cppc_cpufreq: replace per-cpu data array with a list
The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:
Родитель
cfdc589f4b
Коммит
a28b2bfc09
|
@ -413,109 +413,88 @@ end:
|
|||
return result;
|
||||
}
|
||||
|
||||
bool acpi_cpc_valid(void)
|
||||
{
|
||||
struct cpc_desc *cpc_ptr;
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
|
||||
if (!cpc_ptr)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(acpi_cpc_valid);
|
||||
|
||||
/**
|
||||
* acpi_get_psd_map - Map the CPUs in a common freq domain.
|
||||
* @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
|
||||
* acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
|
||||
* @cpu: Find all CPUs that share a domain with cpu.
|
||||
* @cpu_data: Pointer to CPU specific CPPC data including PSD info.
|
||||
*
|
||||
* Return: 0 for success or negative value for err.
|
||||
*/
|
||||
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
|
||||
int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
|
||||
{
|
||||
int count_target;
|
||||
int retval = 0;
|
||||
unsigned int i, j;
|
||||
cpumask_var_t covered_cpus;
|
||||
struct cppc_cpudata *pr, *match_pr;
|
||||
struct acpi_psd_package *pdomain;
|
||||
struct acpi_psd_package *match_pdomain;
|
||||
struct cpc_desc *cpc_ptr, *match_cpc_ptr;
|
||||
|
||||
if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
|
||||
return -ENOMEM;
|
||||
struct acpi_psd_package *match_pdomain;
|
||||
struct acpi_psd_package *pdomain;
|
||||
int count_target, i;
|
||||
|
||||
/*
|
||||
* Now that we have _PSD data from all CPUs, let's setup P-state
|
||||
* domain info.
|
||||
*/
|
||||
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
|
||||
if (!cpc_ptr)
|
||||
return -EFAULT;
|
||||
|
||||
pdomain = &(cpc_ptr->domain_info);
|
||||
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
|
||||
if (pdomain->num_processors <= 1)
|
||||
return 0;
|
||||
|
||||
/* Validate the Domain info */
|
||||
count_target = pdomain->num_processors;
|
||||
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
|
||||
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
||||
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
|
||||
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
|
||||
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
|
||||
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
if (cpumask_test_cpu(i, covered_cpus))
|
||||
if (i == cpu)
|
||||
continue;
|
||||
|
||||
pr = all_cpu_data[i];
|
||||
cpc_ptr = per_cpu(cpc_desc_ptr, i);
|
||||
if (!cpc_ptr) {
|
||||
retval = -EFAULT;
|
||||
goto err_ret;
|
||||
}
|
||||
match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
|
||||
if (!match_cpc_ptr)
|
||||
goto err_fault;
|
||||
|
||||
pdomain = &(cpc_ptr->domain_info);
|
||||
cpumask_set_cpu(i, pr->shared_cpu_map);
|
||||
cpumask_set_cpu(i, covered_cpus);
|
||||
if (pdomain->num_processors <= 1)
|
||||
match_pdomain = &(match_cpc_ptr->domain_info);
|
||||
if (match_pdomain->domain != pdomain->domain)
|
||||
continue;
|
||||
|
||||
/* Validate the Domain info */
|
||||
count_target = pdomain->num_processors;
|
||||
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
|
||||
pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
||||
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
|
||||
pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
|
||||
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
|
||||
pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
|
||||
/* Here i and cpu are in the same domain */
|
||||
if (match_pdomain->num_processors != count_target)
|
||||
goto err_fault;
|
||||
|
||||
for_each_possible_cpu(j) {
|
||||
if (i == j)
|
||||
continue;
|
||||
if (pdomain->coord_type != match_pdomain->coord_type)
|
||||
goto err_fault;
|
||||
|
||||
match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
|
||||
if (!match_cpc_ptr) {
|
||||
retval = -EFAULT;
|
||||
goto err_ret;
|
||||
}
|
||||
|
||||
match_pdomain = &(match_cpc_ptr->domain_info);
|
||||
if (match_pdomain->domain != pdomain->domain)
|
||||
continue;
|
||||
|
||||
/* Here i and j are in the same domain */
|
||||
if (match_pdomain->num_processors != count_target) {
|
||||
retval = -EFAULT;
|
||||
goto err_ret;
|
||||
}
|
||||
|
||||
if (pdomain->coord_type != match_pdomain->coord_type) {
|
||||
retval = -EFAULT;
|
||||
goto err_ret;
|
||||
}
|
||||
|
||||
cpumask_set_cpu(j, covered_cpus);
|
||||
cpumask_set_cpu(j, pr->shared_cpu_map);
|
||||
}
|
||||
|
||||
for_each_cpu(j, pr->shared_cpu_map) {
|
||||
if (i == j)
|
||||
continue;
|
||||
|
||||
match_pr = all_cpu_data[j];
|
||||
match_pr->shared_type = pr->shared_type;
|
||||
cpumask_copy(match_pr->shared_cpu_map,
|
||||
pr->shared_cpu_map);
|
||||
}
|
||||
cpumask_set_cpu(i, cpu_data->shared_cpu_map);
|
||||
}
|
||||
goto out;
|
||||
|
||||
err_ret:
|
||||
for_each_possible_cpu(i) {
|
||||
pr = all_cpu_data[i];
|
||||
return 0;
|
||||
|
||||
/* Assume no coordination on any error parsing domain info */
|
||||
cpumask_clear(pr->shared_cpu_map);
|
||||
cpumask_set_cpu(i, pr->shared_cpu_map);
|
||||
pr->shared_type = CPUFREQ_SHARED_TYPE_NONE;
|
||||
}
|
||||
out:
|
||||
free_cpumask_var(covered_cpus);
|
||||
return retval;
|
||||
err_fault:
|
||||
/* Assume no coordination on any error parsing domain info */
|
||||
cpumask_clear(cpu_data->shared_cpu_map);
|
||||
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
|
||||
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
|
||||
|
||||
return -EFAULT;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(acpi_get_psd_map);
|
||||
|
||||
|
|
|
@ -30,13 +30,13 @@
|
|||
#define DMI_PROCESSOR_MAX_SPEED 0x14
|
||||
|
||||
/*
|
||||
* These structs contain information parsed from per CPU
|
||||
* ACPI _CPC structures.
|
||||
* e.g. For each CPU the highest, lowest supported
|
||||
* performance capabilities, desired performance level
|
||||
* requested etc.
|
||||
* This list contains information parsed from per CPU ACPI _CPC and _PSD
|
||||
* structures: e.g. the highest and lowest supported performance, capabilities,
|
||||
* desired performance, level requested etc. Depending on the share_type, not
|
||||
* all CPUs will have an entry in the list.
|
||||
*/
|
||||
static struct cppc_cpudata **all_cpu_data;
|
||||
static LIST_HEAD(cpu_data_list);
|
||||
|
||||
static bool boost_supported;
|
||||
|
||||
struct cppc_workaround_oem_info {
|
||||
|
@ -148,8 +148,9 @@ static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
|
|||
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
|
||||
unsigned int target_freq,
|
||||
unsigned int relation)
|
||||
|
||||
{
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct cpufreq_freqs freqs;
|
||||
u32 desired_perf;
|
||||
|
@ -183,7 +184,7 @@ static int cppc_verify_policy(struct cpufreq_policy_data *policy)
|
|||
|
||||
static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
||||
unsigned int cpu = policy->cpu;
|
||||
int ret;
|
||||
|
@ -194,6 +195,12 @@ static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
|||
if (ret)
|
||||
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
|
||||
caps->lowest_perf, cpu, ret);
|
||||
|
||||
/* Remove CPU node from list and free driver data for policy */
|
||||
free_cpumask_var(cpu_data->shared_cpu_map);
|
||||
list_del(&cpu_data->node);
|
||||
kfree(policy->driver_data);
|
||||
policy->driver_data = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -239,25 +246,61 @@ static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
|
|||
}
|
||||
#endif
|
||||
|
||||
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
||||
|
||||
static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
|
||||
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
||||
unsigned int cpu = policy->cpu;
|
||||
int i, ret = 0;
|
||||
struct cppc_cpudata *cpu_data;
|
||||
int ret;
|
||||
|
||||
cpu_data->cpu = cpu;
|
||||
ret = cppc_get_perf_caps(cpu, caps);
|
||||
cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
|
||||
if (!cpu_data)
|
||||
goto out;
|
||||
|
||||
if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
|
||||
goto free_cpu;
|
||||
|
||||
ret = acpi_get_psd_map(cpu, cpu_data);
|
||||
if (ret) {
|
||||
pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
|
||||
cpu, ret);
|
||||
return ret;
|
||||
pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
|
||||
goto free_mask;
|
||||
}
|
||||
|
||||
ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
|
||||
if (ret) {
|
||||
pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
|
||||
goto free_mask;
|
||||
}
|
||||
|
||||
/* Convert the lowest and nominal freq from MHz to KHz */
|
||||
caps->lowest_freq *= 1000;
|
||||
caps->nominal_freq *= 1000;
|
||||
cpu_data->perf_caps.lowest_freq *= 1000;
|
||||
cpu_data->perf_caps.nominal_freq *= 1000;
|
||||
|
||||
list_add(&cpu_data->node, &cpu_data_list);
|
||||
|
||||
return cpu_data;
|
||||
|
||||
free_mask:
|
||||
free_cpumask_var(cpu_data->shared_cpu_map);
|
||||
free_cpu:
|
||||
kfree(cpu_data);
|
||||
out:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct cppc_cpudata *cpu_data;
|
||||
struct cppc_perf_caps *caps;
|
||||
int ret;
|
||||
|
||||
cpu_data = cppc_cpufreq_get_cpu_data(cpu);
|
||||
if (!cpu_data) {
|
||||
pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
|
||||
return -ENODEV;
|
||||
}
|
||||
caps = &cpu_data->perf_caps;
|
||||
policy->driver_data = cpu_data;
|
||||
|
||||
/*
|
||||
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see
|
||||
|
@ -287,16 +330,12 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|||
/* Nothing to be done - we'll have a policy for each CPU */
|
||||
break;
|
||||
case CPUFREQ_SHARED_TYPE_ANY:
|
||||
/* All CPUs in the domain will share a policy */
|
||||
/*
|
||||
* All CPUs in the domain will share a policy and all cpufreq
|
||||
* operations will use a single cppc_cpudata structure stored
|
||||
* in policy->driver_data.
|
||||
*/
|
||||
cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
|
||||
|
||||
for_each_cpu(i, policy->cpus) {
|
||||
if (unlikely(i == cpu))
|
||||
continue;
|
||||
|
||||
memcpy(&all_cpu_data[i]->perf_caps, caps,
|
||||
sizeof(cpu_data->perf_caps));
|
||||
}
|
||||
break;
|
||||
default:
|
||||
pr_debug("Unsupported CPU co-ord type: %d\n",
|
||||
|
@ -304,8 +343,6 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|||
return -EFAULT;
|
||||
}
|
||||
|
||||
cpu_data->cur_policy = policy;
|
||||
|
||||
/*
|
||||
* If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
|
||||
* is supported.
|
||||
|
@ -360,9 +397,12 @@ static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
|
|||
static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
|
||||
{
|
||||
struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[cpu];
|
||||
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
int ret;
|
||||
|
||||
cpufreq_cpu_put(policy);
|
||||
|
||||
ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
@ -378,7 +418,7 @@ static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
|
|||
|
||||
static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
||||
int ret;
|
||||
|
||||
|
@ -404,9 +444,9 @@ static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
|
|||
|
||||
static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
|
||||
return cpufreq_show_cpus(all_cpu_data[cpu]->shared_cpu_map, buf);
|
||||
return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
|
||||
}
|
||||
cpufreq_freq_attr_ro(freqdomain_cpus);
|
||||
|
||||
|
@ -435,10 +475,13 @@ static struct cpufreq_driver cppc_cpufreq_driver = {
|
|||
*/
|
||||
static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data = all_cpu_data[cpu];
|
||||
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
||||
struct cppc_cpudata *cpu_data = policy->driver_data;
|
||||
u64 desired_perf;
|
||||
int ret;
|
||||
|
||||
cpufreq_cpu_put(policy);
|
||||
|
||||
ret = cppc_get_desired_perf(cpu, &desired_perf);
|
||||
if (ret < 0)
|
||||
return -EIO;
|
||||
|
@ -471,68 +514,33 @@ static void cppc_check_hisi_workaround(void)
|
|||
|
||||
static int __init cppc_cpufreq_init(void)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data;
|
||||
int i, ret = 0;
|
||||
|
||||
if (acpi_disabled)
|
||||
if ((acpi_disabled) || !acpi_cpc_valid())
|
||||
return -ENODEV;
|
||||
|
||||
all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
|
||||
GFP_KERNEL);
|
||||
if (!all_cpu_data)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
|
||||
if (!all_cpu_data[i])
|
||||
goto out;
|
||||
|
||||
cpu_data = all_cpu_data[i];
|
||||
if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = acpi_get_psd_map(all_cpu_data);
|
||||
if (ret) {
|
||||
pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
|
||||
goto out;
|
||||
}
|
||||
INIT_LIST_HEAD(&cpu_data_list);
|
||||
|
||||
cppc_check_hisi_workaround();
|
||||
|
||||
ret = cpufreq_register_driver(&cppc_cpufreq_driver);
|
||||
if (ret)
|
||||
goto out;
|
||||
return cpufreq_register_driver(&cppc_cpufreq_driver);
|
||||
}
|
||||
|
||||
return ret;
|
||||
static inline void free_cpu_data(void)
|
||||
{
|
||||
struct cppc_cpudata *iter, *tmp;
|
||||
|
||||
out:
|
||||
for_each_possible_cpu(i) {
|
||||
cpu_data = all_cpu_data[i];
|
||||
if (!cpu_data)
|
||||
break;
|
||||
free_cpumask_var(cpu_data->shared_cpu_map);
|
||||
kfree(cpu_data);
|
||||
list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
|
||||
free_cpumask_var(iter->shared_cpu_map);
|
||||
list_del(&iter->node);
|
||||
kfree(iter);
|
||||
}
|
||||
|
||||
kfree(all_cpu_data);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static void __exit cppc_cpufreq_exit(void)
|
||||
{
|
||||
struct cppc_cpudata *cpu_data;
|
||||
int i;
|
||||
|
||||
cpufreq_unregister_driver(&cppc_cpufreq_driver);
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
cpu_data = all_cpu_data[i];
|
||||
free_cpumask_var(cpu_data->shared_cpu_map);
|
||||
kfree(cpu_data);
|
||||
}
|
||||
|
||||
kfree(all_cpu_data);
|
||||
free_cpu_data();
|
||||
}
|
||||
|
||||
module_exit(cppc_cpufreq_exit);
|
||||
|
|
|
@ -124,11 +124,10 @@ struct cppc_perf_fb_ctrs {
|
|||
|
||||
/* Per CPU container for runtime CPPC management. */
|
||||
struct cppc_cpudata {
|
||||
int cpu;
|
||||
struct list_head node;
|
||||
struct cppc_perf_caps perf_caps;
|
||||
struct cppc_perf_ctrls perf_ctrls;
|
||||
struct cppc_perf_fb_ctrs perf_fb_ctrs;
|
||||
struct cpufreq_policy *cur_policy;
|
||||
unsigned int shared_type;
|
||||
cpumask_var_t shared_cpu_map;
|
||||
};
|
||||
|
@ -137,7 +136,8 @@ extern int cppc_get_desired_perf(int cpunum, u64 *desired_perf);
|
|||
extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs);
|
||||
extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls);
|
||||
extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps);
|
||||
extern int acpi_get_psd_map(struct cppc_cpudata **);
|
||||
extern bool acpi_cpc_valid(void);
|
||||
extern int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data);
|
||||
extern unsigned int cppc_get_transition_latency(int cpu);
|
||||
extern bool cpc_ffh_supported(void);
|
||||
extern int cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val);
|
||||
|
|
Загрузка…
Ссылка в новой задаче