input_term;
if (!fmt) { struct uac3_output_terminal_descriptor *output_term;
struct uac3_as_header_descriptor *as;
struct uac3_cluster_header_descriptor *cluster;
struct uac3_hc_descriptor_header hc_header;
u16 cluster_id, wLength;
as = snd_usb_find_csint_desc(alts->extra,
alts->extralen,
NULL, UAC_AS_GENERAL);
if (!as) {
dev_err(&dev->dev,
"%u:%d : UAC_AS_GENERAL descriptor not found\n",
iface_no, altno);
continue;
}
if (as->bLength < sizeof(*as)) {
dev_err(&dev->dev,
"%u:%d : invalid UAC_AS_GENERAL desc\n",
iface_no, altno);
continue;
}
cluster_id = le16_to_cpu(as->wClusterDescrID);
if (!cluster_id) {
dev_err(&dev->dev,
"%u:%d : no cluster descriptor\n",
iface_no, altno);
continue;
}
/*
* Get number of channels and channel map through
* High Capability Cluster Descriptor
*
* First step: get High Capability header and
* read size of Cluster Descriptor
*/
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0),
UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
cluster_id,
snd_usb_ctrl_intf(chip),
&hc_header, sizeof(hc_header));
if (err < 0)
return err;
else if (err != sizeof(hc_header)) {
dev_err(&dev->dev,
"%u:%d : can't get High Capability descriptor\n",
iface_no, altno);
return -EIO;
}
/*
* Second step: allocate needed amount of memory
* and request Cluster Descriptor
*/
wLength = le16_to_cpu(hc_header.wLength);
cluster = kzalloc(wLength, GFP_KERNEL);
if (!cluster)
return -ENOMEM;
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0),
UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
cluster_id,
snd_usb_ctrl_intf(chip),
cluster, wLength);
if (err < 0) {
kfree(cluster);
return err;
} else if (err != wLength) {
dev_err(&dev->dev,
"%u:%d : can't get Cluster Descriptor\n",
iface_no, altno);
kfree(cluster);
return -EIO;
}
num_channels = cluster->bNrChannels;
chmap_v3 = convert_chmap_v3(cluster);
kfree(cluster);
format = le64_to_cpu(as->bmFormats);
/* lookup the terminal associated to this interface
* to extract the clock */
input_term = snd_usb_find_input_terminal_descriptor(
chip->ctrl_intf,
as->bTerminalLink);
if (input_term) {
clock = input_term->bCSourceID;
break;
}
output_term = snd_usb_find_output_terminal_descriptor(chip->ctrl_intf,
as->bTerminalLink);
if (output_term) {
clock = output_term->bCSourceID;
break;
}
dev_err(&dev->dev, dev_err(&dev->dev,
"%u:%d : no UAC_FORMAT_TYPE desc\n", "%u:%d : bogus bTerminalLink %d\n",
iface_no, altno); iface_no, altno, as->bTerminalLink);
continue; continue;
} }
if (((protocol == UAC_VERSION_1) && (fmt->bLength < 8)) ||
((protocol == UAC_VERSION_2) && (fmt->bLength < 6))) {
dev_err(&dev->dev,
"%u:%d : invalid UAC_FORMAT_TYPE desc\n",
iface_no, altno);
continue;
} }
/* if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
* Blue Microphones workaround: The last altsetting is identical /* get format type */
* with the previous one, except for a larger packet size, but fmt = snd_usb_find_csint_desc(alts->extra,
* is actually a mislabeled two-channel setting; ignore it. alts->extralen,
*/ NULL, UAC_FORMAT_TYPE);
if (fmt->bNrChannels == 1 && if (!fmt) {
fmt->bSubframeSize == 2 && dev_err(&dev->dev,
altno == 2 && num == 3 && "%u:%d : no UAC_FORMAT_TYPE desc\n",
fp && fp->altsetting == 1 && fp->channels == 1 && iface_no, altno);
fp->formats == SNDRV_PCM_FMTBIT_S16_LE && continue;
protocol == UAC_VERSION_1 && }
le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize) == if (((protocol == UAC_VERSION_1) && (fmt->bLength < 8))
|| ((protocol == UAC_VERSION_2) &&
(fmt->bLength < 6))) {
dev_err(&dev->dev,
"%u:%d : invalid UAC_FORMAT_TYPE desc\n",
iface_no, altno);
continue;
}
/*
* Blue Microphones workaround: The last altsetting is
* identical with the previous one, except for a larger
* packet size, but is actually a mislabeled two-channel
* setting; ignore it.
*/
if (fmt->bNrChannels == 1 &&
fmt->bSubframeSize == 2 &&
altno == 2 && num == 3 &&
fp && fp->altsetting == 1 && fp->channels == 1 &&
fp->formats == SNDRV_PCM_FMTBIT_S16_LE &&
protocol == UAC_VERSION_1 &&
le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize) ==
fp->maxpacksize * 2) fp->maxpacksize * 2)
continue; continue;
}
fp = kzalloc(sizeof(*fp), GFP_KERNEL); fp = kzalloc(sizeof(*fp), GFP_KERNEL);
if (!fp) if (!fp)
@ -681,17 +952,39 @@ int snd_usb_parse_audio_interface(struct snd_usb_audio *chip, int iface_no)
snd_usb_audioformat_attributes_quirk(chip, fp, stream); snd_usb_audioformat_attributes_quirk(chip, fp, stream);
/* ok, let's parse further... */ /* ok, let's parse further... */
if (snd_usb_parse_audio_format(chip, fp, format, fmt, stream) < 0) { if (protocol == UAC_VERSION_1 || protocol == UAC_VERSION_2) {
kfree(fp->rate_table); if (snd_usb_parse_audio_format(chip, fp, format,
kfree(fp); fmt, stream) < 0) {
fp = NULL; kfree(fp->rate_table);
continue; kfree(fp);
fp = NULL;
continue;
}
} else {
struct uac3_as_header_descriptor *as;
as = snd_usb_find_csint_desc(alts->extra,
alts->extralen,
NULL, UAC_AS_GENERAL);
if (snd_usb_parse_audio_format_v3(chip, fp, as,
stream) < 0) {
kfree(fp->rate_table);
kfree(fp);
fp = NULL;
continue;
}
} }
/* Create chmap */ /* Create chmap */
if (fp->channels != num_channels) if (fp->channels != num_channels)
chconfig = 0; chconfig = 0;
fp->chmap = convert_chmap(fp->channels, chconfig, protocol);
if (protocol == UAC_VERSION_3)
fp->chmap = chmap_v3;
else
fp->chmap = convert_chmap(fp->channels, chconfig,
protocol);
dev_dbg(&dev->dev, "%u:%d: add audio endpoint %#x\n", iface_no, altno, fp->endpoint); dev_dbg(&dev->dev, "%u:%d: add audio endpoint %#x\n", iface_no, altno, fp->endpoint);
err = snd_usb_add_audio_stream(chip, stream, fp); err = snd_usb_add_audio_stream(chip, stream, fp);