Merge branch 'clockevents/cmt-mtu2-tmu-cleanups' into clockevents/3.16

This patch set cleans up the Renesas CMT and TMU drivers in preparation for DT
support.

The first 35 patches are a bunch of necessary cleanups that reorganize the CMT
and TMU drivers, their platform data, and the memory, interrupt and clock
resources they expect. As a result the drivers accept a new platform data
model close to the hardware with supports for all the timer channels using a
single device.

The next 13 patches (36/52 to 48/52) move all CMT and TMU platforms from the
old to the new platform data model. Patches 49/52 to 52/52 then drop support
for the old model and perform one more cleanup.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
This commit is contained in:
Daniel Lezcano 2014-04-22 11:53:18 +02:00
Родитель 63cc122381 346f5e76b3
Коммит a5e1111785
4 изменённых файлов: 1375 добавлений и 749 удалений

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -11,37 +11,48 @@
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ */
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/sh_timer.h> #include <linux/delay.h>
#include <linux/slab.h> #include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h> #include <linux/pm_domain.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
struct sh_mtu2_device;
struct sh_mtu2_channel {
struct sh_mtu2_device *mtu;
unsigned int index;
void __iomem *base;
int irq;
struct clock_event_device ced;
};
struct sh_mtu2_device {
struct platform_device *pdev;
struct sh_mtu2_priv {
void __iomem *mapbase; void __iomem *mapbase;
struct clk *clk; struct clk *clk;
struct irqaction irqaction;
struct platform_device *pdev; struct sh_mtu2_channel *channels;
unsigned long rate; unsigned int num_channels;
unsigned long periodic;
struct clock_event_device ced; bool legacy;
bool has_clockevent;
}; };
static DEFINE_RAW_SPINLOCK(sh_mtu2_lock); static DEFINE_RAW_SPINLOCK(sh_mtu2_lock);
@ -55,6 +66,88 @@ static DEFINE_RAW_SPINLOCK(sh_mtu2_lock);
#define TCNT 5 /* channel register */ #define TCNT 5 /* channel register */
#define TGR 6 /* channel register */ #define TGR 6 /* channel register */
#define TCR_CCLR_NONE (0 << 5)
#define TCR_CCLR_TGRA (1 << 5)
#define TCR_CCLR_TGRB (2 << 5)
#define TCR_CCLR_SYNC (3 << 5)
#define TCR_CCLR_TGRC (5 << 5)
#define TCR_CCLR_TGRD (6 << 5)
#define TCR_CCLR_MASK (7 << 5)
#define TCR_CKEG_RISING (0 << 3)
#define TCR_CKEG_FALLING (1 << 3)
#define TCR_CKEG_BOTH (2 << 3)
#define TCR_CKEG_MASK (3 << 3)
/* Values 4 to 7 are channel-dependent */
#define TCR_TPSC_P1 (0 << 0)
#define TCR_TPSC_P4 (1 << 0)
#define TCR_TPSC_P16 (2 << 0)
#define TCR_TPSC_P64 (3 << 0)
#define TCR_TPSC_CH0_TCLKA (4 << 0)
#define TCR_TPSC_CH0_TCLKB (5 << 0)
#define TCR_TPSC_CH0_TCLKC (6 << 0)
#define TCR_TPSC_CH0_TCLKD (7 << 0)
#define TCR_TPSC_CH1_TCLKA (4 << 0)
#define TCR_TPSC_CH1_TCLKB (5 << 0)
#define TCR_TPSC_CH1_P256 (6 << 0)
#define TCR_TPSC_CH1_TCNT2 (7 << 0)
#define TCR_TPSC_CH2_TCLKA (4 << 0)
#define TCR_TPSC_CH2_TCLKB (5 << 0)
#define TCR_TPSC_CH2_TCLKC (6 << 0)
#define TCR_TPSC_CH2_P1024 (7 << 0)
#define TCR_TPSC_CH34_P256 (4 << 0)
#define TCR_TPSC_CH34_P1024 (5 << 0)
#define TCR_TPSC_CH34_TCLKA (6 << 0)
#define TCR_TPSC_CH34_TCLKB (7 << 0)
#define TCR_TPSC_MASK (7 << 0)
#define TMDR_BFE (1 << 6)
#define TMDR_BFB (1 << 5)
#define TMDR_BFA (1 << 4)
#define TMDR_MD_NORMAL (0 << 0)
#define TMDR_MD_PWM_1 (2 << 0)
#define TMDR_MD_PWM_2 (3 << 0)
#define TMDR_MD_PHASE_1 (4 << 0)
#define TMDR_MD_PHASE_2 (5 << 0)
#define TMDR_MD_PHASE_3 (6 << 0)
#define TMDR_MD_PHASE_4 (7 << 0)
#define TMDR_MD_PWM_SYNC (8 << 0)
#define TMDR_MD_PWM_COMP_CREST (13 << 0)
#define TMDR_MD_PWM_COMP_TROUGH (14 << 0)
#define TMDR_MD_PWM_COMP_BOTH (15 << 0)
#define TMDR_MD_MASK (15 << 0)
#define TIOC_IOCH(n) ((n) << 4)
#define TIOC_IOCL(n) ((n) << 0)
#define TIOR_OC_RETAIN (0 << 0)
#define TIOR_OC_0_CLEAR (1 << 0)
#define TIOR_OC_0_SET (2 << 0)
#define TIOR_OC_0_TOGGLE (3 << 0)
#define TIOR_OC_1_CLEAR (5 << 0)
#define TIOR_OC_1_SET (6 << 0)
#define TIOR_OC_1_TOGGLE (7 << 0)
#define TIOR_IC_RISING (8 << 0)
#define TIOR_IC_FALLING (9 << 0)
#define TIOR_IC_BOTH (10 << 0)
#define TIOR_IC_TCNT (12 << 0)
#define TIOR_MASK (15 << 0)
#define TIER_TTGE (1 << 7)
#define TIER_TTGE2 (1 << 6)
#define TIER_TCIEU (1 << 5)
#define TIER_TCIEV (1 << 4)
#define TIER_TGIED (1 << 3)
#define TIER_TGIEC (1 << 2)
#define TIER_TGIEB (1 << 1)
#define TIER_TGIEA (1 << 0)
#define TSR_TCFD (1 << 7)
#define TSR_TCFU (1 << 5)
#define TSR_TCFV (1 << 4)
#define TSR_TGFD (1 << 3)
#define TSR_TGFC (1 << 2)
#define TSR_TGFB (1 << 1)
#define TSR_TGFA (1 << 0)
static unsigned long mtu2_reg_offs[] = { static unsigned long mtu2_reg_offs[] = {
[TCR] = 0, [TCR] = 0,
[TMDR] = 1, [TMDR] = 1,
@ -65,135 +158,143 @@ static unsigned long mtu2_reg_offs[] = {
[TGR] = 8, [TGR] = 8,
}; };
static inline unsigned long sh_mtu2_read(struct sh_mtu2_priv *p, int reg_nr) static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr)
{ {
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs;
if (reg_nr == TSTR)
return ioread8(base + cfg->channel_offset);
offs = mtu2_reg_offs[reg_nr];
if ((reg_nr == TCNT) || (reg_nr == TGR))
return ioread16(base + offs);
else
return ioread8(base + offs);
}
static inline void sh_mtu2_write(struct sh_mtu2_priv *p, int reg_nr,
unsigned long value)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs; unsigned long offs;
if (reg_nr == TSTR) { if (reg_nr == TSTR) {
iowrite8(value, base + cfg->channel_offset); if (ch->mtu->legacy)
return; return ioread8(ch->mtu->mapbase);
else
return ioread8(ch->mtu->mapbase + 0x280);
} }
offs = mtu2_reg_offs[reg_nr]; offs = mtu2_reg_offs[reg_nr];
if ((reg_nr == TCNT) || (reg_nr == TGR)) if ((reg_nr == TCNT) || (reg_nr == TGR))
iowrite16(value, base + offs); return ioread16(ch->base + offs);
else else
iowrite8(value, base + offs); return ioread8(ch->base + offs);
} }
static void sh_mtu2_start_stop_ch(struct sh_mtu2_priv *p, int start) static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr,
unsigned long value)
{
unsigned long offs;
if (reg_nr == TSTR) {
if (ch->mtu->legacy)
return iowrite8(value, ch->mtu->mapbase);
else
return iowrite8(value, ch->mtu->mapbase + 0x280);
}
offs = mtu2_reg_offs[reg_nr];
if ((reg_nr == TCNT) || (reg_nr == TGR))
iowrite16(value, ch->base + offs);
else
iowrite8(value, ch->base + offs);
}
static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start)
{ {
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
unsigned long flags, value; unsigned long flags, value;
/* start stop register shared by multiple timer channels */ /* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&sh_mtu2_lock, flags); raw_spin_lock_irqsave(&sh_mtu2_lock, flags);
value = sh_mtu2_read(p, TSTR); value = sh_mtu2_read(ch, TSTR);
if (start) if (start)
value |= 1 << cfg->timer_bit; value |= 1 << ch->index;
else else
value &= ~(1 << cfg->timer_bit); value &= ~(1 << ch->index);
sh_mtu2_write(p, TSTR, value); sh_mtu2_write(ch, TSTR, value);
raw_spin_unlock_irqrestore(&sh_mtu2_lock, flags); raw_spin_unlock_irqrestore(&sh_mtu2_lock, flags);
} }
static int sh_mtu2_enable(struct sh_mtu2_priv *p) static int sh_mtu2_enable(struct sh_mtu2_channel *ch)
{ {
unsigned long periodic;
unsigned long rate;
int ret; int ret;
pm_runtime_get_sync(&p->pdev->dev); pm_runtime_get_sync(&ch->mtu->pdev->dev);
dev_pm_syscore_device(&p->pdev->dev, true); dev_pm_syscore_device(&ch->mtu->pdev->dev, true);
/* enable clock */ /* enable clock */
ret = clk_enable(p->clk); ret = clk_enable(ch->mtu->clk);
if (ret) { if (ret) {
dev_err(&p->pdev->dev, "cannot enable clock\n"); dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
return ret; return ret;
} }
/* make sure channel is disabled */ /* make sure channel is disabled */
sh_mtu2_start_stop_ch(p, 0); sh_mtu2_start_stop_ch(ch, 0);
p->rate = clk_get_rate(p->clk) / 64; rate = clk_get_rate(ch->mtu->clk) / 64;
p->periodic = (p->rate + HZ/2) / HZ; periodic = (rate + HZ/2) / HZ;
/* "Periodic Counter Operation" */ /*
sh_mtu2_write(p, TCR, 0x23); /* TGRA clear, divide clock by 64 */ * "Periodic Counter Operation"
sh_mtu2_write(p, TIOR, 0); * Clear on TGRA compare match, divide clock by 64.
sh_mtu2_write(p, TGR, p->periodic); */
sh_mtu2_write(p, TCNT, 0); sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64);
sh_mtu2_write(p, TMDR, 0); sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) |
sh_mtu2_write(p, TIER, 0x01); TIOC_IOCL(TIOR_OC_0_CLEAR));
sh_mtu2_write(ch, TGR, periodic);
sh_mtu2_write(ch, TCNT, 0);
sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL);
sh_mtu2_write(ch, TIER, TIER_TGIEA);
/* enable channel */ /* enable channel */
sh_mtu2_start_stop_ch(p, 1); sh_mtu2_start_stop_ch(ch, 1);
return 0; return 0;
} }
static void sh_mtu2_disable(struct sh_mtu2_priv *p) static void sh_mtu2_disable(struct sh_mtu2_channel *ch)
{ {
/* disable channel */ /* disable channel */
sh_mtu2_start_stop_ch(p, 0); sh_mtu2_start_stop_ch(ch, 0);
/* stop clock */ /* stop clock */
clk_disable(p->clk); clk_disable(ch->mtu->clk);
dev_pm_syscore_device(&p->pdev->dev, false); dev_pm_syscore_device(&ch->mtu->pdev->dev, false);
pm_runtime_put(&p->pdev->dev); pm_runtime_put(&ch->mtu->pdev->dev);
} }
static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id) static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id)
{ {
struct sh_mtu2_priv *p = dev_id; struct sh_mtu2_channel *ch = dev_id;
/* acknowledge interrupt */ /* acknowledge interrupt */
sh_mtu2_read(p, TSR); sh_mtu2_read(ch, TSR);
sh_mtu2_write(p, TSR, 0xfe); sh_mtu2_write(ch, TSR, ~TSR_TGFA);
/* notify clockevent layer */ /* notify clockevent layer */
p->ced.event_handler(&p->ced); ch->ced.event_handler(&ch->ced);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static struct sh_mtu2_priv *ced_to_sh_mtu2(struct clock_event_device *ced) static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced)
{ {
return container_of(ced, struct sh_mtu2_priv, ced); return container_of(ced, struct sh_mtu2_channel, ced);
} }
static void sh_mtu2_clock_event_mode(enum clock_event_mode mode, static void sh_mtu2_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced) struct clock_event_device *ced)
{ {
struct sh_mtu2_priv *p = ced_to_sh_mtu2(ced); struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced);
int disabled = 0; int disabled = 0;
/* deal with old setting first */ /* deal with old setting first */
switch (ced->mode) { switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
sh_mtu2_disable(p); sh_mtu2_disable(ch);
disabled = 1; disabled = 1;
break; break;
default: default:
@ -202,12 +303,13 @@ static void sh_mtu2_clock_event_mode(enum clock_event_mode mode,
switch (mode) { switch (mode) {
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
dev_info(&p->pdev->dev, "used for periodic clock events\n"); dev_info(&ch->mtu->pdev->dev,
sh_mtu2_enable(p); "ch%u: used for periodic clock events\n", ch->index);
sh_mtu2_enable(ch);
break; break;
case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_UNUSED:
if (!disabled) if (!disabled)
sh_mtu2_disable(p); sh_mtu2_disable(ch);
break; break;
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
default: default:
@ -217,125 +319,207 @@ static void sh_mtu2_clock_event_mode(enum clock_event_mode mode,
static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced) static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced)
{ {
pm_genpd_syscore_poweroff(&ced_to_sh_mtu2(ced)->pdev->dev); pm_genpd_syscore_poweroff(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
} }
static void sh_mtu2_clock_event_resume(struct clock_event_device *ced) static void sh_mtu2_clock_event_resume(struct clock_event_device *ced)
{ {
pm_genpd_syscore_poweron(&ced_to_sh_mtu2(ced)->pdev->dev); pm_genpd_syscore_poweron(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
} }
static void sh_mtu2_register_clockevent(struct sh_mtu2_priv *p, static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch,
char *name, unsigned long rating) const char *name)
{ {
struct clock_event_device *ced = &p->ced; struct clock_event_device *ced = &ch->ced;
int ret; int ret;
memset(ced, 0, sizeof(*ced));
ced->name = name; ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->rating = rating; ced->rating = 200;
ced->cpumask = cpumask_of(0); ced->cpumask = cpu_possible_mask;
ced->set_mode = sh_mtu2_clock_event_mode; ced->set_mode = sh_mtu2_clock_event_mode;
ced->suspend = sh_mtu2_clock_event_suspend; ced->suspend = sh_mtu2_clock_event_suspend;
ced->resume = sh_mtu2_clock_event_resume; ced->resume = sh_mtu2_clock_event_resume;
dev_info(&p->pdev->dev, "used for clock events\n"); dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_register_device(ced); clockevents_register_device(ced);
ret = setup_irq(p->irqaction.irq, &p->irqaction); ret = request_irq(ch->irq, sh_mtu2_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->mtu->pdev->dev), ch);
if (ret) { if (ret) {
dev_err(&p->pdev->dev, "failed to request irq %d\n", dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n",
p->irqaction.irq); ch->index, ch->irq);
return; return;
} }
} }
static int sh_mtu2_register(struct sh_mtu2_priv *p, char *name, static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name,
unsigned long clockevent_rating) bool clockevent)
{ {
if (clockevent_rating) if (clockevent) {
sh_mtu2_register_clockevent(p, name, clockevent_rating); ch->mtu->has_clockevent = true;
sh_mtu2_register_clockevent(ch, name);
}
return 0; return 0;
} }
static int sh_mtu2_setup(struct sh_mtu2_priv *p, struct platform_device *pdev) static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
struct sh_mtu2_device *mtu)
{
static const unsigned int channel_offsets[] = {
0x300, 0x380, 0x000,
};
bool clockevent;
ch->mtu = mtu;
if (mtu->legacy) {
struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
clockevent = cfg->clockevent_rating != 0;
ch->irq = platform_get_irq(mtu->pdev, 0);
ch->base = mtu->mapbase - cfg->channel_offset;
ch->index = cfg->timer_bit;
} else {
char name[6];
clockevent = true;
sprintf(name, "tgi%ua", index);
ch->irq = platform_get_irq_byname(mtu->pdev, name);
ch->base = mtu->mapbase + channel_offsets[index];
ch->index = index;
}
if (ch->irq < 0) {
/* Skip channels with no declared interrupt. */
if (!mtu->legacy)
return 0;
dev_err(&mtu->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return ch->irq;
}
return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev), clockevent);
}
static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu)
{ {
struct sh_timer_config *cfg = pdev->dev.platform_data;
struct resource *res; struct resource *res;
int irq, ret;
ret = -ENXIO;
memset(p, 0, sizeof(*p)); res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0);
p->pdev = pdev;
if (!cfg) {
dev_err(&p->pdev->dev, "missing platform data\n");
goto err0;
}
platform_set_drvdata(pdev, p);
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
if (!res) { if (!res) {
dev_err(&p->pdev->dev, "failed to get I/O memory\n"); dev_err(&mtu->pdev->dev, "failed to get I/O memory\n");
goto err0; return -ENXIO;
} }
irq = platform_get_irq(p->pdev, 0); mtu->mapbase = ioremap_nocache(res->start, resource_size(res));
if (irq < 0) { if (mtu->mapbase == NULL)
dev_err(&p->pdev->dev, "failed to get irq\n"); return -ENXIO;
goto err0;
/*
* In legacy platform device configuration (with one device per channel)
* the resource points to the channel base address.
*/
if (mtu->legacy) {
struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
mtu->mapbase += cfg->channel_offset;
} }
/* map memory, let mapbase point to our channel */
p->mapbase = ioremap_nocache(res->start, resource_size(res));
if (p->mapbase == NULL) {
dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
goto err0;
}
/* setup data for setup_irq() (too early for request_irq()) */
p->irqaction.name = dev_name(&p->pdev->dev);
p->irqaction.handler = sh_mtu2_interrupt;
p->irqaction.dev_id = p;
p->irqaction.irq = irq;
p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
/* get hold of clock */
p->clk = clk_get(&p->pdev->dev, "mtu2_fck");
if (IS_ERR(p->clk)) {
dev_err(&p->pdev->dev, "cannot get clock\n");
ret = PTR_ERR(p->clk);
goto err1;
}
ret = clk_prepare(p->clk);
if (ret < 0)
goto err2;
ret = sh_mtu2_register(p, (char *)dev_name(&p->pdev->dev),
cfg->clockevent_rating);
if (ret < 0)
goto err3;
return 0; return 0;
err3: }
clk_unprepare(p->clk);
err2: static void sh_mtu2_unmap_memory(struct sh_mtu2_device *mtu)
clk_put(p->clk); {
err1: if (mtu->legacy) {
iounmap(p->mapbase); struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
err0: mtu->mapbase -= cfg->channel_offset;
}
iounmap(mtu->mapbase);
}
static int sh_mtu2_setup(struct sh_mtu2_device *mtu,
struct platform_device *pdev)
{
struct sh_timer_config *cfg = pdev->dev.platform_data;
const struct platform_device_id *id = pdev->id_entry;
unsigned int i;
int ret;
mtu->pdev = pdev;
mtu->legacy = id->driver_data;
if (mtu->legacy && !cfg) {
dev_err(&mtu->pdev->dev, "missing platform data\n");
return -ENXIO;
}
/* Get hold of clock. */
mtu->clk = clk_get(&mtu->pdev->dev, mtu->legacy ? "mtu2_fck" : "fck");
if (IS_ERR(mtu->clk)) {
dev_err(&mtu->pdev->dev, "cannot get clock\n");
return PTR_ERR(mtu->clk);
}
ret = clk_prepare(mtu->clk);
if (ret < 0)
goto err_clk_put;
/* Map the memory resource. */
ret = sh_mtu2_map_memory(mtu);
if (ret < 0) {
dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n");
goto err_clk_unprepare;
}
/* Allocate and setup the channels. */
if (mtu->legacy)
mtu->num_channels = 1;
else
mtu->num_channels = 3;
mtu->channels = kzalloc(sizeof(*mtu->channels) * mtu->num_channels,
GFP_KERNEL);
if (mtu->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
if (mtu->legacy) {
ret = sh_mtu2_setup_channel(&mtu->channels[0], 0, mtu);
if (ret < 0)
goto err_unmap;
} else {
for (i = 0; i < mtu->num_channels; ++i) {
ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu);
if (ret < 0)
goto err_unmap;
}
}
platform_set_drvdata(pdev, mtu);
return 0;
err_unmap:
kfree(mtu->channels);
sh_mtu2_unmap_memory(mtu);
err_clk_unprepare:
clk_unprepare(mtu->clk);
err_clk_put:
clk_put(mtu->clk);
return ret; return ret;
} }
static int sh_mtu2_probe(struct platform_device *pdev) static int sh_mtu2_probe(struct platform_device *pdev)
{ {
struct sh_mtu2_priv *p = platform_get_drvdata(pdev); struct sh_mtu2_device *mtu = platform_get_drvdata(pdev);
struct sh_timer_config *cfg = pdev->dev.platform_data;
int ret; int ret;
if (!is_early_platform_device(pdev)) { if (!is_early_platform_device(pdev)) {
@ -343,20 +527,20 @@ static int sh_mtu2_probe(struct platform_device *pdev)
pm_runtime_enable(&pdev->dev); pm_runtime_enable(&pdev->dev);
} }
if (p) { if (mtu) {
dev_info(&pdev->dev, "kept as earlytimer\n"); dev_info(&pdev->dev, "kept as earlytimer\n");
goto out; goto out;
} }
p = kmalloc(sizeof(*p), GFP_KERNEL); mtu = kzalloc(sizeof(*mtu), GFP_KERNEL);
if (p == NULL) { if (mtu == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n"); dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM; return -ENOMEM;
} }
ret = sh_mtu2_setup(p, pdev); ret = sh_mtu2_setup(mtu, pdev);
if (ret) { if (ret) {
kfree(p); kfree(mtu);
pm_runtime_idle(&pdev->dev); pm_runtime_idle(&pdev->dev);
return ret; return ret;
} }
@ -364,7 +548,7 @@ static int sh_mtu2_probe(struct platform_device *pdev)
return 0; return 0;
out: out:
if (cfg->clockevent_rating) if (mtu->has_clockevent)
pm_runtime_irq_safe(&pdev->dev); pm_runtime_irq_safe(&pdev->dev);
else else
pm_runtime_idle(&pdev->dev); pm_runtime_idle(&pdev->dev);
@ -377,12 +561,20 @@ static int sh_mtu2_remove(struct platform_device *pdev)
return -EBUSY; /* cannot unregister clockevent */ return -EBUSY; /* cannot unregister clockevent */
} }
static const struct platform_device_id sh_mtu2_id_table[] = {
{ "sh_mtu2", 1 },
{ "sh-mtu2", 0 },
{ },
};
MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table);
static struct platform_driver sh_mtu2_device_driver = { static struct platform_driver sh_mtu2_device_driver = {
.probe = sh_mtu2_probe, .probe = sh_mtu2_probe,
.remove = sh_mtu2_remove, .remove = sh_mtu2_remove,
.driver = { .driver = {
.name = "sh_mtu2", .name = "sh_mtu2",
} },
.id_table = sh_mtu2_id_table,
}; };
static int __init sh_mtu2_init(void) static int __init sh_mtu2_init(void)

Просмотреть файл

@ -11,35 +11,41 @@
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ */
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/sh_timer.h> #include <linux/clocksource.h>
#include <linux/slab.h> #include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h> #include <linux/pm_domain.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
enum sh_tmu_model {
SH_TMU_LEGACY,
SH_TMU,
SH_TMU_SH3,
};
struct sh_tmu_device;
struct sh_tmu_channel {
struct sh_tmu_device *tmu;
unsigned int index;
void __iomem *base;
int irq;
struct sh_tmu_priv {
void __iomem *mapbase;
struct clk *clk;
struct irqaction irqaction;
struct platform_device *pdev;
unsigned long rate; unsigned long rate;
unsigned long periodic; unsigned long periodic;
struct clock_event_device ced; struct clock_event_device ced;
@ -48,6 +54,21 @@ struct sh_tmu_priv {
unsigned int enable_count; unsigned int enable_count;
}; };
struct sh_tmu_device {
struct platform_device *pdev;
void __iomem *mapbase;
struct clk *clk;
enum sh_tmu_model model;
struct sh_tmu_channel *channels;
unsigned int num_channels;
bool has_clockevent;
bool has_clocksource;
};
static DEFINE_RAW_SPINLOCK(sh_tmu_lock); static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
#define TSTR -1 /* shared register */ #define TSTR -1 /* shared register */
@ -55,189 +76,208 @@ static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
#define TCNT 1 /* channel register */ #define TCNT 1 /* channel register */
#define TCR 2 /* channel register */ #define TCR 2 /* channel register */
static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr) #define TCR_UNF (1 << 8)
#define TCR_UNIE (1 << 5)
#define TCR_TPSC_CLK4 (0 << 0)
#define TCR_TPSC_CLK16 (1 << 0)
#define TCR_TPSC_CLK64 (2 << 0)
#define TCR_TPSC_CLK256 (3 << 0)
#define TCR_TPSC_CLK1024 (4 << 0)
#define TCR_TPSC_MASK (7 << 0)
static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
{ {
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs;
if (reg_nr == TSTR)
return ioread8(base - cfg->channel_offset);
offs = reg_nr << 2;
if (reg_nr == TCR)
return ioread16(base + offs);
else
return ioread32(base + offs);
}
static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
unsigned long value)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs; unsigned long offs;
if (reg_nr == TSTR) { if (reg_nr == TSTR) {
iowrite8(value, base - cfg->channel_offset); switch (ch->tmu->model) {
return; case SH_TMU_LEGACY:
return ioread8(ch->tmu->mapbase);
case SH_TMU_SH3:
return ioread8(ch->tmu->mapbase + 2);
case SH_TMU:
return ioread8(ch->tmu->mapbase + 4);
}
} }
offs = reg_nr << 2; offs = reg_nr << 2;
if (reg_nr == TCR) if (reg_nr == TCR)
iowrite16(value, base + offs); return ioread16(ch->base + offs);
else else
iowrite32(value, base + offs); return ioread32(ch->base + offs);
} }
static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start) static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
unsigned long value)
{
unsigned long offs;
if (reg_nr == TSTR) {
switch (ch->tmu->model) {
case SH_TMU_LEGACY:
return iowrite8(value, ch->tmu->mapbase);
case SH_TMU_SH3:
return iowrite8(value, ch->tmu->mapbase + 2);
case SH_TMU:
return iowrite8(value, ch->tmu->mapbase + 4);
}
}
offs = reg_nr << 2;
if (reg_nr == TCR)
iowrite16(value, ch->base + offs);
else
iowrite32(value, ch->base + offs);
}
static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
{ {
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
unsigned long flags, value; unsigned long flags, value;
/* start stop register shared by multiple timer channels */ /* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&sh_tmu_lock, flags); raw_spin_lock_irqsave(&sh_tmu_lock, flags);
value = sh_tmu_read(p, TSTR); value = sh_tmu_read(ch, TSTR);
if (start) if (start)
value |= 1 << cfg->timer_bit; value |= 1 << ch->index;
else else
value &= ~(1 << cfg->timer_bit); value &= ~(1 << ch->index);
sh_tmu_write(p, TSTR, value); sh_tmu_write(ch, TSTR, value);
raw_spin_unlock_irqrestore(&sh_tmu_lock, flags); raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
} }
static int __sh_tmu_enable(struct sh_tmu_priv *p) static int __sh_tmu_enable(struct sh_tmu_channel *ch)
{ {
int ret; int ret;
/* enable clock */ /* enable clock */
ret = clk_enable(p->clk); ret = clk_enable(ch->tmu->clk);
if (ret) { if (ret) {
dev_err(&p->pdev->dev, "cannot enable clock\n"); dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
return ret; return ret;
} }
/* make sure channel is disabled */ /* make sure channel is disabled */
sh_tmu_start_stop_ch(p, 0); sh_tmu_start_stop_ch(ch, 0);
/* maximum timeout */ /* maximum timeout */
sh_tmu_write(p, TCOR, 0xffffffff); sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(p, TCNT, 0xffffffff); sh_tmu_write(ch, TCNT, 0xffffffff);
/* configure channel to parent clock / 4, irq off */ /* configure channel to parent clock / 4, irq off */
p->rate = clk_get_rate(p->clk) / 4; ch->rate = clk_get_rate(ch->tmu->clk) / 4;
sh_tmu_write(p, TCR, 0x0000); sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
/* enable channel */ /* enable channel */
sh_tmu_start_stop_ch(p, 1); sh_tmu_start_stop_ch(ch, 1);
return 0; return 0;
} }
static int sh_tmu_enable(struct sh_tmu_priv *p) static int sh_tmu_enable(struct sh_tmu_channel *ch)
{ {
if (p->enable_count++ > 0) if (ch->enable_count++ > 0)
return 0; return 0;
pm_runtime_get_sync(&p->pdev->dev); pm_runtime_get_sync(&ch->tmu->pdev->dev);
dev_pm_syscore_device(&p->pdev->dev, true); dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
return __sh_tmu_enable(p); return __sh_tmu_enable(ch);
} }
static void __sh_tmu_disable(struct sh_tmu_priv *p) static void __sh_tmu_disable(struct sh_tmu_channel *ch)
{ {
/* disable channel */ /* disable channel */
sh_tmu_start_stop_ch(p, 0); sh_tmu_start_stop_ch(ch, 0);
/* disable interrupts in TMU block */ /* disable interrupts in TMU block */
sh_tmu_write(p, TCR, 0x0000); sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
/* stop clock */ /* stop clock */
clk_disable(p->clk); clk_disable(ch->tmu->clk);
} }
static void sh_tmu_disable(struct sh_tmu_priv *p) static void sh_tmu_disable(struct sh_tmu_channel *ch)
{ {
if (WARN_ON(p->enable_count == 0)) if (WARN_ON(ch->enable_count == 0))
return; return;
if (--p->enable_count > 0) if (--ch->enable_count > 0)
return; return;
__sh_tmu_disable(p); __sh_tmu_disable(ch);
dev_pm_syscore_device(&p->pdev->dev, false); dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
pm_runtime_put(&p->pdev->dev); pm_runtime_put(&ch->tmu->pdev->dev);
} }
static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta, static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
int periodic) int periodic)
{ {
/* stop timer */ /* stop timer */
sh_tmu_start_stop_ch(p, 0); sh_tmu_start_stop_ch(ch, 0);
/* acknowledge interrupt */ /* acknowledge interrupt */
sh_tmu_read(p, TCR); sh_tmu_read(ch, TCR);
/* enable interrupt */ /* enable interrupt */
sh_tmu_write(p, TCR, 0x0020); sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
/* reload delta value in case of periodic timer */ /* reload delta value in case of periodic timer */
if (periodic) if (periodic)
sh_tmu_write(p, TCOR, delta); sh_tmu_write(ch, TCOR, delta);
else else
sh_tmu_write(p, TCOR, 0xffffffff); sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(p, TCNT, delta); sh_tmu_write(ch, TCNT, delta);
/* start timer */ /* start timer */
sh_tmu_start_stop_ch(p, 1); sh_tmu_start_stop_ch(ch, 1);
} }
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
{ {
struct sh_tmu_priv *p = dev_id; struct sh_tmu_channel *ch = dev_id;
/* disable or acknowledge interrupt */ /* disable or acknowledge interrupt */
if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
sh_tmu_write(p, TCR, 0x0000); sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
else else
sh_tmu_write(p, TCR, 0x0020); sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
/* notify clockevent layer */ /* notify clockevent layer */
p->ced.event_handler(&p->ced); ch->ced.event_handler(&ch->ced);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs) static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
{ {
return container_of(cs, struct sh_tmu_priv, cs); return container_of(cs, struct sh_tmu_channel, cs);
} }
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs) static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
{ {
struct sh_tmu_priv *p = cs_to_sh_tmu(cs); struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
return sh_tmu_read(p, TCNT) ^ 0xffffffff; return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
} }
static int sh_tmu_clocksource_enable(struct clocksource *cs) static int sh_tmu_clocksource_enable(struct clocksource *cs)
{ {
struct sh_tmu_priv *p = cs_to_sh_tmu(cs); struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
int ret; int ret;
if (WARN_ON(p->cs_enabled)) if (WARN_ON(ch->cs_enabled))
return 0; return 0;
ret = sh_tmu_enable(p); ret = sh_tmu_enable(ch);
if (!ret) { if (!ret) {
__clocksource_updatefreq_hz(cs, p->rate); __clocksource_updatefreq_hz(cs, ch->rate);
p->cs_enabled = true; ch->cs_enabled = true;
} }
return ret; return ret;
@ -245,48 +285,48 @@ static int sh_tmu_clocksource_enable(struct clocksource *cs)
static void sh_tmu_clocksource_disable(struct clocksource *cs) static void sh_tmu_clocksource_disable(struct clocksource *cs)
{ {
struct sh_tmu_priv *p = cs_to_sh_tmu(cs); struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (WARN_ON(!p->cs_enabled)) if (WARN_ON(!ch->cs_enabled))
return; return;
sh_tmu_disable(p); sh_tmu_disable(ch);
p->cs_enabled = false; ch->cs_enabled = false;
} }
static void sh_tmu_clocksource_suspend(struct clocksource *cs) static void sh_tmu_clocksource_suspend(struct clocksource *cs)
{ {
struct sh_tmu_priv *p = cs_to_sh_tmu(cs); struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!p->cs_enabled) if (!ch->cs_enabled)
return; return;
if (--p->enable_count == 0) { if (--ch->enable_count == 0) {
__sh_tmu_disable(p); __sh_tmu_disable(ch);
pm_genpd_syscore_poweroff(&p->pdev->dev); pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
} }
} }
static void sh_tmu_clocksource_resume(struct clocksource *cs) static void sh_tmu_clocksource_resume(struct clocksource *cs)
{ {
struct sh_tmu_priv *p = cs_to_sh_tmu(cs); struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!p->cs_enabled) if (!ch->cs_enabled)
return; return;
if (p->enable_count++ == 0) { if (ch->enable_count++ == 0) {
pm_genpd_syscore_poweron(&p->pdev->dev); pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
__sh_tmu_enable(p); __sh_tmu_enable(ch);
} }
} }
static int sh_tmu_register_clocksource(struct sh_tmu_priv *p, static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
char *name, unsigned long rating) const char *name)
{ {
struct clocksource *cs = &p->cs; struct clocksource *cs = &ch->cs;
cs->name = name; cs->name = name;
cs->rating = rating; cs->rating = 200;
cs->read = sh_tmu_clocksource_read; cs->read = sh_tmu_clocksource_read;
cs->enable = sh_tmu_clocksource_enable; cs->enable = sh_tmu_clocksource_enable;
cs->disable = sh_tmu_clocksource_disable; cs->disable = sh_tmu_clocksource_disable;
@ -295,43 +335,44 @@ static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
cs->mask = CLOCKSOURCE_MASK(32); cs->mask = CLOCKSOURCE_MASK(32);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&p->pdev->dev, "used as clock source\n"); dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
ch->index);
/* Register with dummy 1 Hz value, gets updated in ->enable() */ /* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1); clocksource_register_hz(cs, 1);
return 0; return 0;
} }
static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced) static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
{ {
return container_of(ced, struct sh_tmu_priv, ced); return container_of(ced, struct sh_tmu_channel, ced);
} }
static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic) static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
{ {
struct clock_event_device *ced = &p->ced; struct clock_event_device *ced = &ch->ced;
sh_tmu_enable(p); sh_tmu_enable(ch);
clockevents_config(ced, p->rate); clockevents_config(ced, ch->rate);
if (periodic) { if (periodic) {
p->periodic = (p->rate + HZ/2) / HZ; ch->periodic = (ch->rate + HZ/2) / HZ;
sh_tmu_set_next(p, p->periodic, 1); sh_tmu_set_next(ch, ch->periodic, 1);
} }
} }
static void sh_tmu_clock_event_mode(enum clock_event_mode mode, static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced) struct clock_event_device *ced)
{ {
struct sh_tmu_priv *p = ced_to_sh_tmu(ced); struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
int disabled = 0; int disabled = 0;
/* deal with old setting first */ /* deal with old setting first */
switch (ced->mode) { switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_ONESHOT:
sh_tmu_disable(p); sh_tmu_disable(ch);
disabled = 1; disabled = 1;
break; break;
default: default:
@ -340,16 +381,18 @@ static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
switch (mode) { switch (mode) {
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
dev_info(&p->pdev->dev, "used for periodic clock events\n"); dev_info(&ch->tmu->pdev->dev,
sh_tmu_clock_event_start(p, 1); "ch%u: used for periodic clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 1);
break; break;
case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_ONESHOT:
dev_info(&p->pdev->dev, "used for oneshot clock events\n"); dev_info(&ch->tmu->pdev->dev,
sh_tmu_clock_event_start(p, 0); "ch%u: used for oneshot clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 0);
break; break;
case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_UNUSED:
if (!disabled) if (!disabled)
sh_tmu_disable(p); sh_tmu_disable(ch);
break; break;
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
default: default:
@ -360,147 +403,234 @@ static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
static int sh_tmu_clock_event_next(unsigned long delta, static int sh_tmu_clock_event_next(unsigned long delta,
struct clock_event_device *ced) struct clock_event_device *ced)
{ {
struct sh_tmu_priv *p = ced_to_sh_tmu(ced); struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
/* program new delta value */ /* program new delta value */
sh_tmu_set_next(p, delta, 0); sh_tmu_set_next(ch, delta, 0);
return 0; return 0;
} }
static void sh_tmu_clock_event_suspend(struct clock_event_device *ced) static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
{ {
pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->pdev->dev); pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
} }
static void sh_tmu_clock_event_resume(struct clock_event_device *ced) static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
{ {
pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->pdev->dev); pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
} }
static void sh_tmu_register_clockevent(struct sh_tmu_priv *p, static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
char *name, unsigned long rating) const char *name)
{ {
struct clock_event_device *ced = &p->ced; struct clock_event_device *ced = &ch->ced;
int ret; int ret;
memset(ced, 0, sizeof(*ced));
ced->name = name; ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT; ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = rating; ced->rating = 200;
ced->cpumask = cpumask_of(0); ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_tmu_clock_event_next; ced->set_next_event = sh_tmu_clock_event_next;
ced->set_mode = sh_tmu_clock_event_mode; ced->set_mode = sh_tmu_clock_event_mode;
ced->suspend = sh_tmu_clock_event_suspend; ced->suspend = sh_tmu_clock_event_suspend;
ced->resume = sh_tmu_clock_event_resume; ced->resume = sh_tmu_clock_event_resume;
dev_info(&p->pdev->dev, "used for clock events\n"); dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_config_and_register(ced, 1, 0x300, 0xffffffff); clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
ret = setup_irq(p->irqaction.irq, &p->irqaction); ret = request_irq(ch->irq, sh_tmu_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->tmu->pdev->dev), ch);
if (ret) { if (ret) {
dev_err(&p->pdev->dev, "failed to request irq %d\n", dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
p->irqaction.irq); ch->index, ch->irq);
return; return;
} }
} }
static int sh_tmu_register(struct sh_tmu_priv *p, char *name, static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
unsigned long clockevent_rating, bool clockevent, bool clocksource)
unsigned long clocksource_rating)
{ {
if (clockevent_rating) if (clockevent) {
sh_tmu_register_clockevent(p, name, clockevent_rating); ch->tmu->has_clockevent = true;
else if (clocksource_rating) sh_tmu_register_clockevent(ch, name);
sh_tmu_register_clocksource(p, name, clocksource_rating); } else if (clocksource) {
ch->tmu->has_clocksource = true;
sh_tmu_register_clocksource(ch, name);
}
return 0; return 0;
} }
static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev) static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
bool clockevent, bool clocksource,
struct sh_tmu_device *tmu)
{
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
ch->tmu = tmu;
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
/*
* The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps
* channel registers blocks at base + 2 + 12 * index, while all
* other variants map them at base + 4 + 12 * index. We can
* compute the index by just dividing by 12, the 2 bytes or 4
* bytes offset being hidden by the integer division.
*/
ch->index = cfg->channel_offset / 12;
ch->base = tmu->mapbase + cfg->channel_offset;
} else {
ch->index = index;
if (tmu->model == SH_TMU_SH3)
ch->base = tmu->mapbase + 4 + ch->index * 12;
else
ch->base = tmu->mapbase + 8 + ch->index * 12;
}
ch->irq = platform_get_irq(tmu->pdev, ch->index);
if (ch->irq < 0) {
dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return ch->irq;
}
ch->cs_enabled = false;
ch->enable_count = 0;
return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
clockevent, clocksource);
}
static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
{
struct resource *res;
res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
if (tmu->mapbase == NULL)
return -ENXIO;
/*
* In legacy platform device configuration (with one device per channel)
* the resource points to the channel base address.
*/
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
tmu->mapbase -= cfg->channel_offset;
}
return 0;
}
static void sh_tmu_unmap_memory(struct sh_tmu_device *tmu)
{
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
tmu->mapbase += cfg->channel_offset;
}
iounmap(tmu->mapbase);
}
static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
{ {
struct sh_timer_config *cfg = pdev->dev.platform_data; struct sh_timer_config *cfg = pdev->dev.platform_data;
struct resource *res; const struct platform_device_id *id = pdev->id_entry;
int irq, ret; unsigned int i;
ret = -ENXIO; int ret;
memset(p, 0, sizeof(*p));
p->pdev = pdev;
if (!cfg) { if (!cfg) {
dev_err(&p->pdev->dev, "missing platform data\n"); dev_err(&tmu->pdev->dev, "missing platform data\n");
goto err0; return -ENXIO;
} }
platform_set_drvdata(pdev, p); tmu->pdev = pdev;
tmu->model = id->driver_data;
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0); /* Get hold of clock. */
if (!res) { tmu->clk = clk_get(&tmu->pdev->dev,
dev_err(&p->pdev->dev, "failed to get I/O memory\n"); tmu->model == SH_TMU_LEGACY ? "tmu_fck" : "fck");
goto err0; if (IS_ERR(tmu->clk)) {
dev_err(&tmu->pdev->dev, "cannot get clock\n");
return PTR_ERR(tmu->clk);
} }
irq = platform_get_irq(p->pdev, 0); ret = clk_prepare(tmu->clk);
if (irq < 0) {
dev_err(&p->pdev->dev, "failed to get irq\n");
goto err0;
}
/* map memory, let mapbase point to our channel */
p->mapbase = ioremap_nocache(res->start, resource_size(res));
if (p->mapbase == NULL) {
dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
goto err0;
}
/* setup data for setup_irq() (too early for request_irq()) */
p->irqaction.name = dev_name(&p->pdev->dev);
p->irqaction.handler = sh_tmu_interrupt;
p->irqaction.dev_id = p;
p->irqaction.irq = irq;
p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
/* get hold of clock */
p->clk = clk_get(&p->pdev->dev, "tmu_fck");
if (IS_ERR(p->clk)) {
dev_err(&p->pdev->dev, "cannot get clock\n");
ret = PTR_ERR(p->clk);
goto err1;
}
ret = clk_prepare(p->clk);
if (ret < 0) if (ret < 0)
goto err2; goto err_clk_put;
p->cs_enabled = false; /* Map the memory resource. */
p->enable_count = 0; ret = sh_tmu_map_memory(tmu);
if (ret < 0) {
dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
goto err_clk_unprepare;
}
ret = sh_tmu_register(p, (char *)dev_name(&p->pdev->dev), /* Allocate and setup the channels. */
cfg->clockevent_rating, if (tmu->model == SH_TMU_LEGACY)
cfg->clocksource_rating); tmu->num_channels = 1;
if (ret < 0) else
goto err3; tmu->num_channels = hweight8(cfg->channels_mask);
tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
GFP_KERNEL);
if (tmu->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
if (tmu->model == SH_TMU_LEGACY) {
ret = sh_tmu_channel_setup(&tmu->channels[0], 0,
cfg->clockevent_rating != 0,
cfg->clocksource_rating != 0, tmu);
if (ret < 0)
goto err_unmap;
} else {
/*
* Use the first channel as a clock event device and the second
* channel as a clock source.
*/
for (i = 0; i < tmu->num_channels; ++i) {
ret = sh_tmu_channel_setup(&tmu->channels[i], i,
i == 0, i == 1, tmu);
if (ret < 0)
goto err_unmap;
}
}
platform_set_drvdata(pdev, tmu);
return 0; return 0;
err3: err_unmap:
clk_unprepare(p->clk); kfree(tmu->channels);
err2: sh_tmu_unmap_memory(tmu);
clk_put(p->clk); err_clk_unprepare:
err1: clk_unprepare(tmu->clk);
iounmap(p->mapbase); err_clk_put:
err0: clk_put(tmu->clk);
return ret; return ret;
} }
static int sh_tmu_probe(struct platform_device *pdev) static int sh_tmu_probe(struct platform_device *pdev)
{ {
struct sh_tmu_priv *p = platform_get_drvdata(pdev); struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
struct sh_timer_config *cfg = pdev->dev.platform_data;
int ret; int ret;
if (!is_early_platform_device(pdev)) { if (!is_early_platform_device(pdev)) {
@ -508,20 +638,20 @@ static int sh_tmu_probe(struct platform_device *pdev)
pm_runtime_enable(&pdev->dev); pm_runtime_enable(&pdev->dev);
} }
if (p) { if (tmu) {
dev_info(&pdev->dev, "kept as earlytimer\n"); dev_info(&pdev->dev, "kept as earlytimer\n");
goto out; goto out;
} }
p = kmalloc(sizeof(*p), GFP_KERNEL); tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
if (p == NULL) { if (tmu == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n"); dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM; return -ENOMEM;
} }
ret = sh_tmu_setup(p, pdev); ret = sh_tmu_setup(tmu, pdev);
if (ret) { if (ret) {
kfree(p); kfree(tmu);
pm_runtime_idle(&pdev->dev); pm_runtime_idle(&pdev->dev);
return ret; return ret;
} }
@ -529,7 +659,7 @@ static int sh_tmu_probe(struct platform_device *pdev)
return 0; return 0;
out: out:
if (cfg->clockevent_rating || cfg->clocksource_rating) if (tmu->has_clockevent || tmu->has_clocksource)
pm_runtime_irq_safe(&pdev->dev); pm_runtime_irq_safe(&pdev->dev);
else else
pm_runtime_idle(&pdev->dev); pm_runtime_idle(&pdev->dev);
@ -542,12 +672,21 @@ static int sh_tmu_remove(struct platform_device *pdev)
return -EBUSY; /* cannot unregister clockevent and clocksource */ return -EBUSY; /* cannot unregister clockevent and clocksource */
} }
static const struct platform_device_id sh_tmu_id_table[] = {
{ "sh_tmu", SH_TMU_LEGACY },
{ "sh-tmu", SH_TMU },
{ "sh-tmu-sh3", SH_TMU_SH3 },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
static struct platform_driver sh_tmu_device_driver = { static struct platform_driver sh_tmu_device_driver = {
.probe = sh_tmu_probe, .probe = sh_tmu_probe,
.remove = sh_tmu_remove, .remove = sh_tmu_remove,
.driver = { .driver = {
.name = "sh_tmu", .name = "sh_tmu",
} },
.id_table = sh_tmu_id_table,
}; };
static int __init sh_tmu_init(void) static int __init sh_tmu_init(void)

Просмотреть файл

@ -7,6 +7,7 @@ struct sh_timer_config {
int timer_bit; int timer_bit;
unsigned long clockevent_rating; unsigned long clockevent_rating;
unsigned long clocksource_rating; unsigned long clocksource_rating;
unsigned int channels_mask;
}; };
#endif /* __SH_TIMER_H__ */ #endif /* __SH_TIMER_H__ */