doc: Convert arrayRCU.txt to arrayRCU.rst
This patch converts arrayRCU from .txt to .rst format, and also adds it to the index.rst file. Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com> [ paulmck: Trimmed trailing whitespace. ] Tested-by: Phong Tran <tranmanphong@gmail.com> Tested-by: Amol Grover <frextrite@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit is contained in:
Родитель
e42617b825
Коммит
9ffdd79824
|
@ -1,19 +1,21 @@
|
|||
Using RCU to Protect Read-Mostly Arrays
|
||||
.. _array_rcu_doc:
|
||||
|
||||
Using RCU to Protect Read-Mostly Arrays
|
||||
=======================================
|
||||
|
||||
Although RCU is more commonly used to protect linked lists, it can
|
||||
also be used to protect arrays. Three situations are as follows:
|
||||
|
||||
1. Hash Tables
|
||||
1. :ref:`Hash Tables <hash_tables>`
|
||||
|
||||
2. Static Arrays
|
||||
2. :ref:`Static Arrays <static_arrays>`
|
||||
|
||||
3. Resizeable Arrays
|
||||
3. :ref:`Resizable Arrays <resizable_arrays>`
|
||||
|
||||
Each of these three situations involves an RCU-protected pointer to an
|
||||
array that is separately indexed. It might be tempting to consider use
|
||||
of RCU to instead protect the index into an array, however, this use
|
||||
case is -not- supported. The problem with RCU-protected indexes into
|
||||
case is **not** supported. The problem with RCU-protected indexes into
|
||||
arrays is that compilers can play way too many optimization games with
|
||||
integers, which means that the rules governing handling of these indexes
|
||||
are far more trouble than they are worth. If RCU-protected indexes into
|
||||
|
@ -24,16 +26,20 @@ to be safely used.
|
|||
That aside, each of the three RCU-protected pointer situations are
|
||||
described in the following sections.
|
||||
|
||||
.. _hash_tables:
|
||||
|
||||
Situation 1: Hash Tables
|
||||
------------------------
|
||||
|
||||
Hash tables are often implemented as an array, where each array entry
|
||||
has a linked-list hash chain. Each hash chain can be protected by RCU
|
||||
as described in the listRCU.txt document. This approach also applies
|
||||
to other array-of-list situations, such as radix trees.
|
||||
|
||||
.. _static_arrays:
|
||||
|
||||
Situation 2: Static Arrays
|
||||
--------------------------
|
||||
|
||||
Static arrays, where the data (rather than a pointer to the data) is
|
||||
located in each array element, and where the array is never resized,
|
||||
|
@ -41,13 +47,17 @@ have not been used with RCU. Rik van Riel recommends using seqlock in
|
|||
this situation, which would also have minimal read-side overhead as long
|
||||
as updates are rare.
|
||||
|
||||
Quick Quiz: Why is it so important that updates be rare when
|
||||
using seqlock?
|
||||
Quick Quiz:
|
||||
Why is it so important that updates be rare when using seqlock?
|
||||
|
||||
:ref:`Answer to Quick Quiz <answer_quick_quiz_seqlock>`
|
||||
|
||||
Situation 3: Resizeable Arrays
|
||||
.. _resizable_arrays:
|
||||
|
||||
Use of RCU for resizeable arrays is demonstrated by the grow_ary()
|
||||
Situation 3: Resizable Arrays
|
||||
------------------------------
|
||||
|
||||
Use of RCU for resizable arrays is demonstrated by the grow_ary()
|
||||
function formerly used by the System V IPC code. The array is used
|
||||
to map from semaphore, message-queue, and shared-memory IDs to the data
|
||||
structure that represents the corresponding IPC construct. The grow_ary()
|
||||
|
@ -60,7 +70,7 @@ the remainder of the new, updates the ids->entries pointer to point to
|
|||
the new array, and invokes ipc_rcu_putref() to free up the old array.
|
||||
Note that rcu_assign_pointer() is used to update the ids->entries pointer,
|
||||
which includes any memory barriers required on whatever architecture
|
||||
you are running on.
|
||||
you are running on::
|
||||
|
||||
static int grow_ary(struct ipc_ids* ids, int newsize)
|
||||
{
|
||||
|
@ -112,7 +122,7 @@ a simple check suffices. The pointer to the structure corresponding
|
|||
to the desired IPC object is placed in "out", with NULL indicating
|
||||
a non-existent entry. After acquiring "out->lock", the "out->deleted"
|
||||
flag indicates whether the IPC object is in the process of being
|
||||
deleted, and, if not, the pointer is returned.
|
||||
deleted, and, if not, the pointer is returned::
|
||||
|
||||
struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
|
||||
{
|
||||
|
@ -144,8 +154,10 @@ deleted, and, if not, the pointer is returned.
|
|||
return out;
|
||||
}
|
||||
|
||||
.. _answer_quick_quiz_seqlock:
|
||||
|
||||
Answer to Quick Quiz:
|
||||
Why is it so important that updates be rare when using seqlock?
|
||||
|
||||
The reason that it is important that updates be rare when
|
||||
using seqlock is that frequent updates can livelock readers.
|
|
@ -7,6 +7,7 @@ RCU concepts
|
|||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
arrayRCU
|
||||
rcu
|
||||
listRCU
|
||||
UP
|
||||
|
|
Загрузка…
Ссылка в новой задаче