Staging: et131x: de-hungarianise a bit
bOverrideAddress is write only so kill it rather than fix it Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Родитель
8c5f20f36a
Коммит
9fa8109921
|
@ -137,34 +137,34 @@
|
|||
* Define macros that allow individual register values to be extracted from a
|
||||
* DWORD1 register grouping
|
||||
*/
|
||||
#define EXTRACT_DATA_REGISTER(x) (uint8_t)(x & 0xFF)
|
||||
#define EXTRACT_STATUS_REGISTER(x) (uint8_t)((x >> 16) & 0xFF)
|
||||
#define EXTRACT_CONTROL_REG(x) (uint8_t)((x >> 8) & 0xFF)
|
||||
#define EXTRACT_DATA_REGISTER(x) (u8)(x & 0xFF)
|
||||
#define EXTRACT_STATUS_REGISTER(x) (u8)((x >> 16) & 0xFF)
|
||||
#define EXTRACT_CONTROL_REG(x) (u8)((x >> 8) & 0xFF)
|
||||
|
||||
/**
|
||||
* EepromWriteByte - Write a byte to the ET1310's EEPROM
|
||||
* @etdev: pointer to our private adapter structure
|
||||
* @unAddress: the address to write
|
||||
* @bData: the value to write
|
||||
* @unEepronId: the ID of the EEPROM
|
||||
* @unAddressingMode: how the EEPROM is to be accessed
|
||||
* @addr: the address to write
|
||||
* @data: the value to write
|
||||
* @eeprom_id: the ID of the EEPROM
|
||||
* @addrmode: how the EEPROM is to be accessed
|
||||
*
|
||||
* Returns SUCCESS or FAILURE
|
||||
*/
|
||||
int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
||||
uint8_t bData, uint32_t unEepromId,
|
||||
uint32_t unAddressingMode)
|
||||
int EepromWriteByte(struct et131x_adapter *etdev, u32 addr,
|
||||
u8 data, u32 eeprom_id,
|
||||
u32 addrmode)
|
||||
{
|
||||
struct pci_dev *pdev = etdev->pdev;
|
||||
int32_t nIndex;
|
||||
int32_t nRetries;
|
||||
int32_t nError = false;
|
||||
int32_t nI2CWriteActive = 0;
|
||||
int32_t nWriteSuccessful = 0;
|
||||
uint8_t bControl;
|
||||
uint8_t bStatus = 0;
|
||||
uint32_t unDword1 = 0;
|
||||
uint32_t unData = 0;
|
||||
int index;
|
||||
int retries;
|
||||
int err = 0;
|
||||
int i2c_wack = 0;
|
||||
int writeok = 0;
|
||||
u8 control;
|
||||
u8 status = 0;
|
||||
u32 dword1 = 0;
|
||||
u32 val = 0;
|
||||
|
||||
/*
|
||||
* The following excerpt is from "Serial EEPROM HW Design
|
||||
|
@ -215,89 +215,89 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
|||
*/
|
||||
|
||||
/* Step 1: */
|
||||
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&unDword1)) {
|
||||
nError = 1;
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
bStatus & LBCIF_STATUS_I2C_IDLE)
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE)
|
||||
/* bits 1:0 are equal to 1 */
|
||||
break;
|
||||
}
|
||||
|
||||
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return FAILURE;
|
||||
|
||||
/* Step 2: */
|
||||
bControl = 0;
|
||||
bControl |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
|
||||
control = 0;
|
||||
control |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
|
||||
|
||||
if (unAddressingMode == DUAL_BYTE)
|
||||
bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
|
||||
if (addrmode == DUAL_BYTE)
|
||||
control |= LBCIF_CONTROL_TWO_BYTE_ADDR;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
bControl)) {
|
||||
control)) {
|
||||
return FAILURE;
|
||||
}
|
||||
|
||||
nI2CWriteActive = 1;
|
||||
i2c_wack = 1;
|
||||
|
||||
/* Prepare EEPROM address for Step 3 */
|
||||
unAddress |= (unAddressingMode == DUAL_BYTE) ?
|
||||
(unEepromId << 16) : (unEepromId << 8);
|
||||
addr |= (addrmode == DUAL_BYTE) ?
|
||||
(eeprom_id << 16) : (eeprom_id << 8);
|
||||
|
||||
for (nRetries = 0; nRetries < MAX_NUM_WRITE_RETRIES; nRetries++) {
|
||||
for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
|
||||
/* Step 3:*/
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
unAddress)) {
|
||||
addr)) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 4: */
|
||||
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER_OFFSET,
|
||||
bData)) {
|
||||
data)) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 5: */
|
||||
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev,
|
||||
LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&unDword1)) {
|
||||
nError = 1;
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
bStatus & LBCIF_STATUS_I2C_IDLE) {
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* I2C write complete */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
break;
|
||||
|
||||
/*
|
||||
* Step 6: Don't break here if we are revision 1, this is
|
||||
* so we do a blind write for load bug.
|
||||
*/
|
||||
if (bStatus & LBCIF_STATUS_GENERAL_ERROR
|
||||
if (status & LBCIF_STATUS_GENERAL_ERROR
|
||||
&& etdev->pdev->revision == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 7 */
|
||||
if (bStatus & LBCIF_STATUS_ACK_ERROR) {
|
||||
if (status & LBCIF_STATUS_ACK_ERROR) {
|
||||
/*
|
||||
* This could be due to an actual hardware failure
|
||||
* or the EEPROM may still be in its internal write
|
||||
|
@ -308,19 +308,19 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
|||
continue;
|
||||
}
|
||||
|
||||
nWriteSuccessful = 1;
|
||||
writeok = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 8: */
|
||||
udelay(10);
|
||||
nIndex = 0;
|
||||
while (nI2CWriteActive) {
|
||||
bControl &= ~LBCIF_CONTROL_I2C_WRITE;
|
||||
index = 0;
|
||||
while (i2c_wack) {
|
||||
control &= ~LBCIF_CONTROL_I2C_WRITE;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
bControl)) {
|
||||
nWriteSuccessful = 0;
|
||||
control)) {
|
||||
writeok = 0;
|
||||
}
|
||||
|
||||
/* Do read until internal ACK_ERROR goes away meaning write
|
||||
|
@ -329,44 +329,44 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
|||
do {
|
||||
pci_write_config_dword(pdev,
|
||||
LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
unAddress);
|
||||
addr);
|
||||
do {
|
||||
pci_read_config_dword(pdev,
|
||||
LBCIF_DATA_REGISTER_OFFSET, &unData);
|
||||
} while ((unData & 0x00010000) == 0);
|
||||
} while (unData & 0x00040000);
|
||||
LBCIF_DATA_REGISTER_OFFSET, &val);
|
||||
} while ((val & 0x00010000) == 0);
|
||||
} while (val & 0x00040000);
|
||||
|
||||
bControl = EXTRACT_CONTROL_REG(unData);
|
||||
control = EXTRACT_CONTROL_REG(val);
|
||||
|
||||
if (bControl != 0xC0 || nIndex == 10000)
|
||||
if (control != 0xC0 || index == 10000)
|
||||
break;
|
||||
|
||||
nIndex++;
|
||||
index++;
|
||||
}
|
||||
|
||||
return nWriteSuccessful ? SUCCESS : FAILURE;
|
||||
return writeok ? SUCCESS : FAILURE;
|
||||
}
|
||||
|
||||
/**
|
||||
* EepromReadByte - Read a byte from the ET1310's EEPROM
|
||||
* @etdev: pointer to our private adapter structure
|
||||
* @unAddress: the address from which to read
|
||||
* @pbData: a pointer to a byte in which to store the value of the read
|
||||
* @unEepronId: the ID of the EEPROM
|
||||
* @unAddressingMode: how the EEPROM is to be accessed
|
||||
* @addr: the address from which to read
|
||||
* @pdata: a pointer to a byte in which to store the value of the read
|
||||
* @eeprom_id: the ID of the EEPROM
|
||||
* @addrmode: how the EEPROM is to be accessed
|
||||
*
|
||||
* Returns SUCCESS or FAILURE
|
||||
*/
|
||||
int32_t EepromReadByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
||||
uint8_t *pbData, uint32_t unEepromId,
|
||||
uint32_t unAddressingMode)
|
||||
int EepromReadByte(struct et131x_adapter *etdev, u32 addr,
|
||||
u8 *pdata, u32 eeprom_id,
|
||||
u32 addrmode)
|
||||
{
|
||||
struct pci_dev *pdev = etdev->pdev;
|
||||
int32_t nIndex;
|
||||
int32_t nError = 0;
|
||||
uint8_t bControl;
|
||||
uint8_t bStatus = 0;
|
||||
uint32_t unDword1 = 0;
|
||||
int index;
|
||||
int err = 0;
|
||||
u8 control;
|
||||
u8 status = 0;
|
||||
u32 dword1 = 0;
|
||||
|
||||
/*
|
||||
* The following excerpt is from "Serial EEPROM HW Design
|
||||
|
@ -403,70 +403,70 @@ int32_t EepromReadByte(struct et131x_adapter *etdev, uint32_t unAddress,
|
|||
*/
|
||||
|
||||
/* Step 1: */
|
||||
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&unDword1)) {
|
||||
nError = 1;
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
bStatus & LBCIF_STATUS_I2C_IDLE) {
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* bits 1:0 are equal to 1 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return FAILURE;
|
||||
|
||||
/* Step 2: */
|
||||
bControl = 0;
|
||||
bControl |= LBCIF_CONTROL_LBCIF_ENABLE;
|
||||
control = 0;
|
||||
control |= LBCIF_CONTROL_LBCIF_ENABLE;
|
||||
|
||||
if (unAddressingMode == DUAL_BYTE)
|
||||
bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
|
||||
if (addrmode == DUAL_BYTE)
|
||||
control |= LBCIF_CONTROL_TWO_BYTE_ADDR;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
bControl)) {
|
||||
control)) {
|
||||
return FAILURE;
|
||||
}
|
||||
|
||||
/* Step 3: */
|
||||
unAddress |= (unAddressingMode == DUAL_BYTE) ?
|
||||
(unEepromId << 16) : (unEepromId << 8);
|
||||
addr |= (addrmode == DUAL_BYTE) ?
|
||||
(eeprom_id << 16) : (eeprom_id << 8);
|
||||
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
unAddress)) {
|
||||
addr)) {
|
||||
return FAILURE;
|
||||
}
|
||||
|
||||
/* Step 4: */
|
||||
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&unDword1)) {
|
||||
nError = 1;
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL
|
||||
&& bStatus & LBCIF_STATUS_I2C_IDLE) {
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL
|
||||
&& status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* I2C read complete */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return FAILURE;
|
||||
|
||||
/* Step 6: */
|
||||
*pbData = EXTRACT_DATA_REGISTER(unDword1);
|
||||
*pdata = EXTRACT_DATA_REGISTER(dword1);
|
||||
|
||||
return (bStatus & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;
|
||||
return (status & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;
|
||||
}
|
||||
|
|
|
@ -195,7 +195,7 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
|
|||
cfg2.value = readl(&pMac->cfg2.value);
|
||||
ifctrl.value = readl(&pMac->if_ctrl.value);
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
cfg2.bits.if_mode = 0x2;
|
||||
ifctrl.bits.phy_mode = 0x0;
|
||||
} else {
|
||||
|
@ -241,8 +241,8 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
|
|||
}
|
||||
|
||||
/* 1 - full duplex, 0 - half-duplex */
|
||||
cfg2.bits.full_duplex = etdev->uiDuplexMode;
|
||||
ifctrl.bits.ghd_mode = !etdev->uiDuplexMode;
|
||||
cfg2.bits.full_duplex = etdev->duplex_mode;
|
||||
ifctrl.bits.ghd_mode = !etdev->duplex_mode;
|
||||
|
||||
writel(ifctrl.value, &pMac->if_ctrl.value);
|
||||
writel(cfg2.value, &pMac->cfg2.value);
|
||||
|
@ -262,7 +262,7 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
|
|||
|
||||
DBG_TRACE(et131x_dbginfo,
|
||||
"Speed %d, Dup %d, CFG1 0x%08x, CFG2 0x%08x, if_ctrl 0x%08x\n",
|
||||
etdev->uiLinkSpeed, etdev->uiDuplexMode,
|
||||
etdev->linkspeed, etdev->duplex_mode,
|
||||
readl(&pMac->cfg1.value), readl(&pMac->cfg2.value),
|
||||
readl(&pMac->if_ctrl.value));
|
||||
|
||||
|
@ -408,7 +408,7 @@ void ConfigRxMacRegs(struct et131x_adapter *etdev)
|
|||
* bit 16: Receive frame truncated.
|
||||
* bit 17: Drop packet enable
|
||||
*/
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_100MBPS)
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_100MBPS)
|
||||
writel(0x30038, &pRxMac->mif_ctrl.value);
|
||||
else
|
||||
writel(0x30030, &pRxMac->mif_ctrl.value);
|
||||
|
@ -540,7 +540,7 @@ void ConfigMacStatRegs(struct et131x_adapter *etdev)
|
|||
|
||||
void ConfigFlowControl(struct et131x_adapter *etdev)
|
||||
{
|
||||
if (etdev->uiDuplexMode == 0) {
|
||||
if (etdev->duplex_mode == 0) {
|
||||
etdev->FlowControl = None;
|
||||
} else {
|
||||
char RemotePause, RemoteAsyncPause;
|
||||
|
|
|
@ -477,13 +477,13 @@ static int et131x_xcvr_init(struct et131x_adapter *adapter)
|
|||
void et131x_Mii_check(struct et131x_adapter *etdev,
|
||||
MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
|
||||
{
|
||||
uint8_t ucLinkStatus;
|
||||
uint32_t uiAutoNegStatus;
|
||||
uint32_t uiSpeed;
|
||||
uint32_t uiDuplex;
|
||||
uint32_t uiMdiMdix;
|
||||
uint32_t uiMasterSlave;
|
||||
uint32_t uiPolarity;
|
||||
uint8_t link_status;
|
||||
uint32_t autoneg_status;
|
||||
uint32_t speed;
|
||||
uint32_t duplex;
|
||||
uint32_t mdi_mdix;
|
||||
uint32_t masterslave;
|
||||
uint32_t polarity;
|
||||
unsigned long flags;
|
||||
|
||||
DBG_ENTER(et131x_dbginfo);
|
||||
|
@ -509,7 +509,7 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
|
|||
DBG_WARNING(et131x_dbginfo,
|
||||
"Link down cable problem\n");
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
|
||||
/* NOTE - Is there a way to query this without
|
||||
* TruePHY?
|
||||
* && TRU_QueryCoreType(etdev->hTruePhy, 0) == EMI_TRUEPHY_A13O) {
|
||||
|
@ -546,8 +546,8 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
|
|||
netif_carrier_off(etdev->netdev);
|
||||
}
|
||||
|
||||
etdev->uiLinkSpeed = 0;
|
||||
etdev->uiDuplexMode = 0;
|
||||
etdev->linkspeed = 0;
|
||||
etdev->duplexMode = 0;
|
||||
|
||||
/* Free the packets being actively sent & stopped */
|
||||
et131x_free_busy_send_packets(etdev);
|
||||
|
@ -581,21 +581,21 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
|
|||
(etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
|
||||
if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
|
||||
ET1310_PhyLinkStatus(etdev,
|
||||
&ucLinkStatus, &uiAutoNegStatus,
|
||||
&uiSpeed, &uiDuplex, &uiMdiMdix,
|
||||
&uiMasterSlave, &uiPolarity);
|
||||
&link_status, &autoneg_status,
|
||||
&speed, &duplex, &mdi_mdix,
|
||||
&masterslave, &polarity);
|
||||
|
||||
etdev->uiLinkSpeed = uiSpeed;
|
||||
etdev->uiDuplexMode = uiDuplex;
|
||||
etdev->linkspeed = speed;
|
||||
etdev->duplex_mode = duplex;
|
||||
|
||||
DBG_TRACE(et131x_dbginfo,
|
||||
"etdev->uiLinkSpeed 0x%04x, etdev->uiDuplex 0x%08x\n",
|
||||
etdev->uiLinkSpeed,
|
||||
etdev->uiDuplexMode);
|
||||
"etdev->linkspeed 0x%04x, etdev->duplex_mode 0x%08x\n",
|
||||
etdev->linkspeed,
|
||||
etdev->duplex_mode);
|
||||
|
||||
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
|
||||
/*
|
||||
* NOTE - Is there a way to query this without
|
||||
* TruePHY?
|
||||
|
@ -612,7 +612,7 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
|
|||
|
||||
ConfigFlowControl(etdev);
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS &&
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
|
||||
etdev->RegistryJumboPacket > 2048)
|
||||
ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
|
||||
0x2000);
|
||||
|
@ -905,67 +905,67 @@ static const uint16_t ConfigPhy[25][2] = {
|
|||
/* condensed version of the phy initialization routine */
|
||||
void ET1310_PhyInit(struct et131x_adapter *etdev)
|
||||
{
|
||||
uint16_t usData, usIndex;
|
||||
uint16_t data, index;
|
||||
|
||||
if (etdev == NULL)
|
||||
return;
|
||||
|
||||
/* get the identity (again ?) */
|
||||
MiRead(etdev, PHY_ID_1, &usData);
|
||||
MiRead(etdev, PHY_ID_2, &usData);
|
||||
MiRead(etdev, PHY_ID_1, &data);
|
||||
MiRead(etdev, PHY_ID_2, &data);
|
||||
|
||||
/* what does this do/achieve ? */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
|
||||
|
||||
/* read modem register 0402, should I do something with the return
|
||||
data ? */
|
||||
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
|
||||
MiRead(etdev, PHY_DATA_REG, &usData);
|
||||
MiRead(etdev, PHY_DATA_REG, &data);
|
||||
|
||||
/* what does this do/achieve ? */
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
|
||||
|
||||
/* get the identity (again ?) */
|
||||
MiRead(etdev, PHY_ID_1, &usData);
|
||||
MiRead(etdev, PHY_ID_2, &usData);
|
||||
MiRead(etdev, PHY_ID_1, &data);
|
||||
MiRead(etdev, PHY_ID_2, &data);
|
||||
|
||||
/* what does this achieve ? */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
|
||||
|
||||
/* read modem register 0402, should I do something with
|
||||
the return data? */
|
||||
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
|
||||
MiRead(etdev, PHY_DATA_REG, &usData);
|
||||
MiRead(etdev, PHY_DATA_REG, &data);
|
||||
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
|
||||
|
||||
/* what does this achieve (should return 0x1040) */
|
||||
MiRead(etdev, PHY_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
|
||||
MiRead(etdev, PHY_CONTROL, &data);
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
|
||||
MiWrite(etdev, PHY_CONTROL, 0x1840);
|
||||
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
|
||||
|
||||
/* here the writing of the array starts.... */
|
||||
usIndex = 0;
|
||||
while (ConfigPhy[usIndex][0] != 0x0000) {
|
||||
index = 0;
|
||||
while (ConfigPhy[index][0] != 0x0000) {
|
||||
/* write value */
|
||||
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[usIndex][0]);
|
||||
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[usIndex][1]);
|
||||
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
|
||||
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
|
||||
|
||||
/* read it back */
|
||||
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[usIndex][0]);
|
||||
MiRead(etdev, PHY_DATA_REG, &usData);
|
||||
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
|
||||
MiRead(etdev, PHY_DATA_REG, &data);
|
||||
|
||||
/* do a check on the value read back ? */
|
||||
usIndex++;
|
||||
index++;
|
||||
}
|
||||
/* here the writing of the array ends... */
|
||||
|
||||
MiRead(etdev, PHY_CONTROL, &usData); /* 0x1840 */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData);/* should read 0007 */
|
||||
MiRead(etdev, PHY_CONTROL, &data); /* 0x1840 */
|
||||
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
|
||||
MiWrite(etdev, PHY_CONTROL, 0x1040);
|
||||
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
|
||||
}
|
||||
|
@ -977,64 +977,64 @@ void ET1310_PhyReset(struct et131x_adapter *etdev)
|
|||
|
||||
void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
MiRead(etdev, PHY_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_CONTROL, &data);
|
||||
|
||||
if (down == false) {
|
||||
/* Power UP */
|
||||
usData &= ~0x0800;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data &= ~0x0800;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
} else {
|
||||
/* Power DOWN */
|
||||
usData |= 0x0800;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data |= 0x0800;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
}
|
||||
}
|
||||
|
||||
void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
MiRead(etdev, PHY_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_CONTROL, &data);
|
||||
|
||||
if (enable == true) {
|
||||
/* Autonegotiation ON */
|
||||
usData |= 0x1000;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data |= 0x1000;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
} else {
|
||||
/* Autonegotiation OFF */
|
||||
usData &= ~0x1000;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data &= ~0x1000;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
}
|
||||
}
|
||||
|
||||
void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, uint16_t duplex)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
MiRead(etdev, PHY_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_CONTROL, &data);
|
||||
|
||||
if (duplex == TRUEPHY_DUPLEX_FULL) {
|
||||
/* Set Full Duplex */
|
||||
usData |= 0x100;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data |= 0x100;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
} else {
|
||||
/* Set Half Duplex */
|
||||
usData &= ~0x100;
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
data &= ~0x100;
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
}
|
||||
}
|
||||
|
||||
void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, uint16_t speed)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
/* Read the PHY control register */
|
||||
MiRead(etdev, PHY_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_CONTROL, &data);
|
||||
|
||||
/* Clear all Speed settings (Bits 6, 13) */
|
||||
usData &= ~0x2040;
|
||||
data &= ~0x2040;
|
||||
|
||||
/* Reset the speed bits based on user selection */
|
||||
switch (speed) {
|
||||
|
@ -1044,29 +1044,29 @@ void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, uint16_t speed)
|
|||
|
||||
case TRUEPHY_SPEED_100MBPS:
|
||||
/* 100M == Set bit 13 */
|
||||
usData |= 0x2000;
|
||||
data |= 0x2000;
|
||||
break;
|
||||
|
||||
case TRUEPHY_SPEED_1000MBPS:
|
||||
default:
|
||||
usData |= 0x0040;
|
||||
data |= 0x0040;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Write back the new speed */
|
||||
MiWrite(etdev, PHY_CONTROL, usData);
|
||||
MiWrite(etdev, PHY_CONTROL, data);
|
||||
}
|
||||
|
||||
void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
|
||||
uint16_t duplex)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
/* Read the PHY 1000 Base-T Control Register */
|
||||
MiRead(etdev, PHY_1000_CONTROL, &usData);
|
||||
MiRead(etdev, PHY_1000_CONTROL, &data);
|
||||
|
||||
/* Clear Bits 8,9 */
|
||||
usData &= ~0x0300;
|
||||
data &= ~0x0300;
|
||||
|
||||
switch (duplex) {
|
||||
case TRUEPHY_ADV_DUPLEX_NONE:
|
||||
|
@ -1075,34 +1075,34 @@ void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
|
|||
|
||||
case TRUEPHY_ADV_DUPLEX_FULL:
|
||||
/* Set Bit 9 */
|
||||
usData |= 0x0200;
|
||||
data |= 0x0200;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_HALF:
|
||||
/* Set Bit 8 */
|
||||
usData |= 0x0100;
|
||||
data |= 0x0100;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_BOTH:
|
||||
default:
|
||||
usData |= 0x0300;
|
||||
data |= 0x0300;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Write back advertisement */
|
||||
MiWrite(etdev, PHY_1000_CONTROL, usData);
|
||||
MiWrite(etdev, PHY_1000_CONTROL, data);
|
||||
}
|
||||
|
||||
void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
|
||||
uint16_t duplex)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
/* Read the Autonegotiation Register (10/100) */
|
||||
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &usData);
|
||||
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
|
||||
|
||||
/* Clear bits 7,8 */
|
||||
usData &= ~0x0180;
|
||||
data &= ~0x0180;
|
||||
|
||||
switch (duplex) {
|
||||
case TRUEPHY_ADV_DUPLEX_NONE:
|
||||
|
@ -1111,35 +1111,35 @@ void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
|
|||
|
||||
case TRUEPHY_ADV_DUPLEX_FULL:
|
||||
/* Set Bit 8 */
|
||||
usData |= 0x0100;
|
||||
data |= 0x0100;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_HALF:
|
||||
/* Set Bit 7 */
|
||||
usData |= 0x0080;
|
||||
data |= 0x0080;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_BOTH:
|
||||
default:
|
||||
/* Set Bits 7,8 */
|
||||
usData |= 0x0180;
|
||||
data |= 0x0180;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Write back advertisement */
|
||||
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, usData);
|
||||
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
|
||||
}
|
||||
|
||||
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
|
||||
uint16_t duplex)
|
||||
{
|
||||
uint16_t usData;
|
||||
uint16_t data;
|
||||
|
||||
/* Read the Autonegotiation Register (10/100) */
|
||||
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &usData);
|
||||
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
|
||||
|
||||
/* Clear bits 5,6 */
|
||||
usData &= ~0x0060;
|
||||
data &= ~0x0060;
|
||||
|
||||
switch (duplex) {
|
||||
case TRUEPHY_ADV_DUPLEX_NONE:
|
||||
|
@ -1148,75 +1148,75 @@ void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
|
|||
|
||||
case TRUEPHY_ADV_DUPLEX_FULL:
|
||||
/* Set Bit 6 */
|
||||
usData |= 0x0040;
|
||||
data |= 0x0040;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_HALF:
|
||||
/* Set Bit 5 */
|
||||
usData |= 0x0020;
|
||||
data |= 0x0020;
|
||||
break;
|
||||
|
||||
case TRUEPHY_ADV_DUPLEX_BOTH:
|
||||
default:
|
||||
/* Set Bits 5,6 */
|
||||
usData |= 0x0060;
|
||||
data |= 0x0060;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Write back advertisement */
|
||||
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, usData);
|
||||
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
|
||||
}
|
||||
|
||||
void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
|
||||
uint8_t *ucLinkStatus,
|
||||
uint32_t *uiAutoNeg,
|
||||
uint32_t *uiLinkSpeed,
|
||||
uint32_t *uiDuplexMode,
|
||||
uint32_t *uiMdiMdix,
|
||||
uint32_t *uiMasterSlave, uint32_t *uiPolarity)
|
||||
uint8_t *link_status,
|
||||
uint32_t *autoneg,
|
||||
uint32_t *linkspeed,
|
||||
uint32_t *duplex_mode,
|
||||
uint32_t *mdi_mdix,
|
||||
uint32_t *masterslave, uint32_t *polarity)
|
||||
{
|
||||
uint16_t usMiStatus = 0;
|
||||
uint16_t us1000BaseT = 0;
|
||||
uint16_t usVmiPhyStatus = 0;
|
||||
uint16_t usControl = 0;
|
||||
uint16_t mistatus = 0;
|
||||
uint16_t is1000BaseT = 0;
|
||||
uint16_t vmi_phystatus = 0;
|
||||
uint16_t control = 0;
|
||||
|
||||
MiRead(etdev, PHY_STATUS, &usMiStatus);
|
||||
MiRead(etdev, PHY_1000_STATUS, &us1000BaseT);
|
||||
MiRead(etdev, PHY_PHY_STATUS, &usVmiPhyStatus);
|
||||
MiRead(etdev, PHY_CONTROL, &usControl);
|
||||
MiRead(etdev, PHY_STATUS, &mistatus);
|
||||
MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
|
||||
MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
|
||||
MiRead(etdev, PHY_CONTROL, &control);
|
||||
|
||||
if (ucLinkStatus) {
|
||||
*ucLinkStatus =
|
||||
(unsigned char)((usVmiPhyStatus & 0x0040) ? 1 : 0);
|
||||
if (link_status) {
|
||||
*link_status =
|
||||
(unsigned char)((vmi_phystatus & 0x0040) ? 1 : 0);
|
||||
}
|
||||
|
||||
if (uiAutoNeg) {
|
||||
*uiAutoNeg =
|
||||
(usControl & 0x1000) ? ((usVmiPhyStatus & 0x0020) ?
|
||||
if (autoneg) {
|
||||
*autoneg =
|
||||
(control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
|
||||
TRUEPHY_ANEG_COMPLETE :
|
||||
TRUEPHY_ANEG_NOT_COMPLETE) :
|
||||
TRUEPHY_ANEG_DISABLED;
|
||||
}
|
||||
|
||||
if (uiLinkSpeed)
|
||||
*uiLinkSpeed = (usVmiPhyStatus & 0x0300) >> 8;
|
||||
if (linkspeed)
|
||||
*linkspeed = (vmi_phystatus & 0x0300) >> 8;
|
||||
|
||||
if (uiDuplexMode)
|
||||
*uiDuplexMode = (usVmiPhyStatus & 0x0080) >> 7;
|
||||
if (duplex_mode)
|
||||
*duplex_mode = (vmi_phystatus & 0x0080) >> 7;
|
||||
|
||||
if (uiMdiMdix)
|
||||
if (mdi_mdix)
|
||||
/* NOTE: Need to complete this */
|
||||
*uiMdiMdix = 0;
|
||||
*mdi_mdix = 0;
|
||||
|
||||
if (uiMasterSlave) {
|
||||
*uiMasterSlave =
|
||||
(us1000BaseT & 0x4000) ? TRUEPHY_CFG_MASTER :
|
||||
if (masterslave) {
|
||||
*masterslave =
|
||||
(is1000BaseT & 0x4000) ? TRUEPHY_CFG_MASTER :
|
||||
TRUEPHY_CFG_SLAVE;
|
||||
}
|
||||
|
||||
if (uiPolarity) {
|
||||
*uiPolarity =
|
||||
(usVmiPhyStatus & 0x0400) ? TRUEPHY_POLARITY_INVERTED :
|
||||
if (polarity) {
|
||||
*polarity =
|
||||
(vmi_phystatus & 0x0400) ? TRUEPHY_POLARITY_INVERTED :
|
||||
TRUEPHY_POLARITY_NORMAL;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -895,12 +895,12 @@ void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *adapter,
|
|||
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *adapter,
|
||||
u16 duplex);
|
||||
void ET1310_PhyLinkStatus(struct et131x_adapter *adapter,
|
||||
u8 *ucLinkStatus,
|
||||
u32 *uiAutoNeg,
|
||||
u32 *uiLinkSpeed,
|
||||
u32 *uiDuplexMode,
|
||||
u32 *uiMdiMdix,
|
||||
u32 *uiMasterSlave, u32 *uiPolarity);
|
||||
u8 *Link_status,
|
||||
u32 *autoneg,
|
||||
u32 *linkspeed,
|
||||
u32 *duplex_mode,
|
||||
u32 *mdi_mdix,
|
||||
u32 *masterslave, u32 *polarity);
|
||||
void ET1310_PhyAndOrReg(struct et131x_adapter *adapter,
|
||||
u16 regnum, u16 andMask, u16 orMask);
|
||||
void ET1310_PhyAccessMiBit(struct et131x_adapter *adapter,
|
||||
|
|
|
@ -680,10 +680,10 @@ void et131x_rfd_resources_free(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
|
|||
*/
|
||||
void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
||||
{
|
||||
struct _RXDMA_t __iomem *pRxDma = &etdev->regs->rxdma;
|
||||
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
|
||||
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
|
||||
PFBR_DESC_t pFbrEntry;
|
||||
uint32_t iEntry;
|
||||
PFBR_DESC_t fbr_entry;
|
||||
uint32_t entry;
|
||||
RXDMA_PSR_NUM_DES_t psr_num_des;
|
||||
unsigned long flags;
|
||||
|
||||
|
@ -700,8 +700,8 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
* before storing the adjusted address.
|
||||
*/
|
||||
writel((uint32_t) (pRxLocal->RxStatusRealPA >> 32),
|
||||
&pRxDma->dma_wb_base_hi);
|
||||
writel((uint32_t) pRxLocal->RxStatusRealPA, &pRxDma->dma_wb_base_lo);
|
||||
&rx_dma->dma_wb_base_hi);
|
||||
writel((uint32_t) pRxLocal->RxStatusRealPA, &rx_dma->dma_wb_base_lo);
|
||||
|
||||
memset(pRxLocal->pRxStatusVa, 0, sizeof(RX_STATUS_BLOCK_t));
|
||||
|
||||
|
@ -709,14 +709,14 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
* 1310's registers
|
||||
*/
|
||||
writel((uint32_t) (pRxLocal->pPSRingRealPa >> 32),
|
||||
&pRxDma->psr_base_hi);
|
||||
writel((uint32_t) pRxLocal->pPSRingRealPa, &pRxDma->psr_base_lo);
|
||||
writel(pRxLocal->PsrNumEntries - 1, &pRxDma->psr_num_des.value);
|
||||
writel(0, &pRxDma->psr_full_offset.value);
|
||||
&rx_dma->psr_base_hi);
|
||||
writel((uint32_t) pRxLocal->pPSRingRealPa, &rx_dma->psr_base_lo);
|
||||
writel(pRxLocal->PsrNumEntries - 1, &rx_dma->psr_num_des.value);
|
||||
writel(0, &rx_dma->psr_full_offset.value);
|
||||
|
||||
psr_num_des.value = readl(&pRxDma->psr_num_des.value);
|
||||
psr_num_des.value = readl(&rx_dma->psr_num_des.value);
|
||||
writel((psr_num_des.bits.psr_ndes * LO_MARK_PERCENT_FOR_PSR) / 100,
|
||||
&pRxDma->psr_min_des.value);
|
||||
&rx_dma->psr_min_des.value);
|
||||
|
||||
spin_lock_irqsave(&etdev->RcvLock, flags);
|
||||
|
||||
|
@ -725,27 +725,27 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
pRxLocal->local_psr_full.bits.psr_full_wrap = 0;
|
||||
|
||||
/* Now's the best time to initialize FBR1 contents */
|
||||
pFbrEntry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
|
||||
for (iEntry = 0; iEntry < pRxLocal->Fbr1NumEntries; iEntry++) {
|
||||
pFbrEntry->addr_hi = pRxLocal->Fbr[1]->PAHigh[iEntry];
|
||||
pFbrEntry->addr_lo = pRxLocal->Fbr[1]->PALow[iEntry];
|
||||
pFbrEntry->word2.bits.bi = iEntry;
|
||||
pFbrEntry++;
|
||||
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
|
||||
for (entry = 0; entry < pRxLocal->Fbr1NumEntries; entry++) {
|
||||
fbr_entry->addr_hi = pRxLocal->Fbr[1]->PAHigh[entry];
|
||||
fbr_entry->addr_lo = pRxLocal->Fbr[1]->PALow[entry];
|
||||
fbr_entry->word2.bits.bi = entry;
|
||||
fbr_entry++;
|
||||
}
|
||||
|
||||
/* Set the address and parameters of Free buffer ring 1 (and 0 if
|
||||
* required) into the 1310's registers
|
||||
*/
|
||||
writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &pRxDma->fbr1_base_hi);
|
||||
writel((uint32_t) pRxLocal->Fbr1Realpa, &pRxDma->fbr1_base_lo);
|
||||
writel(pRxLocal->Fbr1NumEntries - 1, &pRxDma->fbr1_num_des.value);
|
||||
writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &rx_dma->fbr1_base_hi);
|
||||
writel((uint32_t) pRxLocal->Fbr1Realpa, &rx_dma->fbr1_base_lo);
|
||||
writel(pRxLocal->Fbr1NumEntries - 1, &rx_dma->fbr1_num_des.value);
|
||||
|
||||
{
|
||||
DMA10W_t fbr1_full = { 0 };
|
||||
|
||||
fbr1_full.bits.val = 0;
|
||||
fbr1_full.bits.wrap = 1;
|
||||
writel(fbr1_full.value, &pRxDma->fbr1_full_offset.value);
|
||||
writel(fbr1_full.value, &rx_dma->fbr1_full_offset.value);
|
||||
}
|
||||
|
||||
/* This variable tracks the free buffer ring 1 full position, so it
|
||||
|
@ -754,28 +754,28 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
pRxLocal->local_Fbr1_full.bits.val = 0;
|
||||
pRxLocal->local_Fbr1_full.bits.wrap = 1;
|
||||
writel(((pRxLocal->Fbr1NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
|
||||
&pRxDma->fbr1_min_des.value);
|
||||
&rx_dma->fbr1_min_des.value);
|
||||
|
||||
#ifdef USE_FBR0
|
||||
/* Now's the best time to initialize FBR0 contents */
|
||||
pFbrEntry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
|
||||
for (iEntry = 0; iEntry < pRxLocal->Fbr0NumEntries; iEntry++) {
|
||||
pFbrEntry->addr_hi = pRxLocal->Fbr[0]->PAHigh[iEntry];
|
||||
pFbrEntry->addr_lo = pRxLocal->Fbr[0]->PALow[iEntry];
|
||||
pFbrEntry->word2.bits.bi = iEntry;
|
||||
pFbrEntry++;
|
||||
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
|
||||
for (entry = 0; entry < pRxLocal->Fbr0NumEntries; entry++) {
|
||||
fbr_entry->addr_hi = pRxLocal->Fbr[0]->PAHigh[entry];
|
||||
fbr_entry->addr_lo = pRxLocal->Fbr[0]->PALow[entry];
|
||||
fbr_entry->word2.bits.bi = entry;
|
||||
fbr_entry++;
|
||||
}
|
||||
|
||||
writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &pRxDma->fbr0_base_hi);
|
||||
writel((uint32_t) pRxLocal->Fbr0Realpa, &pRxDma->fbr0_base_lo);
|
||||
writel(pRxLocal->Fbr0NumEntries - 1, &pRxDma->fbr0_num_des.value);
|
||||
writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &rx_dma->fbr0_base_hi);
|
||||
writel((uint32_t) pRxLocal->Fbr0Realpa, &rx_dma->fbr0_base_lo);
|
||||
writel(pRxLocal->Fbr0NumEntries - 1, &rx_dma->fbr0_num_des.value);
|
||||
|
||||
{
|
||||
DMA10W_t fbr0_full = { 0 };
|
||||
|
||||
fbr0_full.bits.val = 0;
|
||||
fbr0_full.bits.wrap = 1;
|
||||
writel(fbr0_full.value, &pRxDma->fbr0_full_offset.value);
|
||||
writel(fbr0_full.value, &rx_dma->fbr0_full_offset.value);
|
||||
}
|
||||
|
||||
/* This variable tracks the free buffer ring 0 full position, so it
|
||||
|
@ -784,7 +784,7 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
pRxLocal->local_Fbr0_full.bits.val = 0;
|
||||
pRxLocal->local_Fbr0_full.bits.wrap = 1;
|
||||
writel(((pRxLocal->Fbr0NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
|
||||
&pRxDma->fbr0_min_des.value);
|
||||
&rx_dma->fbr0_min_des.value);
|
||||
#endif
|
||||
|
||||
/* Program the number of packets we will receive before generating an
|
||||
|
@ -792,14 +792,14 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
|
|||
* For version B silicon, this value gets updated once autoneg is
|
||||
*complete.
|
||||
*/
|
||||
writel(PARM_RX_NUM_BUFS_DEF, &pRxDma->num_pkt_done.value);
|
||||
writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done.value);
|
||||
|
||||
/* The "time_done" is not working correctly to coalesce interrupts
|
||||
* after a given time period, but rather is giving us an interrupt
|
||||
* regardless of whether we have received packets.
|
||||
* This value gets updated once autoneg is complete.
|
||||
*/
|
||||
writel(PARM_RX_TIME_INT_DEF, &pRxDma->max_pkt_time.value);
|
||||
writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time.value);
|
||||
|
||||
spin_unlock_irqrestore(&etdev->RcvLock, flags);
|
||||
|
||||
|
@ -815,8 +815,8 @@ void SetRxDmaTimer(struct et131x_adapter *etdev)
|
|||
/* For version B silicon, we do not use the RxDMA timer for 10 and 100
|
||||
* Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
|
||||
*/
|
||||
if ((etdev->uiLinkSpeed == TRUEPHY_SPEED_100MBPS) ||
|
||||
(etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS)) {
|
||||
if ((etdev->linkspeed == TRUEPHY_SPEED_100MBPS) ||
|
||||
(etdev->linkspeed == TRUEPHY_SPEED_10MBPS)) {
|
||||
writel(0, &etdev->regs->rxdma.max_pkt_time.value);
|
||||
writel(1, &etdev->regs->rxdma.num_pkt_done.value);
|
||||
}
|
||||
|
@ -1032,8 +1032,8 @@ PMP_RFD nic_rx_pkts(struct et131x_adapter *etdev)
|
|||
|
||||
spin_unlock_irqrestore(&etdev->RcvLock, flags);
|
||||
|
||||
pMpRfd->iBufferIndex = bufferIndex;
|
||||
pMpRfd->iRingIndex = ringIndex;
|
||||
pMpRfd->bufferindex = bufferIndex;
|
||||
pMpRfd->ringindex = ringIndex;
|
||||
|
||||
/* In V1 silicon, there is a bug which screws up filtering of
|
||||
* runt packets. Therefore runt packet filtering is disabled
|
||||
|
@ -1289,10 +1289,10 @@ void et131x_handle_recv_interrupt(struct et131x_adapter *etdev)
|
|||
*/
|
||||
void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
|
||||
{
|
||||
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
|
||||
struct _RXDMA_t __iomem *pRxDma = &etdev->regs->rxdma;
|
||||
uint16_t bi = pMpRfd->iBufferIndex;
|
||||
uint8_t ri = pMpRfd->iRingIndex;
|
||||
struct _rx_ring_t *rx_local = &etdev->RxRing;
|
||||
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
|
||||
uint16_t bi = pMpRfd->bufferindex;
|
||||
uint8_t ri = pMpRfd->ringindex;
|
||||
unsigned long flags;
|
||||
|
||||
DBG_RX_ENTER(et131x_dbginfo);
|
||||
|
@ -1302,55 +1302,55 @@ void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
|
|||
*/
|
||||
if (
|
||||
#ifdef USE_FBR0
|
||||
(ri == 0 && bi < pRxLocal->Fbr0NumEntries) ||
|
||||
(ri == 0 && bi < rx_local->Fbr0NumEntries) ||
|
||||
#endif
|
||||
(ri == 1 && bi < pRxLocal->Fbr1NumEntries)) {
|
||||
(ri == 1 && bi < rx_local->Fbr1NumEntries)) {
|
||||
spin_lock_irqsave(&etdev->FbrLock, flags);
|
||||
|
||||
if (ri == 1) {
|
||||
PFBR_DESC_t pNextDesc =
|
||||
(PFBR_DESC_t) (pRxLocal->pFbr1RingVa) +
|
||||
pRxLocal->local_Fbr1_full.bits.val;
|
||||
(PFBR_DESC_t) (rx_local->pFbr1RingVa) +
|
||||
rx_local->local_Fbr1_full.bits.val;
|
||||
|
||||
/* Handle the Free Buffer Ring advancement here. Write
|
||||
* the PA / Buffer Index for the returned buffer into
|
||||
* the oldest (next to be freed)FBR entry
|
||||
*/
|
||||
pNextDesc->addr_hi = pRxLocal->Fbr[1]->PAHigh[bi];
|
||||
pNextDesc->addr_lo = pRxLocal->Fbr[1]->PALow[bi];
|
||||
pNextDesc->addr_hi = rx_local->Fbr[1]->PAHigh[bi];
|
||||
pNextDesc->addr_lo = rx_local->Fbr[1]->PALow[bi];
|
||||
pNextDesc->word2.value = bi;
|
||||
|
||||
if (++pRxLocal->local_Fbr1_full.bits.val >
|
||||
(pRxLocal->Fbr1NumEntries - 1)) {
|
||||
pRxLocal->local_Fbr1_full.bits.val = 0;
|
||||
pRxLocal->local_Fbr1_full.bits.wrap ^= 1;
|
||||
if (++rx_local->local_Fbr1_full.bits.val >
|
||||
(rx_local->Fbr1NumEntries - 1)) {
|
||||
rx_local->local_Fbr1_full.bits.val = 0;
|
||||
rx_local->local_Fbr1_full.bits.wrap ^= 1;
|
||||
}
|
||||
|
||||
writel(pRxLocal->local_Fbr1_full.value,
|
||||
&pRxDma->fbr1_full_offset.value);
|
||||
writel(rx_local->local_Fbr1_full.value,
|
||||
&rx_dma->fbr1_full_offset.value);
|
||||
}
|
||||
#ifdef USE_FBR0
|
||||
else {
|
||||
PFBR_DESC_t pNextDesc =
|
||||
(PFBR_DESC_t) pRxLocal->pFbr0RingVa +
|
||||
pRxLocal->local_Fbr0_full.bits.val;
|
||||
(PFBR_DESC_t) rx_local->pFbr0RingVa +
|
||||
rx_local->local_Fbr0_full.bits.val;
|
||||
|
||||
/* Handle the Free Buffer Ring advancement here. Write
|
||||
* the PA / Buffer Index for the returned buffer into
|
||||
* the oldest (next to be freed) FBR entry
|
||||
*/
|
||||
pNextDesc->addr_hi = pRxLocal->Fbr[0]->PAHigh[bi];
|
||||
pNextDesc->addr_lo = pRxLocal->Fbr[0]->PALow[bi];
|
||||
pNextDesc->addr_hi = rx_local->Fbr[0]->PAHigh[bi];
|
||||
pNextDesc->addr_lo = rx_local->Fbr[0]->PALow[bi];
|
||||
pNextDesc->word2.value = bi;
|
||||
|
||||
if (++pRxLocal->local_Fbr0_full.bits.val >
|
||||
(pRxLocal->Fbr0NumEntries - 1)) {
|
||||
pRxLocal->local_Fbr0_full.bits.val = 0;
|
||||
pRxLocal->local_Fbr0_full.bits.wrap ^= 1;
|
||||
if (++rx_local->local_Fbr0_full.bits.val >
|
||||
(rx_local->Fbr0NumEntries - 1)) {
|
||||
rx_local->local_Fbr0_full.bits.val = 0;
|
||||
rx_local->local_Fbr0_full.bits.wrap ^= 1;
|
||||
}
|
||||
|
||||
writel(pRxLocal->local_Fbr0_full.value,
|
||||
&pRxDma->fbr0_full_offset.value);
|
||||
writel(rx_local->local_Fbr0_full.value,
|
||||
&rx_dma->fbr0_full_offset.value);
|
||||
}
|
||||
#endif
|
||||
spin_unlock_irqrestore(&etdev->FbrLock, flags);
|
||||
|
@ -1363,10 +1363,10 @@ void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
|
|||
* our list
|
||||
*/
|
||||
spin_lock_irqsave(&etdev->RcvLock, flags);
|
||||
list_add_tail(&pMpRfd->list_node, &pRxLocal->RecvList);
|
||||
pRxLocal->nReadyRecv++;
|
||||
list_add_tail(&pMpRfd->list_node, &rx_local->RecvList);
|
||||
rx_local->nReadyRecv++;
|
||||
spin_unlock_irqrestore(&etdev->RcvLock, flags);
|
||||
|
||||
DBG_ASSERT(pRxLocal->nReadyRecv <= pRxLocal->NumRfd);
|
||||
DBG_ASSERT(rx_local->nReadyRecv <= rx_local->NumRfd);
|
||||
DBG_RX_LEAVE(et131x_dbginfo);
|
||||
}
|
||||
|
|
|
@ -246,22 +246,22 @@ void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
|
|||
|
||||
/**
|
||||
* ConfigTxDmaRegs - Set up the tx dma section of the JAGCore.
|
||||
* @adapter: pointer to our private adapter structure
|
||||
* @etdev: pointer to our private adapter structure
|
||||
*/
|
||||
void ConfigTxDmaRegs(struct et131x_adapter *etdev)
|
||||
{
|
||||
struct _TXDMA_t __iomem *pTxDma = &etdev->regs->txdma;
|
||||
struct _TXDMA_t __iomem *txdma = &etdev->regs->txdma;
|
||||
|
||||
DBG_ENTER(et131x_dbginfo);
|
||||
|
||||
/* Load the hardware with the start of the transmit descriptor ring. */
|
||||
writel((uint32_t) (etdev->TxRing.pTxDescRingAdjustedPa >> 32),
|
||||
&pTxDma->pr_base_hi);
|
||||
&txdma->pr_base_hi);
|
||||
writel((uint32_t) etdev->TxRing.pTxDescRingAdjustedPa,
|
||||
&pTxDma->pr_base_lo);
|
||||
&txdma->pr_base_lo);
|
||||
|
||||
/* Initialise the transmit DMA engine */
|
||||
writel(NUM_DESC_PER_RING_TX - 1, &pTxDma->pr_num_des.value);
|
||||
writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des.value);
|
||||
|
||||
/* Load the completion writeback physical address
|
||||
*
|
||||
|
@ -270,12 +270,12 @@ void ConfigTxDmaRegs(struct et131x_adapter *etdev)
|
|||
* are ever returned, make sure the high part is retrieved here before
|
||||
* storing the adjusted address.
|
||||
*/
|
||||
writel(0, &pTxDma->dma_wb_base_hi);
|
||||
writel(etdev->TxRing.pTxStatusPa, &pTxDma->dma_wb_base_lo);
|
||||
writel(0, &txdma->dma_wb_base_hi);
|
||||
writel(etdev->TxRing.pTxStatusPa, &txdma->dma_wb_base_lo);
|
||||
|
||||
memset(etdev->TxRing.pTxStatusVa, 0, sizeof(TX_STATUS_BLOCK_t));
|
||||
|
||||
writel(0, &pTxDma->service_request.value);
|
||||
writel(0, &txdma->service_request.value);
|
||||
etdev->TxRing.txDmaReadyToSend.value = 0;
|
||||
|
||||
DBG_LEAVE(et131x_dbginfo);
|
||||
|
@ -461,7 +461,7 @@ static int et131x_send_packet(struct sk_buff *skb,
|
|||
{
|
||||
int status = 0;
|
||||
PMP_TCB pMpTcb = NULL;
|
||||
uint16_t *pShBufVa;
|
||||
uint16_t *shbufva;
|
||||
unsigned long flags;
|
||||
|
||||
DBG_TX_ENTER(et131x_dbginfo);
|
||||
|
@ -506,12 +506,12 @@ static int et131x_send_packet(struct sk_buff *skb,
|
|||
pMpTcb->Packet = skb;
|
||||
|
||||
if ((skb->data != NULL) && ((skb->len - skb->data_len) >= 6)) {
|
||||
pShBufVa = (uint16_t *) skb->data;
|
||||
shbufva = (uint16_t *) skb->data;
|
||||
|
||||
if ((pShBufVa[0] == 0xffff) &&
|
||||
(pShBufVa[1] == 0xffff) && (pShBufVa[2] == 0xffff)) {
|
||||
if ((shbufva[0] == 0xffff) &&
|
||||
(shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
|
||||
MP_SET_FLAG(pMpTcb, fMP_DEST_BROAD);
|
||||
} else if ((pShBufVa[0] & 0x3) == 0x0001) {
|
||||
} else if ((shbufva[0] & 0x3) == 0x0001) {
|
||||
MP_SET_FLAG(pMpTcb, fMP_DEST_MULTI);
|
||||
}
|
||||
}
|
||||
|
@ -558,7 +558,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
uint32_t loopIndex;
|
||||
TX_DESC_ENTRY_t CurDesc[24];
|
||||
uint32_t FragmentNumber = 0;
|
||||
uint32_t iThisCopy, iRemainder;
|
||||
uint32_t thiscopy, remainder;
|
||||
struct sk_buff *pPacket = pMpTcb->Packet;
|
||||
uint32_t FragListCount = skb_shinfo(pPacket)->nr_frags + 1;
|
||||
struct skb_frag_struct *pFragList = &skb_shinfo(pPacket)->frags[0];
|
||||
|
@ -710,7 +710,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
return -EIO;
|
||||
}
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (++etdev->TxRing.TxPacketsSinceLastinterrupt ==
|
||||
PARM_TX_NUM_BUFS_DEF) {
|
||||
CurDesc[FragmentNumber - 1].word3.value = 0x5;
|
||||
|
@ -729,21 +729,21 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
|
||||
spin_lock_irqsave(&etdev->SendHWLock, flags);
|
||||
|
||||
iThisCopy =
|
||||
thiscopy =
|
||||
NUM_DESC_PER_RING_TX - etdev->TxRing.txDmaReadyToSend.bits.val;
|
||||
|
||||
if (iThisCopy >= FragmentNumber) {
|
||||
iRemainder = 0;
|
||||
iThisCopy = FragmentNumber;
|
||||
if (thiscopy >= FragmentNumber) {
|
||||
remainder = 0;
|
||||
thiscopy = FragmentNumber;
|
||||
} else {
|
||||
iRemainder = FragmentNumber - iThisCopy;
|
||||
remainder = FragmentNumber - thiscopy;
|
||||
}
|
||||
|
||||
memcpy(etdev->TxRing.pTxDescRingVa +
|
||||
etdev->TxRing.txDmaReadyToSend.bits.val, CurDesc,
|
||||
sizeof(TX_DESC_ENTRY_t) * iThisCopy);
|
||||
sizeof(TX_DESC_ENTRY_t) * thiscopy);
|
||||
|
||||
etdev->TxRing.txDmaReadyToSend.bits.val += iThisCopy;
|
||||
etdev->TxRing.txDmaReadyToSend.bits.val += thiscopy;
|
||||
|
||||
if ((etdev->TxRing.txDmaReadyToSend.bits.val == 0) ||
|
||||
(etdev->TxRing.txDmaReadyToSend.bits.val ==
|
||||
|
@ -754,12 +754,12 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
etdev->TxRing.txDmaReadyToSend.value = 0x400;
|
||||
}
|
||||
|
||||
if (iRemainder) {
|
||||
if (remainder) {
|
||||
memcpy(etdev->TxRing.pTxDescRingVa,
|
||||
CurDesc + iThisCopy,
|
||||
sizeof(TX_DESC_ENTRY_t) * iRemainder);
|
||||
CurDesc + thiscopy,
|
||||
sizeof(TX_DESC_ENTRY_t) * remainder);
|
||||
|
||||
etdev->TxRing.txDmaReadyToSend.bits.val += iRemainder;
|
||||
etdev->TxRing.txDmaReadyToSend.bits.val += remainder;
|
||||
}
|
||||
|
||||
if (etdev->TxRing.txDmaReadyToSend.bits.val == 0) {
|
||||
|
@ -794,7 +794,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
/* For Gig only, we use Tx Interrupt coalescing. Enable the software
|
||||
* timer to wake us up if this packet isn't followed by N more.
|
||||
*/
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
|
||||
&etdev->regs->global.watchdog_timer);
|
||||
}
|
||||
|
@ -824,7 +824,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
||||
{
|
||||
uint32_t loopIndex, fragIndex, loopEnd;
|
||||
uint32_t iSplitFirstElement = 0;
|
||||
uint32_t splitfirstelem = 0;
|
||||
uint32_t SegmentSize = 0;
|
||||
TX_DESC_ENTRY_t CurDesc;
|
||||
TX_DESC_ENTRY_t *CurDescPostCopy = NULL;
|
||||
|
@ -857,21 +857,21 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
DBG_TX(et131x_dbginfo,
|
||||
"pMpTcb->PacketLength: %d\n", pMpTcb->PacketLength);
|
||||
|
||||
if ((etdev->uiDuplexMode == 0)
|
||||
if ((etdev->duplex_mode == 0)
|
||||
&& (pMpTcb->PacketLength < NIC_MIN_PACKET_SIZE)) {
|
||||
DBG_TX(et131x_dbginfo,
|
||||
"HALF DUPLEX mode AND len < MIN_PKT_SIZE\n");
|
||||
if ((FragListCount & 0x1) == 0) {
|
||||
DBG_TX(et131x_dbginfo,
|
||||
"Even number of descs, split 1st elem\n");
|
||||
iSplitFirstElement = 1;
|
||||
splitfirstelem = 1;
|
||||
/* SegmentSize = pFragList[0].size / 2; */
|
||||
SegmentSize = (pPacket->len - pPacket->data_len) / 2;
|
||||
}
|
||||
} else if (FragListCount & 0x1) {
|
||||
DBG_TX(et131x_dbginfo, "Odd number of descs, split 1st elem\n");
|
||||
|
||||
iSplitFirstElement = 1;
|
||||
splitfirstelem = 1;
|
||||
/* SegmentSize = pFragList[0].size / 2; */
|
||||
SegmentSize = (pPacket->len - pPacket->data_len) / 2;
|
||||
}
|
||||
|
@ -894,26 +894,26 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
etdev->TxRing.txDmaReadyToSend.bits.serv_req;
|
||||
}
|
||||
|
||||
if ((FragListCount + iSplitFirstElement) > SlotsAvailable) {
|
||||
if ((FragListCount + splitfirstelem) > SlotsAvailable) {
|
||||
DBG_WARNING(et131x_dbginfo,
|
||||
"Not Enough Space in Tx Desc Ring\n");
|
||||
spin_unlock_irqrestore(&etdev->SendHWLock, flags);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
loopEnd = (FragListCount) + iSplitFirstElement;
|
||||
loopEnd = (FragListCount) + splitfirstelem;
|
||||
fragIndex = 0;
|
||||
|
||||
DBG_TX(et131x_dbginfo,
|
||||
"TCB : 0x%p\n"
|
||||
"Packet (SKB) : 0x%p\t Packet->len: %d\t Packet->data_len: %d\n"
|
||||
"FragListCount : %d\t iSplitFirstElement: %d\t loopEnd:%d\n",
|
||||
"FragListCount : %d\t splitfirstelem: %d\t loopEnd:%d\n",
|
||||
pMpTcb,
|
||||
pPacket, pPacket->len, pPacket->data_len,
|
||||
FragListCount, iSplitFirstElement, loopEnd);
|
||||
FragListCount, splitfirstelem, loopEnd);
|
||||
|
||||
for (loopIndex = 0; loopIndex < loopEnd; loopIndex++) {
|
||||
if (loopIndex > iSplitFirstElement)
|
||||
if (loopIndex > splitfirstelem)
|
||||
fragIndex++;
|
||||
|
||||
DBG_TX(et131x_dbginfo,
|
||||
|
@ -945,7 +945,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
CurDesc.word3.value = 0;
|
||||
|
||||
if (fragIndex == 0) {
|
||||
if (iSplitFirstElement) {
|
||||
if (splitfirstelem) {
|
||||
DBG_TX(et131x_dbginfo,
|
||||
"Split first element: YES\n");
|
||||
|
||||
|
@ -1055,13 +1055,13 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
}
|
||||
|
||||
if ((loopIndex == (loopEnd - 1)) &&
|
||||
(etdev->uiDuplexMode ||
|
||||
(etdev->duplex_mode ||
|
||||
(pMpTcb->PacketLength >= NIC_MIN_PACKET_SIZE))) {
|
||||
/* This is the Last descriptor of the packet */
|
||||
DBG_TX(et131x_dbginfo,
|
||||
"THIS is our LAST descriptor\n");
|
||||
|
||||
if (etdev->uiLinkSpeed ==
|
||||
if (etdev->linkspeed ==
|
||||
TRUEPHY_SPEED_1000MBPS) {
|
||||
if (++etdev->TxRing.
|
||||
TxPacketsSinceLastinterrupt >=
|
||||
|
@ -1124,14 +1124,14 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
}
|
||||
}
|
||||
|
||||
if (etdev->uiDuplexMode == 0 &&
|
||||
if (etdev->duplex_mode == 0 &&
|
||||
pMpTcb->PacketLength < NIC_MIN_PACKET_SIZE) {
|
||||
/* NOTE - Same 32/64-bit issue as above... */
|
||||
CurDesc.DataBufferPtrHigh = 0x0;
|
||||
CurDesc.DataBufferPtrLow = etdev->TxRing.pTxDummyBlkPa;
|
||||
CurDesc.word2.value = 0;
|
||||
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (++etdev->TxRing.TxPacketsSinceLastinterrupt >=
|
||||
PARM_TX_NUM_BUFS_DEF) {
|
||||
CurDesc.word3.value = 0x5;
|
||||
|
@ -1212,7 +1212,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
|
|||
/* For Gig only, we use Tx Interrupt coalescing. Enable the software
|
||||
* timer to wake us up if this packet isn't followed by N more.
|
||||
*/
|
||||
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
|
||||
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
|
||||
&etdev->regs->global.watchdog_timer);
|
||||
}
|
||||
|
@ -1339,7 +1339,7 @@ inline void et131x_free_send_packet(struct et131x_adapter *etdev,
|
|||
void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
|
||||
{
|
||||
PMP_TCB pMpTcb;
|
||||
struct list_head *pEntry;
|
||||
struct list_head *entry;
|
||||
unsigned long flags;
|
||||
uint32_t FreeCounter = 0;
|
||||
|
||||
|
@ -1351,7 +1351,7 @@ void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
|
|||
etdev->TxRing.nWaitSend--;
|
||||
spin_unlock_irqrestore(&etdev->SendWaitLock, flags);
|
||||
|
||||
pEntry = etdev->TxRing.SendWaitQueue.next;
|
||||
entry = etdev->TxRing.SendWaitQueue.next;
|
||||
}
|
||||
|
||||
etdev->TxRing.nWaitSend = 0;
|
||||
|
@ -1496,11 +1496,11 @@ static void et131x_check_send_wait_list(struct et131x_adapter *etdev)
|
|||
|
||||
while (!list_empty(&etdev->TxRing.SendWaitQueue) &&
|
||||
MP_TCB_RESOURCES_AVAILABLE(etdev)) {
|
||||
struct list_head *pEntry;
|
||||
struct list_head *entry;
|
||||
|
||||
DBG_VERBOSE(et131x_dbginfo, "Tx packets on the wait queue\n");
|
||||
|
||||
pEntry = etdev->TxRing.SendWaitQueue.next;
|
||||
entry = etdev->TxRing.SendWaitQueue.next;
|
||||
|
||||
etdev->TxRing.nWaitSend--;
|
||||
|
||||
|
|
|
@ -133,8 +133,8 @@ typedef struct _MP_RFD {
|
|||
struct list_head list_node;
|
||||
struct sk_buff *Packet;
|
||||
u32 PacketSize; /* total size of receive frame */
|
||||
u16 iBufferIndex;
|
||||
u8 iRingIndex;
|
||||
u16 bufferindex;
|
||||
u8 ringindex;
|
||||
} MP_RFD, *PMP_RFD;
|
||||
|
||||
/* Enum for Flow Control */
|
||||
|
@ -214,8 +214,7 @@ struct et131x_adapter {
|
|||
/* Configuration */
|
||||
u8 PermanentAddress[ETH_ALEN];
|
||||
u8 CurrentAddress[ETH_ALEN];
|
||||
bool bOverrideAddress;
|
||||
bool bEepromPresent;
|
||||
bool has_eeprom;
|
||||
u8 eepromData[2];
|
||||
|
||||
/* Spinlocks */
|
||||
|
@ -234,11 +233,8 @@ struct et131x_adapter {
|
|||
|
||||
/* Packet Filter and look ahead size */
|
||||
u32 PacketFilter;
|
||||
u32 ulLookAhead;
|
||||
u32 uiLinkSpeed;
|
||||
u32 uiDuplexMode;
|
||||
u32 uiAutoNegStatus;
|
||||
u8 ucLinkStatus;
|
||||
u32 linkspeed;
|
||||
u32 duplex_mode;
|
||||
|
||||
/* multicast list */
|
||||
u32 MCAddressCount;
|
||||
|
@ -275,11 +271,7 @@ struct et131x_adapter {
|
|||
u8 DriverNoPhyAccess;
|
||||
|
||||
/* Minimize init-time */
|
||||
bool bQueryPending;
|
||||
bool bSetPending;
|
||||
bool bResetPending;
|
||||
struct timer_list ErrorTimer;
|
||||
bool bLinkTimerActive;
|
||||
MP_POWER_MGMT PoMgmt;
|
||||
INTERRUPT_t CachedMaskValue;
|
||||
|
||||
|
|
|
@ -330,14 +330,14 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
|
|||
return -EIO;
|
||||
} else if (rev == 0x01) {
|
||||
int32_t nLoop;
|
||||
uint8_t ucTemp[4] = { 0xFE, 0x13, 0x10, 0xFF };
|
||||
uint8_t temp[4] = { 0xFE, 0x13, 0x10, 0xFF };
|
||||
|
||||
/* Re-write the first 4 bytes if we have an eeprom
|
||||
* present and the revision id is 1, this fixes the
|
||||
* corruption seen with 1310 B Silicon
|
||||
*/
|
||||
for (nLoop = 0; nLoop < 3; nLoop++) {
|
||||
EepromWriteByte(adapter, nLoop, ucTemp[nLoop],
|
||||
EepromWriteByte(adapter, nLoop, temp[nLoop],
|
||||
0, SINGLE_BYTE);
|
||||
}
|
||||
}
|
||||
|
@ -351,14 +351,14 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
|
|||
* information that normally would come from the eeprom, like
|
||||
* MAC Address
|
||||
*/
|
||||
adapter->bEepromPresent = false;
|
||||
adapter->has_eeprom = 0;
|
||||
|
||||
DBG_LEAVE(et131x_dbginfo);
|
||||
return -EIO;
|
||||
} else {
|
||||
DBG_TRACE(et131x_dbginfo, "EEPROM Status Code - 0x%04x\n",
|
||||
eepromStat);
|
||||
adapter->bEepromPresent = true;
|
||||
adapter->has_eeprom = 1;
|
||||
}
|
||||
|
||||
/* Read the EEPROM for information regarding LED behavior. Refer to
|
||||
|
@ -445,7 +445,7 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
|
|||
/* Get MAC address from config space if an eeprom exists, otherwise
|
||||
* the MAC address there will not be valid
|
||||
*/
|
||||
if (adapter->bEepromPresent) {
|
||||
if (adapter->has_eeprom) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ETH_ALEN; i++) {
|
||||
|
@ -520,9 +520,6 @@ void et131x_link_detection_handler(unsigned long data)
|
|||
struct et131x_adapter *etdev = (struct et131x_adapter *) data;
|
||||
unsigned long flags;
|
||||
|
||||
/* Let everyone know that we have run */
|
||||
etdev->bLinkTimerActive = false;
|
||||
|
||||
if (etdev->MediaState == 0) {
|
||||
spin_lock_irqsave(&etdev->Lock, flags);
|
||||
|
||||
|
@ -532,8 +529,6 @@ void et131x_link_detection_handler(unsigned long data)
|
|||
spin_unlock_irqrestore(&etdev->Lock, flags);
|
||||
|
||||
netif_carrier_off(etdev->netdev);
|
||||
|
||||
etdev->bSetPending = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -608,35 +603,32 @@ void et131x_setup_hardware_properties(struct et131x_adapter *adapter)
|
|||
* EEPROM then we need to generate the last octet and set it on the
|
||||
* device
|
||||
*/
|
||||
if (!adapter->bOverrideAddress) {
|
||||
if (adapter->PermanentAddress[0] == 0x00 &&
|
||||
adapter->PermanentAddress[1] == 0x00 &&
|
||||
adapter->PermanentAddress[2] == 0x00 &&
|
||||
adapter->PermanentAddress[3] == 0x00 &&
|
||||
adapter->PermanentAddress[4] == 0x00 &&
|
||||
adapter->PermanentAddress[5] == 0x00) {
|
||||
/*
|
||||
* We need to randomly generate the last octet so we
|
||||
* decrease our chances of setting the mac address to
|
||||
* same as another one of our cards in the system
|
||||
*/
|
||||
get_random_bytes(&adapter->CurrentAddress[5], 1);
|
||||
|
||||
/*
|
||||
* We have the default value in the register we are
|
||||
* working with so we need to copy the current
|
||||
* address into the permanent address
|
||||
*/
|
||||
memcpy(adapter->PermanentAddress,
|
||||
adapter->CurrentAddress, ETH_ALEN);
|
||||
} else {
|
||||
/* We do not have an override address, so set the
|
||||
* current address to the permanent address and add
|
||||
* it to the device
|
||||
*/
|
||||
memcpy(adapter->CurrentAddress,
|
||||
adapter->PermanentAddress, ETH_ALEN);
|
||||
}
|
||||
if (adapter->PermanentAddress[0] == 0x00 &&
|
||||
adapter->PermanentAddress[1] == 0x00 &&
|
||||
adapter->PermanentAddress[2] == 0x00 &&
|
||||
adapter->PermanentAddress[3] == 0x00 &&
|
||||
adapter->PermanentAddress[4] == 0x00 &&
|
||||
adapter->PermanentAddress[5] == 0x00) {
|
||||
/*
|
||||
* We need to randomly generate the last octet so we
|
||||
* decrease our chances of setting the mac address to
|
||||
* same as another one of our cards in the system
|
||||
*/
|
||||
get_random_bytes(&adapter->CurrentAddress[5], 1);
|
||||
/*
|
||||
* We have the default value in the register we are
|
||||
* working with so we need to copy the current
|
||||
* address into the permanent address
|
||||
*/
|
||||
memcpy(adapter->PermanentAddress,
|
||||
adapter->CurrentAddress, ETH_ALEN);
|
||||
} else {
|
||||
/* We do not have an override address, so set the
|
||||
* current address to the permanent address and add
|
||||
* it to the device
|
||||
*/
|
||||
memcpy(adapter->CurrentAddress,
|
||||
adapter->PermanentAddress, ETH_ALEN);
|
||||
}
|
||||
|
||||
DBG_LEAVE(et131x_dbginfo);
|
||||
|
|
Загрузка…
Ссылка в новой задаче