percpu: move {raw|this}_cpu_*() definitions to include/linux/percpu-defs.h
We're in the process of moving all percpu accessors and operations to include/linux/percpu-defs.h so that they're available to arch headers without having to include full include/linux/percpu.h which may cause cyclic inclusion dependency. This patch moves {raw|this}_cpu_*() definitions from include/linux/percpu.h to include/linux/percpu-defs.h. The code is moved mostly verbatim; however, raw_cpu_*() are placed above this_cpu_*() which is more conventional as the raw operations may be used to defined other variants. This is pure reorganization. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Christoph Lameter <cl@linux.com>
This commit is contained in:
Родитель
47b69ad673
Коммит
a32f8d8eda
|
@ -270,5 +270,214 @@
|
|||
preempt_enable(); \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Branching function to split up a function into a set of functions that
|
||||
* are called for different scalar sizes of the objects handled.
|
||||
*/
|
||||
|
||||
extern void __bad_size_call_parameter(void);
|
||||
|
||||
#ifdef CONFIG_DEBUG_PREEMPT
|
||||
extern void __this_cpu_preempt_check(const char *op);
|
||||
#else
|
||||
static inline void __this_cpu_preempt_check(const char *op) { }
|
||||
#endif
|
||||
|
||||
#define __pcpu_size_call_return(stem, variable) \
|
||||
({ typeof(variable) pscr_ret__; \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: pscr_ret__ = stem##1(variable);break; \
|
||||
case 2: pscr_ret__ = stem##2(variable);break; \
|
||||
case 4: pscr_ret__ = stem##4(variable);break; \
|
||||
case 8: pscr_ret__ = stem##8(variable);break; \
|
||||
default: \
|
||||
__bad_size_call_parameter();break; \
|
||||
} \
|
||||
pscr_ret__; \
|
||||
})
|
||||
|
||||
#define __pcpu_size_call_return2(stem, variable, ...) \
|
||||
({ \
|
||||
typeof(variable) pscr2_ret__; \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
|
||||
case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
|
||||
case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
|
||||
case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
|
||||
default: \
|
||||
__bad_size_call_parameter(); break; \
|
||||
} \
|
||||
pscr2_ret__; \
|
||||
})
|
||||
|
||||
/*
|
||||
* Special handling for cmpxchg_double. cmpxchg_double is passed two
|
||||
* percpu variables. The first has to be aligned to a double word
|
||||
* boundary and the second has to follow directly thereafter.
|
||||
* We enforce this on all architectures even if they don't support
|
||||
* a double cmpxchg instruction, since it's a cheap requirement, and it
|
||||
* avoids breaking the requirement for architectures with the instruction.
|
||||
*/
|
||||
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
|
||||
({ \
|
||||
bool pdcrb_ret__; \
|
||||
__verify_pcpu_ptr(&pcp1); \
|
||||
BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
|
||||
VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
|
||||
VM_BUG_ON((unsigned long)(&pcp2) != \
|
||||
(unsigned long)(&pcp1) + sizeof(pcp1)); \
|
||||
switch(sizeof(pcp1)) { \
|
||||
case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
default: \
|
||||
__bad_size_call_parameter(); break; \
|
||||
} \
|
||||
pdcrb_ret__; \
|
||||
})
|
||||
|
||||
#define __pcpu_size_call(stem, variable, ...) \
|
||||
do { \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: stem##1(variable, __VA_ARGS__);break; \
|
||||
case 2: stem##2(variable, __VA_ARGS__);break; \
|
||||
case 4: stem##4(variable, __VA_ARGS__);break; \
|
||||
case 8: stem##8(variable, __VA_ARGS__);break; \
|
||||
default: \
|
||||
__bad_size_call_parameter();break; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
|
||||
*
|
||||
* Optimized manipulation for memory allocated through the per cpu
|
||||
* allocator or for addresses of per cpu variables.
|
||||
*
|
||||
* These operation guarantee exclusivity of access for other operations
|
||||
* on the *same* processor. The assumption is that per cpu data is only
|
||||
* accessed by a single processor instance (the current one).
|
||||
*
|
||||
* The arch code can provide optimized implementation by defining macros
|
||||
* for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
|
||||
* cpu atomic operations for 2 byte sized RMW actions. If arch code does
|
||||
* not provide operations for a scalar size then the fallback in the
|
||||
* generic code will be used.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Generic percpu operations for contexts where we do not want to do
|
||||
* any checks for preemptiosn.
|
||||
*
|
||||
* If there is no other protection through preempt disable and/or
|
||||
* disabling interupts then one of these RMW operations can show unexpected
|
||||
* behavior because the execution thread was rescheduled on another processor
|
||||
* or an interrupt occurred and the same percpu variable was modified from
|
||||
* the interrupt context.
|
||||
*/
|
||||
# define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, (pcp))
|
||||
# define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, (pcp), (val))
|
||||
# define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, (pcp), (val))
|
||||
# define raw_cpu_sub(pcp, val) raw_cpu_add((pcp), -(val))
|
||||
# define raw_cpu_inc(pcp) raw_cpu_add((pcp), 1)
|
||||
# define raw_cpu_dec(pcp) raw_cpu_sub((pcp), 1)
|
||||
# define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, (pcp), (val))
|
||||
# define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, (pcp), (val))
|
||||
# define raw_cpu_add_return(pcp, val) \
|
||||
__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
|
||||
#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
|
||||
#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
|
||||
# define raw_cpu_xchg(pcp, nval) \
|
||||
__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)
|
||||
# define raw_cpu_cmpxchg(pcp, oval, nval) \
|
||||
__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
|
||||
# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
|
||||
/*
|
||||
* Generic percpu operations for context that are safe from preemption/interrupts.
|
||||
*/
|
||||
# define __this_cpu_read(pcp) \
|
||||
(__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp)))
|
||||
|
||||
# define __this_cpu_write(pcp, val) \
|
||||
do { __this_cpu_preempt_check("write"); \
|
||||
__pcpu_size_call(raw_cpu_write_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_add(pcp, val) \
|
||||
do { __this_cpu_preempt_check("add"); \
|
||||
__pcpu_size_call(raw_cpu_add_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
|
||||
# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
|
||||
# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
|
||||
|
||||
# define __this_cpu_and(pcp, val) \
|
||||
do { __this_cpu_preempt_check("and"); \
|
||||
__pcpu_size_call(raw_cpu_and_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_or(pcp, val) \
|
||||
do { __this_cpu_preempt_check("or"); \
|
||||
__pcpu_size_call(raw_cpu_or_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_add_return(pcp, val) \
|
||||
(__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val))
|
||||
|
||||
#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
|
||||
#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
|
||||
|
||||
# define __this_cpu_xchg(pcp, nval) \
|
||||
(__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval))
|
||||
|
||||
# define __this_cpu_cmpxchg(pcp, oval, nval) \
|
||||
(__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval))
|
||||
|
||||
# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
(__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)))
|
||||
|
||||
/*
|
||||
* this_cpu_*() operations are used for accesses that must be done in a
|
||||
* preemption safe way since we know that the context is not preempt
|
||||
* safe. Interrupts may occur. If the interrupt modifies the variable too
|
||||
* then RMW actions will not be reliable.
|
||||
*/
|
||||
# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
|
||||
# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
|
||||
# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
|
||||
# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
|
||||
# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
|
||||
# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
|
||||
# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
|
||||
# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
||||
# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
|
||||
#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
|
||||
#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
|
||||
# define this_cpu_xchg(pcp, nval) \
|
||||
__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
|
||||
# define this_cpu_cmpxchg(pcp, oval, nval) \
|
||||
__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
|
||||
|
||||
/*
|
||||
* cmpxchg_double replaces two adjacent scalars at once. The first
|
||||
* two parameters are per cpu variables which have to be of the same
|
||||
* size. A truth value is returned to indicate success or failure
|
||||
* (since a double register result is difficult to handle). There is
|
||||
* very limited hardware support for these operations, so only certain
|
||||
* sizes may work.
|
||||
*/
|
||||
# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* _LINUX_PERCPU_DEFS_H */
|
||||
|
|
|
@ -129,212 +129,4 @@ extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
|
|||
#define alloc_percpu(type) \
|
||||
(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
|
||||
|
||||
/*
|
||||
* Branching function to split up a function into a set of functions that
|
||||
* are called for different scalar sizes of the objects handled.
|
||||
*/
|
||||
|
||||
extern void __bad_size_call_parameter(void);
|
||||
|
||||
#ifdef CONFIG_DEBUG_PREEMPT
|
||||
extern void __this_cpu_preempt_check(const char *op);
|
||||
#else
|
||||
static inline void __this_cpu_preempt_check(const char *op) { }
|
||||
#endif
|
||||
|
||||
#define __pcpu_size_call_return(stem, variable) \
|
||||
({ typeof(variable) pscr_ret__; \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: pscr_ret__ = stem##1(variable);break; \
|
||||
case 2: pscr_ret__ = stem##2(variable);break; \
|
||||
case 4: pscr_ret__ = stem##4(variable);break; \
|
||||
case 8: pscr_ret__ = stem##8(variable);break; \
|
||||
default: \
|
||||
__bad_size_call_parameter();break; \
|
||||
} \
|
||||
pscr_ret__; \
|
||||
})
|
||||
|
||||
#define __pcpu_size_call_return2(stem, variable, ...) \
|
||||
({ \
|
||||
typeof(variable) pscr2_ret__; \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
|
||||
case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
|
||||
case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
|
||||
case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
|
||||
default: \
|
||||
__bad_size_call_parameter(); break; \
|
||||
} \
|
||||
pscr2_ret__; \
|
||||
})
|
||||
|
||||
/*
|
||||
* Special handling for cmpxchg_double. cmpxchg_double is passed two
|
||||
* percpu variables. The first has to be aligned to a double word
|
||||
* boundary and the second has to follow directly thereafter.
|
||||
* We enforce this on all architectures even if they don't support
|
||||
* a double cmpxchg instruction, since it's a cheap requirement, and it
|
||||
* avoids breaking the requirement for architectures with the instruction.
|
||||
*/
|
||||
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
|
||||
({ \
|
||||
bool pdcrb_ret__; \
|
||||
__verify_pcpu_ptr(&pcp1); \
|
||||
BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
|
||||
VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
|
||||
VM_BUG_ON((unsigned long)(&pcp2) != \
|
||||
(unsigned long)(&pcp1) + sizeof(pcp1)); \
|
||||
switch(sizeof(pcp1)) { \
|
||||
case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
default: \
|
||||
__bad_size_call_parameter(); break; \
|
||||
} \
|
||||
pdcrb_ret__; \
|
||||
})
|
||||
|
||||
#define __pcpu_size_call(stem, variable, ...) \
|
||||
do { \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
switch(sizeof(variable)) { \
|
||||
case 1: stem##1(variable, __VA_ARGS__);break; \
|
||||
case 2: stem##2(variable, __VA_ARGS__);break; \
|
||||
case 4: stem##4(variable, __VA_ARGS__);break; \
|
||||
case 8: stem##8(variable, __VA_ARGS__);break; \
|
||||
default: \
|
||||
__bad_size_call_parameter();break; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
|
||||
*
|
||||
* Optimized manipulation for memory allocated through the per cpu
|
||||
* allocator or for addresses of per cpu variables.
|
||||
*
|
||||
* These operation guarantee exclusivity of access for other operations
|
||||
* on the *same* processor. The assumption is that per cpu data is only
|
||||
* accessed by a single processor instance (the current one).
|
||||
*
|
||||
* The first group is used for accesses that must be done in a
|
||||
* preemption safe way since we know that the context is not preempt
|
||||
* safe. Interrupts may occur. If the interrupt modifies the variable
|
||||
* too then RMW actions will not be reliable.
|
||||
*
|
||||
* The arch code can provide optimized implementation by defining macros
|
||||
* for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
|
||||
* cpu atomic operations for 2 byte sized RMW actions. If arch code does
|
||||
* not provide operations for a scalar size then the fallback in the
|
||||
* generic code will be used.
|
||||
*/
|
||||
|
||||
# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
|
||||
# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
|
||||
# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
|
||||
# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
|
||||
# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
|
||||
# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
|
||||
# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
|
||||
# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
||||
# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
|
||||
#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
|
||||
#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
|
||||
# define this_cpu_xchg(pcp, nval) \
|
||||
__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
|
||||
# define this_cpu_cmpxchg(pcp, oval, nval) \
|
||||
__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
|
||||
|
||||
/*
|
||||
* cmpxchg_double replaces two adjacent scalars at once. The first
|
||||
* two parameters are per cpu variables which have to be of the same
|
||||
* size. A truth value is returned to indicate success or failure
|
||||
* (since a double register result is difficult to handle). There is
|
||||
* very limited hardware support for these operations, so only certain
|
||||
* sizes may work.
|
||||
*/
|
||||
# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
|
||||
/*
|
||||
* Generic percpu operations for contexts where we do not want to do
|
||||
* any checks for preemptiosn.
|
||||
*
|
||||
* If there is no other protection through preempt disable and/or
|
||||
* disabling interupts then one of these RMW operations can show unexpected
|
||||
* behavior because the execution thread was rescheduled on another processor
|
||||
* or an interrupt occurred and the same percpu variable was modified from
|
||||
* the interrupt context.
|
||||
*/
|
||||
# define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, (pcp))
|
||||
# define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, (pcp), (val))
|
||||
# define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, (pcp), (val))
|
||||
# define raw_cpu_sub(pcp, val) raw_cpu_add((pcp), -(val))
|
||||
# define raw_cpu_inc(pcp) raw_cpu_add((pcp), 1)
|
||||
# define raw_cpu_dec(pcp) raw_cpu_sub((pcp), 1)
|
||||
# define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, (pcp), (val))
|
||||
# define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, (pcp), (val))
|
||||
# define raw_cpu_add_return(pcp, val) \
|
||||
__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
|
||||
#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
|
||||
#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
|
||||
# define raw_cpu_xchg(pcp, nval) \
|
||||
__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)
|
||||
# define raw_cpu_cmpxchg(pcp, oval, nval) \
|
||||
__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
|
||||
# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
|
||||
/*
|
||||
* Generic percpu operations for context that are safe from preemption/interrupts.
|
||||
*/
|
||||
# define __this_cpu_read(pcp) \
|
||||
(__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp)))
|
||||
|
||||
# define __this_cpu_write(pcp, val) \
|
||||
do { __this_cpu_preempt_check("write"); \
|
||||
__pcpu_size_call(raw_cpu_write_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_add(pcp, val) \
|
||||
do { __this_cpu_preempt_check("add"); \
|
||||
__pcpu_size_call(raw_cpu_add_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
|
||||
# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
|
||||
# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
|
||||
|
||||
# define __this_cpu_and(pcp, val) \
|
||||
do { __this_cpu_preempt_check("and"); \
|
||||
__pcpu_size_call(raw_cpu_and_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_or(pcp, val) \
|
||||
do { __this_cpu_preempt_check("or"); \
|
||||
__pcpu_size_call(raw_cpu_or_, (pcp), (val)); \
|
||||
} while (0)
|
||||
|
||||
# define __this_cpu_add_return(pcp, val) \
|
||||
(__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val))
|
||||
|
||||
#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
||||
#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
|
||||
#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
|
||||
|
||||
# define __this_cpu_xchg(pcp, nval) \
|
||||
(__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval))
|
||||
|
||||
# define __this_cpu_cmpxchg(pcp, oval, nval) \
|
||||
(__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval))
|
||||
|
||||
# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
(__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)))
|
||||
|
||||
#endif /* __LINUX_PERCPU_H */
|
||||
|
|
Загрузка…
Ссылка в новой задаче