[TCP]: Add H-TCP congestion control module.
H-TCP is a congestion control algorithm developed at the Hamilton Institute, by Douglas Leith and Robert Shorten. It is extending the standard Reno algorithm with mode switching is thus a relatively simple modification. H-TCP is defined in a layered manner as it is still a research platform. The basic form includes the modification of beta according to the ratio of maxRTT to min RTT and the alpha=2*factor*(1-beta) relation, where factor is dependant on the time since last congestion. The other layers improve convergence by adding appropriate factors to alpha. The following patch implements the H-TCP algorithm in it's basic form. Signed-Off-By: Baruch Even <baruch@ev-en.org> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
b87d8561d8
Коммит
a7868ea68d
|
@ -467,6 +467,18 @@ config TCP_CONG_WESTWOOD
|
|||
TCP Westwood+ significantly increases fairness wrt TCP Reno in
|
||||
wired networks and throughput over wireless links.
|
||||
|
||||
config TCP_CONG_HTCP
|
||||
tristate "H-TCP"
|
||||
depends on INET
|
||||
default m
|
||||
---help---
|
||||
H-TCP is a send-side only modifications of the TCP Reno
|
||||
protocol stack that optimizes the performance of TCP
|
||||
congestion control for high speed network links. It uses a
|
||||
modeswitch to change the alpha and beta parameters of TCP Reno
|
||||
based on network conditions and in a way so as to be fair with
|
||||
other Reno and H-TCP flows.
|
||||
|
||||
config TCP_CONG_HSTCP
|
||||
tristate "High Speed TCP"
|
||||
depends on INET && EXPERIMENTAL
|
||||
|
@ -499,6 +511,7 @@ config TCP_CONG_VEGAS
|
|||
window. TCP Vegas should provide less packet loss, but it is
|
||||
not as aggressive as TCP Reno.
|
||||
|
||||
|
||||
endmenu
|
||||
|
||||
source "net/ipv4/ipvs/Kconfig"
|
||||
|
|
|
@ -35,6 +35,7 @@ obj-$(CONFIG_TCP_CONG_BIC) += tcp_bic.o
|
|||
obj-$(CONFIG_TCP_CONG_WESTWOOD) += tcp_westwood.o
|
||||
obj-$(CONFIG_TCP_CONG_HSTCP) += tcp_highspeed.o
|
||||
obj-$(CONFIG_TCP_CONG_HYBLA) += tcp_hybla.o
|
||||
obj-$(CONFIG_TCP_CONG_HTCP) += tcp_htcp.o
|
||||
obj-$(CONFIG_TCP_CONG_VEGAS) += tcp_vegas.o
|
||||
|
||||
obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \
|
||||
|
|
|
@ -0,0 +1,289 @@
|
|||
/*
|
||||
* H-TCP congestion control. The algorithm is detailed in:
|
||||
* R.N.Shorten, D.J.Leith:
|
||||
* "H-TCP: TCP for high-speed and long-distance networks"
|
||||
* Proc. PFLDnet, Argonne, 2004.
|
||||
* http://www.hamilton.ie/net/htcp3.pdf
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
#define ALPHA_BASE (1<<7) /* 1.0 with shift << 7 */
|
||||
#define BETA_MIN (1<<6) /* 0.5 with shift << 7 */
|
||||
#define BETA_MAX 102 /* 0.8 with shift << 7 */
|
||||
|
||||
static int use_rtt_scaling = 1;
|
||||
module_param(use_rtt_scaling, int, 0644);
|
||||
MODULE_PARM_DESC(use_rtt_scaling, "turn on/off RTT scaling");
|
||||
|
||||
static int use_bandwidth_switch = 1;
|
||||
module_param(use_bandwidth_switch, int, 0644);
|
||||
MODULE_PARM_DESC(use_bandwidth_switch, "turn on/off bandwidth switcher");
|
||||
|
||||
struct htcp {
|
||||
u16 alpha; /* Fixed point arith, << 7 */
|
||||
u8 beta; /* Fixed point arith, << 7 */
|
||||
u8 modeswitch; /* Delay modeswitch until we had at least one congestion event */
|
||||
u8 ccount; /* Number of RTTs since last congestion event */
|
||||
u8 undo_ccount;
|
||||
u16 packetcount;
|
||||
u32 minRTT;
|
||||
u32 maxRTT;
|
||||
u32 snd_cwnd_cnt2;
|
||||
|
||||
u32 undo_maxRTT;
|
||||
u32 undo_old_maxB;
|
||||
|
||||
/* Bandwidth estimation */
|
||||
u32 minB;
|
||||
u32 maxB;
|
||||
u32 old_maxB;
|
||||
u32 Bi;
|
||||
u32 lasttime;
|
||||
};
|
||||
|
||||
static inline void htcp_reset(struct htcp *ca)
|
||||
{
|
||||
ca->undo_ccount = ca->ccount;
|
||||
ca->undo_maxRTT = ca->maxRTT;
|
||||
ca->undo_old_maxB = ca->old_maxB;
|
||||
|
||||
ca->ccount = 0;
|
||||
ca->snd_cwnd_cnt2 = 0;
|
||||
}
|
||||
|
||||
static u32 htcp_cwnd_undo(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
ca->ccount = ca->undo_ccount;
|
||||
ca->maxRTT = ca->undo_maxRTT;
|
||||
ca->old_maxB = ca->undo_old_maxB;
|
||||
return max(tp->snd_cwnd, (tp->snd_ssthresh<<7)/ca->beta);
|
||||
}
|
||||
|
||||
static inline void measure_rtt(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 srtt = tp->srtt>>3;
|
||||
|
||||
/* keep track of minimum RTT seen so far, minRTT is zero at first */
|
||||
if (ca->minRTT > srtt || !ca->minRTT)
|
||||
ca->minRTT = srtt;
|
||||
|
||||
/* max RTT */
|
||||
if (tp->ca_state == TCP_CA_Open && tp->snd_ssthresh < 0xFFFF && ca->ccount > 3) {
|
||||
if (ca->maxRTT < ca->minRTT)
|
||||
ca->maxRTT = ca->minRTT;
|
||||
if (ca->maxRTT < srtt && srtt <= ca->maxRTT+HZ/50)
|
||||
ca->maxRTT = srtt;
|
||||
}
|
||||
}
|
||||
|
||||
static void measure_achieved_throughput(struct tcp_sock *tp, u32 pkts_acked)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 now = tcp_time_stamp;
|
||||
|
||||
/* achieved throughput calculations */
|
||||
if (tp->ca_state != TCP_CA_Open && tp->ca_state != TCP_CA_Disorder) {
|
||||
ca->packetcount = 0;
|
||||
ca->lasttime = now;
|
||||
return;
|
||||
}
|
||||
|
||||
ca->packetcount += pkts_acked;
|
||||
|
||||
if (ca->packetcount >= tp->snd_cwnd - (ca->alpha>>7? : 1)
|
||||
&& now - ca->lasttime >= ca->minRTT
|
||||
&& ca->minRTT > 0) {
|
||||
__u32 cur_Bi = ca->packetcount*HZ/(now - ca->lasttime);
|
||||
if (ca->ccount <= 3) {
|
||||
/* just after backoff */
|
||||
ca->minB = ca->maxB = ca->Bi = cur_Bi;
|
||||
} else {
|
||||
ca->Bi = (3*ca->Bi + cur_Bi)/4;
|
||||
if (ca->Bi > ca->maxB)
|
||||
ca->maxB = ca->Bi;
|
||||
if (ca->minB > ca->maxB)
|
||||
ca->minB = ca->maxB;
|
||||
}
|
||||
ca->packetcount = 0;
|
||||
ca->lasttime = now;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void htcp_beta_update(struct htcp *ca, u32 minRTT, u32 maxRTT)
|
||||
{
|
||||
if (use_bandwidth_switch) {
|
||||
u32 maxB = ca->maxB;
|
||||
u32 old_maxB = ca->old_maxB;
|
||||
ca->old_maxB = ca->maxB;
|
||||
|
||||
if (!between(5*maxB, 4*old_maxB, 6*old_maxB)) {
|
||||
ca->beta = BETA_MIN;
|
||||
ca->modeswitch = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (ca->modeswitch && minRTT > max(HZ/100, 1) && maxRTT) {
|
||||
ca->beta = (minRTT<<7)/maxRTT;
|
||||
if (ca->beta < BETA_MIN)
|
||||
ca->beta = BETA_MIN;
|
||||
else if (ca->beta > BETA_MAX)
|
||||
ca->beta = BETA_MAX;
|
||||
} else {
|
||||
ca->beta = BETA_MIN;
|
||||
ca->modeswitch = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void htcp_alpha_update(struct htcp *ca)
|
||||
{
|
||||
u32 minRTT = ca->minRTT;
|
||||
u32 factor = 1;
|
||||
u32 diff = ca->ccount * minRTT; /* time since last backoff */
|
||||
|
||||
if (diff > HZ) {
|
||||
diff -= HZ;
|
||||
factor = 1+ ( 10*diff + ((diff/2)*(diff/2)/HZ) )/HZ;
|
||||
}
|
||||
|
||||
if (use_rtt_scaling && minRTT) {
|
||||
u32 scale = (HZ<<3)/(10*minRTT);
|
||||
scale = min(max(scale, 1U<<2), 10U<<3); /* clamping ratio to interval [0.5,10]<<3 */
|
||||
factor = (factor<<3)/scale;
|
||||
if (!factor)
|
||||
factor = 1;
|
||||
}
|
||||
|
||||
ca->alpha = 2*factor*((1<<7)-ca->beta);
|
||||
if (!ca->alpha)
|
||||
ca->alpha = ALPHA_BASE;
|
||||
}
|
||||
|
||||
/* After we have the rtt data to calculate beta, we'd still prefer to wait one
|
||||
* rtt before we adjust our beta to ensure we are working from a consistent
|
||||
* data.
|
||||
*
|
||||
* This function should be called when we hit a congestion event since only at
|
||||
* that point do we really have a real sense of maxRTT (the queues en route
|
||||
* were getting just too full now).
|
||||
*/
|
||||
static void htcp_param_update(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 minRTT = ca->minRTT;
|
||||
u32 maxRTT = ca->maxRTT;
|
||||
|
||||
htcp_beta_update(ca, minRTT, maxRTT);
|
||||
htcp_alpha_update(ca);
|
||||
|
||||
/* add slowly fading memory for maxRTT to accommodate routing changes etc */
|
||||
if (minRTT > 0 && maxRTT > minRTT)
|
||||
ca->maxRTT = minRTT + ((maxRTT-minRTT)*95)/100;
|
||||
}
|
||||
|
||||
static u32 htcp_recalc_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
htcp_param_update(tp);
|
||||
return max((tp->snd_cwnd * ca->beta) >> 7, 2U);
|
||||
}
|
||||
|
||||
static void htcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
|
||||
u32 in_flight, int data_acked)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
/* In "safe" area, increase. */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
measure_rtt(tp);
|
||||
|
||||
/* keep track of number of round-trip times since last backoff event */
|
||||
if (ca->snd_cwnd_cnt2++ > tp->snd_cwnd) {
|
||||
ca->ccount++;
|
||||
ca->snd_cwnd_cnt2 = 0;
|
||||
htcp_alpha_update(ca);
|
||||
}
|
||||
|
||||
/* In dangerous area, increase slowly.
|
||||
* In theory this is tp->snd_cwnd += alpha / tp->snd_cwnd
|
||||
*/
|
||||
if ((tp->snd_cwnd_cnt++ * ca->alpha)>>7 >= tp->snd_cwnd) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
ca->ccount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Lower bound on congestion window. */
|
||||
static u32 htcp_min_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
return tp->snd_ssthresh;
|
||||
}
|
||||
|
||||
|
||||
static void htcp_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
|
||||
memset(ca, 0, sizeof(struct htcp));
|
||||
ca->alpha = ALPHA_BASE;
|
||||
ca->beta = BETA_MIN;
|
||||
}
|
||||
|
||||
static void htcp_state(struct tcp_sock *tp, u8 new_state)
|
||||
{
|
||||
switch (new_state) {
|
||||
case TCP_CA_CWR:
|
||||
case TCP_CA_Recovery:
|
||||
case TCP_CA_Loss:
|
||||
htcp_reset(tcp_ca(tp));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static struct tcp_congestion_ops htcp = {
|
||||
.init = htcp_init,
|
||||
.ssthresh = htcp_recalc_ssthresh,
|
||||
.min_cwnd = htcp_min_cwnd,
|
||||
.cong_avoid = htcp_cong_avoid,
|
||||
.set_state = htcp_state,
|
||||
.undo_cwnd = htcp_cwnd_undo,
|
||||
.pkts_acked = measure_achieved_throughput,
|
||||
.owner = THIS_MODULE,
|
||||
.name = "htcp",
|
||||
};
|
||||
|
||||
static int __init htcp_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct htcp) > TCP_CA_PRIV_SIZE);
|
||||
BUILD_BUG_ON(BETA_MIN >= BETA_MAX);
|
||||
if (!use_bandwidth_switch)
|
||||
htcp.pkts_acked = NULL;
|
||||
return tcp_register_congestion_control(&htcp);
|
||||
}
|
||||
|
||||
static void __exit htcp_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&htcp);
|
||||
}
|
||||
|
||||
module_init(htcp_register);
|
||||
module_exit(htcp_unregister);
|
||||
|
||||
MODULE_AUTHOR("Baruch Even");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("H-TCP");
|
Загрузка…
Ссылка в новой задаче