Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits) sched: Fix broken assertion sched: Assert task state bits at build time sched: Update task_state_arraypwith new states sched: Add missing state chars to TASK_STATE_TO_CHAR_STR sched: Move TASK_STATE_TO_CHAR_STR near the TASK_state bits sched: Teach might_sleep() about preemptible RCU sched: Make warning less noisy sched: Simplify set_task_cpu() sched: Remove the cfs_rq dependency from set_task_cpu() sched: Add pre and post wakeup hooks sched: Move kthread_bind() back to kthread.c sched: Fix select_task_rq() vs hotplug issues sched: Fix sched_exec() balancing sched: Ensure set_task_cpu() is never called on blocked tasks sched: Use TASK_WAKING for fork wakups sched: Select_task_rq_fair() must honour SD_LOAD_BALANCE sched: Fix task_hot() test order sched: Fix set_cpu_active() in cpu_down() sched: Mark boot-cpu active before smp_init() sched: Fix cpu_clock() in NMIs, on !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK ...
This commit is contained in:
Коммит
aac3d39693
|
@ -134,13 +134,16 @@ static inline void task_name(struct seq_file *m, struct task_struct *p)
|
|||
* simple bit tests.
|
||||
*/
|
||||
static const char *task_state_array[] = {
|
||||
"R (running)", /* 0 */
|
||||
"S (sleeping)", /* 1 */
|
||||
"D (disk sleep)", /* 2 */
|
||||
"T (stopped)", /* 4 */
|
||||
"T (tracing stop)", /* 8 */
|
||||
"Z (zombie)", /* 16 */
|
||||
"X (dead)" /* 32 */
|
||||
"R (running)", /* 0 */
|
||||
"S (sleeping)", /* 1 */
|
||||
"D (disk sleep)", /* 2 */
|
||||
"T (stopped)", /* 4 */
|
||||
"t (tracing stop)", /* 8 */
|
||||
"Z (zombie)", /* 16 */
|
||||
"X (dead)", /* 32 */
|
||||
"x (dead)", /* 64 */
|
||||
"K (wakekill)", /* 128 */
|
||||
"W (waking)", /* 256 */
|
||||
};
|
||||
|
||||
static inline const char *get_task_state(struct task_struct *tsk)
|
||||
|
@ -148,6 +151,8 @@ static inline const char *get_task_state(struct task_struct *tsk)
|
|||
unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state;
|
||||
const char **p = &task_state_array[0];
|
||||
|
||||
BUILD_BUG_ON(1 + ilog2(TASK_STATE_MAX) != ARRAY_SIZE(task_state_array));
|
||||
|
||||
while (state) {
|
||||
p++;
|
||||
state >>= 1;
|
||||
|
|
|
@ -101,4 +101,9 @@ static inline void exit_rcu(void)
|
|||
{
|
||||
}
|
||||
|
||||
static inline int rcu_preempt_depth(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* __LINUX_RCUTINY_H */
|
||||
|
|
|
@ -45,6 +45,12 @@ extern void __rcu_read_unlock(void);
|
|||
extern void synchronize_rcu(void);
|
||||
extern void exit_rcu(void);
|
||||
|
||||
/*
|
||||
* Defined as macro as it is a very low level header
|
||||
* included from areas that don't even know about current
|
||||
*/
|
||||
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
|
||||
|
||||
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
static inline void __rcu_read_lock(void)
|
||||
|
@ -63,6 +69,11 @@ static inline void exit_rcu(void)
|
|||
{
|
||||
}
|
||||
|
||||
static inline int rcu_preempt_depth(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
static inline void __rcu_read_lock_bh(void)
|
||||
|
|
|
@ -192,6 +192,12 @@ print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
|
|||
#define TASK_DEAD 64
|
||||
#define TASK_WAKEKILL 128
|
||||
#define TASK_WAKING 256
|
||||
#define TASK_STATE_MAX 512
|
||||
|
||||
#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
|
||||
|
||||
extern char ___assert_task_state[1 - 2*!!(
|
||||
sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
|
||||
|
||||
/* Convenience macros for the sake of set_task_state */
|
||||
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
|
||||
|
@ -1091,7 +1097,8 @@ struct sched_class {
|
|||
enum cpu_idle_type idle);
|
||||
void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
|
||||
void (*post_schedule) (struct rq *this_rq);
|
||||
void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
|
||||
void (*task_waking) (struct rq *this_rq, struct task_struct *task);
|
||||
void (*task_woken) (struct rq *this_rq, struct task_struct *task);
|
||||
|
||||
void (*set_cpus_allowed)(struct task_struct *p,
|
||||
const struct cpumask *newmask);
|
||||
|
@ -1115,7 +1122,7 @@ struct sched_class {
|
|||
struct task_struct *task);
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
void (*moved_group) (struct task_struct *p);
|
||||
void (*moved_group) (struct task_struct *p, int on_rq);
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -2594,8 +2601,6 @@ static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
|
|||
}
|
||||
#endif /* CONFIG_MM_OWNER */
|
||||
|
||||
#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
|
||||
#endif
|
||||
|
|
|
@ -369,12 +369,6 @@ static void __init smp_init(void)
|
|||
{
|
||||
unsigned int cpu;
|
||||
|
||||
/*
|
||||
* Set up the current CPU as possible to migrate to.
|
||||
* The other ones will be done by cpu_up/cpu_down()
|
||||
*/
|
||||
set_cpu_active(smp_processor_id(), true);
|
||||
|
||||
/* FIXME: This should be done in userspace --RR */
|
||||
for_each_present_cpu(cpu) {
|
||||
if (num_online_cpus() >= setup_max_cpus)
|
||||
|
@ -486,6 +480,7 @@ static void __init boot_cpu_init(void)
|
|||
int cpu = smp_processor_id();
|
||||
/* Mark the boot cpu "present", "online" etc for SMP and UP case */
|
||||
set_cpu_online(cpu, true);
|
||||
set_cpu_active(cpu, true);
|
||||
set_cpu_present(cpu, true);
|
||||
set_cpu_possible(cpu, true);
|
||||
}
|
||||
|
|
24
kernel/cpu.c
24
kernel/cpu.c
|
@ -209,6 +209,7 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
|
|||
return -ENOMEM;
|
||||
|
||||
cpu_hotplug_begin();
|
||||
set_cpu_active(cpu, false);
|
||||
err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
|
||||
hcpu, -1, &nr_calls);
|
||||
if (err == NOTIFY_BAD) {
|
||||
|
@ -280,18 +281,6 @@ int __ref cpu_down(unsigned int cpu)
|
|||
goto out;
|
||||
}
|
||||
|
||||
set_cpu_active(cpu, false);
|
||||
|
||||
/*
|
||||
* Make sure the all cpus did the reschedule and are not
|
||||
* using stale version of the cpu_active_mask.
|
||||
* This is not strictly necessary becuase stop_machine()
|
||||
* that we run down the line already provides the required
|
||||
* synchronization. But it's really a side effect and we do not
|
||||
* want to depend on the innards of the stop_machine here.
|
||||
*/
|
||||
synchronize_sched();
|
||||
|
||||
err = _cpu_down(cpu, 0);
|
||||
|
||||
out:
|
||||
|
@ -382,19 +371,12 @@ int disable_nonboot_cpus(void)
|
|||
return error;
|
||||
cpu_maps_update_begin();
|
||||
first_cpu = cpumask_first(cpu_online_mask);
|
||||
/* We take down all of the non-boot CPUs in one shot to avoid races
|
||||
/*
|
||||
* We take down all of the non-boot CPUs in one shot to avoid races
|
||||
* with the userspace trying to use the CPU hotplug at the same time
|
||||
*/
|
||||
cpumask_clear(frozen_cpus);
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
if (cpu == first_cpu)
|
||||
continue;
|
||||
set_cpu_active(cpu, false);
|
||||
}
|
||||
|
||||
synchronize_sched();
|
||||
|
||||
printk("Disabling non-boot CPUs ...\n");
|
||||
for_each_online_cpu(cpu) {
|
||||
if (cpu == first_cpu)
|
||||
|
|
|
@ -149,6 +149,29 @@ struct task_struct *kthread_create(int (*threadfn)(void *data),
|
|||
}
|
||||
EXPORT_SYMBOL(kthread_create);
|
||||
|
||||
/**
|
||||
* kthread_bind - bind a just-created kthread to a cpu.
|
||||
* @p: thread created by kthread_create().
|
||||
* @cpu: cpu (might not be online, must be possible) for @k to run on.
|
||||
*
|
||||
* Description: This function is equivalent to set_cpus_allowed(),
|
||||
* except that @cpu doesn't need to be online, and the thread must be
|
||||
* stopped (i.e., just returned from kthread_create()).
|
||||
*/
|
||||
void kthread_bind(struct task_struct *p, unsigned int cpu)
|
||||
{
|
||||
/* Must have done schedule() in kthread() before we set_task_cpu */
|
||||
if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
|
||||
WARN_ON(1);
|
||||
return;
|
||||
}
|
||||
|
||||
p->cpus_allowed = cpumask_of_cpu(cpu);
|
||||
p->rt.nr_cpus_allowed = 1;
|
||||
p->flags |= PF_THREAD_BOUND;
|
||||
}
|
||||
EXPORT_SYMBOL(kthread_bind);
|
||||
|
||||
/**
|
||||
* kthread_stop - stop a thread created by kthread_create().
|
||||
* @k: thread created by kthread_create().
|
||||
|
|
401
kernel/sched.c
401
kernel/sched.c
|
@ -26,6 +26,8 @@
|
|||
* Thomas Gleixner, Mike Kravetz
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/nmi.h>
|
||||
|
@ -2002,39 +2004,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
|
|||
p->sched_class->prio_changed(rq, p, oldprio, running);
|
||||
}
|
||||
|
||||
/**
|
||||
* kthread_bind - bind a just-created kthread to a cpu.
|
||||
* @p: thread created by kthread_create().
|
||||
* @cpu: cpu (might not be online, must be possible) for @k to run on.
|
||||
*
|
||||
* Description: This function is equivalent to set_cpus_allowed(),
|
||||
* except that @cpu doesn't need to be online, and the thread must be
|
||||
* stopped (i.e., just returned from kthread_create()).
|
||||
*
|
||||
* Function lives here instead of kthread.c because it messes with
|
||||
* scheduler internals which require locking.
|
||||
*/
|
||||
void kthread_bind(struct task_struct *p, unsigned int cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long flags;
|
||||
|
||||
/* Must have done schedule() in kthread() before we set_task_cpu */
|
||||
if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
|
||||
WARN_ON(1);
|
||||
return;
|
||||
}
|
||||
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
update_rq_clock(rq);
|
||||
set_task_cpu(p, cpu);
|
||||
p->cpus_allowed = cpumask_of_cpu(cpu);
|
||||
p->rt.nr_cpus_allowed = 1;
|
||||
p->flags |= PF_THREAD_BOUND;
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(kthread_bind);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Is this task likely cache-hot:
|
||||
|
@ -2044,6 +2013,9 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
|
|||
{
|
||||
s64 delta;
|
||||
|
||||
if (p->sched_class != &fair_sched_class)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Buddy candidates are cache hot:
|
||||
*/
|
||||
|
@ -2052,9 +2024,6 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
|
|||
&p->se == cfs_rq_of(&p->se)->last))
|
||||
return 1;
|
||||
|
||||
if (p->sched_class != &fair_sched_class)
|
||||
return 0;
|
||||
|
||||
if (sysctl_sched_migration_cost == -1)
|
||||
return 1;
|
||||
if (sysctl_sched_migration_cost == 0)
|
||||
|
@ -2065,22 +2034,24 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
|
|||
return delta < (s64)sysctl_sched_migration_cost;
|
||||
}
|
||||
|
||||
|
||||
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
|
||||
{
|
||||
int old_cpu = task_cpu(p);
|
||||
struct cfs_rq *old_cfsrq = task_cfs_rq(p),
|
||||
*new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
/*
|
||||
* We should never call set_task_cpu() on a blocked task,
|
||||
* ttwu() will sort out the placement.
|
||||
*/
|
||||
WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
|
||||
!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
|
||||
#endif
|
||||
|
||||
trace_sched_migrate_task(p, new_cpu);
|
||||
|
||||
if (old_cpu != new_cpu) {
|
||||
p->se.nr_migrations++;
|
||||
perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
|
||||
1, 1, NULL, 0);
|
||||
}
|
||||
p->se.vruntime -= old_cfsrq->min_vruntime -
|
||||
new_cfsrq->min_vruntime;
|
||||
if (task_cpu(p) == new_cpu)
|
||||
return;
|
||||
|
||||
p->se.nr_migrations++;
|
||||
perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
|
||||
|
||||
__set_task_cpu(p, new_cpu);
|
||||
}
|
||||
|
@ -2105,13 +2076,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
|
|||
|
||||
/*
|
||||
* If the task is not on a runqueue (and not running), then
|
||||
* it is sufficient to simply update the task's cpu field.
|
||||
* the next wake-up will properly place the task.
|
||||
*/
|
||||
if (!p->se.on_rq && !task_running(rq, p)) {
|
||||
update_rq_clock(rq);
|
||||
set_task_cpu(p, dest_cpu);
|
||||
if (!p->se.on_rq && !task_running(rq, p))
|
||||
return 0;
|
||||
}
|
||||
|
||||
init_completion(&req->done);
|
||||
req->task = p;
|
||||
|
@ -2317,10 +2285,73 @@ void task_oncpu_function_call(struct task_struct *p,
|
|||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static int select_fallback_rq(int cpu, struct task_struct *p)
|
||||
{
|
||||
int dest_cpu;
|
||||
const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
|
||||
|
||||
/* Look for allowed, online CPU in same node. */
|
||||
for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
|
||||
if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
|
||||
return dest_cpu;
|
||||
|
||||
/* Any allowed, online CPU? */
|
||||
dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
|
||||
if (dest_cpu < nr_cpu_ids)
|
||||
return dest_cpu;
|
||||
|
||||
/* No more Mr. Nice Guy. */
|
||||
if (dest_cpu >= nr_cpu_ids) {
|
||||
rcu_read_lock();
|
||||
cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
|
||||
rcu_read_unlock();
|
||||
dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
|
||||
|
||||
/*
|
||||
* Don't tell them about moving exiting tasks or
|
||||
* kernel threads (both mm NULL), since they never
|
||||
* leave kernel.
|
||||
*/
|
||||
if (p->mm && printk_ratelimit()) {
|
||||
printk(KERN_INFO "process %d (%s) no "
|
||||
"longer affine to cpu%d\n",
|
||||
task_pid_nr(p), p->comm, cpu);
|
||||
}
|
||||
}
|
||||
|
||||
return dest_cpu;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called from:
|
||||
*
|
||||
* - fork, @p is stable because it isn't on the tasklist yet
|
||||
*
|
||||
* - exec, @p is unstable, retry loop
|
||||
*
|
||||
* - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
|
||||
* we should be good.
|
||||
*/
|
||||
static inline
|
||||
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
|
||||
{
|
||||
return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
|
||||
int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
|
||||
|
||||
/*
|
||||
* In order not to call set_task_cpu() on a blocking task we need
|
||||
* to rely on ttwu() to place the task on a valid ->cpus_allowed
|
||||
* cpu.
|
||||
*
|
||||
* Since this is common to all placement strategies, this lives here.
|
||||
*
|
||||
* [ this allows ->select_task() to simply return task_cpu(p) and
|
||||
* not worry about this generic constraint ]
|
||||
*/
|
||||
if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
|
||||
!cpu_active(cpu)))
|
||||
cpu = select_fallback_rq(task_cpu(p), p);
|
||||
|
||||
return cpu;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -2375,6 +2406,10 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
|
|||
if (task_contributes_to_load(p))
|
||||
rq->nr_uninterruptible--;
|
||||
p->state = TASK_WAKING;
|
||||
|
||||
if (p->sched_class->task_waking)
|
||||
p->sched_class->task_waking(rq, p);
|
||||
|
||||
__task_rq_unlock(rq);
|
||||
|
||||
cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
|
||||
|
@ -2438,8 +2473,8 @@ out_running:
|
|||
|
||||
p->state = TASK_RUNNING;
|
||||
#ifdef CONFIG_SMP
|
||||
if (p->sched_class->task_wake_up)
|
||||
p->sched_class->task_wake_up(rq, p);
|
||||
if (p->sched_class->task_woken)
|
||||
p->sched_class->task_woken(rq, p);
|
||||
|
||||
if (unlikely(rq->idle_stamp)) {
|
||||
u64 delta = rq->clock - rq->idle_stamp;
|
||||
|
@ -2538,14 +2573,6 @@ static void __sched_fork(struct task_struct *p)
|
|||
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
||||
INIT_HLIST_HEAD(&p->preempt_notifiers);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We mark the process as running here, but have not actually
|
||||
* inserted it onto the runqueue yet. This guarantees that
|
||||
* nobody will actually run it, and a signal or other external
|
||||
* event cannot wake it up and insert it on the runqueue either.
|
||||
*/
|
||||
p->state = TASK_RUNNING;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2556,6 +2583,12 @@ void sched_fork(struct task_struct *p, int clone_flags)
|
|||
int cpu = get_cpu();
|
||||
|
||||
__sched_fork(p);
|
||||
/*
|
||||
* We mark the process as waking here. This guarantees that
|
||||
* nobody will actually run it, and a signal or other external
|
||||
* event cannot wake it up and insert it on the runqueue either.
|
||||
*/
|
||||
p->state = TASK_WAKING;
|
||||
|
||||
/*
|
||||
* Revert to default priority/policy on fork if requested.
|
||||
|
@ -2624,14 +2657,15 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
|
|||
struct rq *rq;
|
||||
|
||||
rq = task_rq_lock(p, &flags);
|
||||
BUG_ON(p->state != TASK_RUNNING);
|
||||
BUG_ON(p->state != TASK_WAKING);
|
||||
p->state = TASK_RUNNING;
|
||||
update_rq_clock(rq);
|
||||
activate_task(rq, p, 0);
|
||||
trace_sched_wakeup_new(rq, p, 1);
|
||||
check_preempt_curr(rq, p, WF_FORK);
|
||||
#ifdef CONFIG_SMP
|
||||
if (p->sched_class->task_wake_up)
|
||||
p->sched_class->task_wake_up(rq, p);
|
||||
if (p->sched_class->task_woken)
|
||||
p->sched_class->task_woken(rq, p);
|
||||
#endif
|
||||
task_rq_unlock(rq, &flags);
|
||||
}
|
||||
|
@ -3101,21 +3135,36 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|||
}
|
||||
|
||||
/*
|
||||
* If dest_cpu is allowed for this process, migrate the task to it.
|
||||
* This is accomplished by forcing the cpu_allowed mask to only
|
||||
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
|
||||
* the cpu_allowed mask is restored.
|
||||
* sched_exec - execve() is a valuable balancing opportunity, because at
|
||||
* this point the task has the smallest effective memory and cache footprint.
|
||||
*/
|
||||
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
|
||||
void sched_exec(void)
|
||||
{
|
||||
struct task_struct *p = current;
|
||||
struct migration_req req;
|
||||
int dest_cpu, this_cpu;
|
||||
unsigned long flags;
|
||||
struct rq *rq;
|
||||
|
||||
again:
|
||||
this_cpu = get_cpu();
|
||||
dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
|
||||
if (dest_cpu == this_cpu) {
|
||||
put_cpu();
|
||||
return;
|
||||
}
|
||||
|
||||
rq = task_rq_lock(p, &flags);
|
||||
put_cpu();
|
||||
|
||||
/*
|
||||
* select_task_rq() can race against ->cpus_allowed
|
||||
*/
|
||||
if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
|
||||
|| unlikely(!cpu_active(dest_cpu)))
|
||||
goto out;
|
||||
|| unlikely(!cpu_active(dest_cpu))) {
|
||||
task_rq_unlock(rq, &flags);
|
||||
goto again;
|
||||
}
|
||||
|
||||
/* force the process onto the specified CPU */
|
||||
if (migrate_task(p, dest_cpu, &req)) {
|
||||
|
@ -3130,23 +3179,9 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
|
|||
|
||||
return;
|
||||
}
|
||||
out:
|
||||
task_rq_unlock(rq, &flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* sched_exec - execve() is a valuable balancing opportunity, because at
|
||||
* this point the task has the smallest effective memory and cache footprint.
|
||||
*/
|
||||
void sched_exec(void)
|
||||
{
|
||||
int new_cpu, this_cpu = get_cpu();
|
||||
new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
|
||||
put_cpu();
|
||||
if (new_cpu != this_cpu)
|
||||
sched_migrate_task(current, new_cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* pull_task - move a task from a remote runqueue to the local runqueue.
|
||||
* Both runqueues must be locked.
|
||||
|
@ -5340,8 +5375,8 @@ static noinline void __schedule_bug(struct task_struct *prev)
|
|||
{
|
||||
struct pt_regs *regs = get_irq_regs();
|
||||
|
||||
printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
|
||||
prev->comm, prev->pid, preempt_count());
|
||||
pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
|
||||
prev->comm, prev->pid, preempt_count());
|
||||
|
||||
debug_show_held_locks(prev);
|
||||
print_modules();
|
||||
|
@ -5911,14 +5946,15 @@ EXPORT_SYMBOL(wait_for_completion_killable);
|
|||
*/
|
||||
bool try_wait_for_completion(struct completion *x)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret = 1;
|
||||
|
||||
spin_lock_irq(&x->wait.lock);
|
||||
spin_lock_irqsave(&x->wait.lock, flags);
|
||||
if (!x->done)
|
||||
ret = 0;
|
||||
else
|
||||
x->done--;
|
||||
spin_unlock_irq(&x->wait.lock);
|
||||
spin_unlock_irqrestore(&x->wait.lock, flags);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(try_wait_for_completion);
|
||||
|
@ -5933,12 +5969,13 @@ EXPORT_SYMBOL(try_wait_for_completion);
|
|||
*/
|
||||
bool completion_done(struct completion *x)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret = 1;
|
||||
|
||||
spin_lock_irq(&x->wait.lock);
|
||||
spin_lock_irqsave(&x->wait.lock, flags);
|
||||
if (!x->done)
|
||||
ret = 0;
|
||||
spin_unlock_irq(&x->wait.lock);
|
||||
spin_unlock_irqrestore(&x->wait.lock, flags);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(completion_done);
|
||||
|
@ -6457,7 +6494,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|||
return -EINVAL;
|
||||
|
||||
retval = -ESRCH;
|
||||
read_lock(&tasklist_lock);
|
||||
rcu_read_lock();
|
||||
p = find_process_by_pid(pid);
|
||||
if (p) {
|
||||
retval = security_task_getscheduler(p);
|
||||
|
@ -6465,7 +6502,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|||
retval = p->policy
|
||||
| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
|
||||
}
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -6483,7 +6520,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|||
if (!param || pid < 0)
|
||||
return -EINVAL;
|
||||
|
||||
read_lock(&tasklist_lock);
|
||||
rcu_read_lock();
|
||||
p = find_process_by_pid(pid);
|
||||
retval = -ESRCH;
|
||||
if (!p)
|
||||
|
@ -6494,7 +6531,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|||
goto out_unlock;
|
||||
|
||||
lp.sched_priority = p->rt_priority;
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
|
||||
/*
|
||||
* This one might sleep, we cannot do it with a spinlock held ...
|
||||
|
@ -6504,7 +6541,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|||
return retval;
|
||||
|
||||
out_unlock:
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -6515,22 +6552,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
|
|||
int retval;
|
||||
|
||||
get_online_cpus();
|
||||
read_lock(&tasklist_lock);
|
||||
rcu_read_lock();
|
||||
|
||||
p = find_process_by_pid(pid);
|
||||
if (!p) {
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
put_online_cpus();
|
||||
return -ESRCH;
|
||||
}
|
||||
|
||||
/*
|
||||
* It is not safe to call set_cpus_allowed with the
|
||||
* tasklist_lock held. We will bump the task_struct's
|
||||
* usage count and then drop tasklist_lock.
|
||||
*/
|
||||
/* Prevent p going away */
|
||||
get_task_struct(p);
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
|
||||
if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
|
||||
retval = -ENOMEM;
|
||||
|
@ -6616,7 +6649,7 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
|
|||
int retval;
|
||||
|
||||
get_online_cpus();
|
||||
read_lock(&tasklist_lock);
|
||||
rcu_read_lock();
|
||||
|
||||
retval = -ESRCH;
|
||||
p = find_process_by_pid(pid);
|
||||
|
@ -6632,7 +6665,7 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
|
|||
task_rq_unlock(rq, &flags);
|
||||
|
||||
out_unlock:
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
put_online_cpus();
|
||||
|
||||
return retval;
|
||||
|
@ -6876,7 +6909,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|||
return -EINVAL;
|
||||
|
||||
retval = -ESRCH;
|
||||
read_lock(&tasklist_lock);
|
||||
rcu_read_lock();
|
||||
p = find_process_by_pid(pid);
|
||||
if (!p)
|
||||
goto out_unlock;
|
||||
|
@ -6889,13 +6922,13 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|||
time_slice = p->sched_class->get_rr_interval(rq, p);
|
||||
task_rq_unlock(rq, &flags);
|
||||
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
jiffies_to_timespec(time_slice, &t);
|
||||
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
||||
return retval;
|
||||
|
||||
out_unlock:
|
||||
read_unlock(&tasklist_lock);
|
||||
rcu_read_unlock();
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -6907,23 +6940,23 @@ void sched_show_task(struct task_struct *p)
|
|||
unsigned state;
|
||||
|
||||
state = p->state ? __ffs(p->state) + 1 : 0;
|
||||
printk(KERN_INFO "%-13.13s %c", p->comm,
|
||||
pr_info("%-13.13s %c", p->comm,
|
||||
state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
|
||||
#if BITS_PER_LONG == 32
|
||||
if (state == TASK_RUNNING)
|
||||
printk(KERN_CONT " running ");
|
||||
pr_cont(" running ");
|
||||
else
|
||||
printk(KERN_CONT " %08lx ", thread_saved_pc(p));
|
||||
pr_cont(" %08lx ", thread_saved_pc(p));
|
||||
#else
|
||||
if (state == TASK_RUNNING)
|
||||
printk(KERN_CONT " running task ");
|
||||
pr_cont(" running task ");
|
||||
else
|
||||
printk(KERN_CONT " %016lx ", thread_saved_pc(p));
|
||||
pr_cont(" %016lx ", thread_saved_pc(p));
|
||||
#endif
|
||||
#ifdef CONFIG_DEBUG_STACK_USAGE
|
||||
free = stack_not_used(p);
|
||||
#endif
|
||||
printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
|
||||
pr_cont("%5lu %5d %6d 0x%08lx\n", free,
|
||||
task_pid_nr(p), task_pid_nr(p->real_parent),
|
||||
(unsigned long)task_thread_info(p)->flags);
|
||||
|
||||
|
@ -6935,11 +6968,9 @@ void show_state_filter(unsigned long state_filter)
|
|||
struct task_struct *g, *p;
|
||||
|
||||
#if BITS_PER_LONG == 32
|
||||
printk(KERN_INFO
|
||||
" task PC stack pid father\n");
|
||||
pr_info(" task PC stack pid father\n");
|
||||
#else
|
||||
printk(KERN_INFO
|
||||
" task PC stack pid father\n");
|
||||
pr_info(" task PC stack pid father\n");
|
||||
#endif
|
||||
read_lock(&tasklist_lock);
|
||||
do_each_thread(g, p) {
|
||||
|
@ -6986,6 +7017,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
|
|||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
|
||||
__sched_fork(idle);
|
||||
idle->state = TASK_RUNNING;
|
||||
idle->se.exec_start = sched_clock();
|
||||
|
||||
cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
|
||||
|
@ -7100,7 +7132,23 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|||
struct rq *rq;
|
||||
int ret = 0;
|
||||
|
||||
/*
|
||||
* Since we rely on wake-ups to migrate sleeping tasks, don't change
|
||||
* the ->cpus_allowed mask from under waking tasks, which would be
|
||||
* possible when we change rq->lock in ttwu(), so synchronize against
|
||||
* TASK_WAKING to avoid that.
|
||||
*/
|
||||
again:
|
||||
while (p->state == TASK_WAKING)
|
||||
cpu_relax();
|
||||
|
||||
rq = task_rq_lock(p, &flags);
|
||||
|
||||
if (p->state == TASK_WAKING) {
|
||||
task_rq_unlock(rq, &flags);
|
||||
goto again;
|
||||
}
|
||||
|
||||
if (!cpumask_intersects(new_mask, cpu_active_mask)) {
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
|
@ -7156,7 +7204,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
|
|||
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
|
||||
{
|
||||
struct rq *rq_dest, *rq_src;
|
||||
int ret = 0, on_rq;
|
||||
int ret = 0;
|
||||
|
||||
if (unlikely(!cpu_active(dest_cpu)))
|
||||
return ret;
|
||||
|
@ -7172,12 +7220,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
|
|||
if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
|
||||
goto fail;
|
||||
|
||||
on_rq = p->se.on_rq;
|
||||
if (on_rq)
|
||||
/*
|
||||
* If we're not on a rq, the next wake-up will ensure we're
|
||||
* placed properly.
|
||||
*/
|
||||
if (p->se.on_rq) {
|
||||
deactivate_task(rq_src, p, 0);
|
||||
|
||||
set_task_cpu(p, dest_cpu);
|
||||
if (on_rq) {
|
||||
set_task_cpu(p, dest_cpu);
|
||||
activate_task(rq_dest, p, 0);
|
||||
check_preempt_curr(rq_dest, p, 0);
|
||||
}
|
||||
|
@ -7273,37 +7322,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
|
|||
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
|
||||
{
|
||||
int dest_cpu;
|
||||
const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
|
||||
|
||||
again:
|
||||
/* Look for allowed, online CPU in same node. */
|
||||
for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
|
||||
if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
|
||||
goto move;
|
||||
dest_cpu = select_fallback_rq(dead_cpu, p);
|
||||
|
||||
/* Any allowed, online CPU? */
|
||||
dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
|
||||
if (dest_cpu < nr_cpu_ids)
|
||||
goto move;
|
||||
|
||||
/* No more Mr. Nice Guy. */
|
||||
if (dest_cpu >= nr_cpu_ids) {
|
||||
cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
|
||||
dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
|
||||
|
||||
/*
|
||||
* Don't tell them about moving exiting tasks or
|
||||
* kernel threads (both mm NULL), since they never
|
||||
* leave kernel.
|
||||
*/
|
||||
if (p->mm && printk_ratelimit()) {
|
||||
printk(KERN_INFO "process %d (%s) no "
|
||||
"longer affine to cpu%d\n",
|
||||
task_pid_nr(p), p->comm, dead_cpu);
|
||||
}
|
||||
}
|
||||
|
||||
move:
|
||||
/* It can have affinity changed while we were choosing. */
|
||||
if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
|
||||
goto again;
|
||||
|
@ -7806,48 +7828,44 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
|||
printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
|
||||
|
||||
if (!(sd->flags & SD_LOAD_BALANCE)) {
|
||||
printk("does not load-balance\n");
|
||||
pr_cont("does not load-balance\n");
|
||||
if (sd->parent)
|
||||
printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
|
||||
" has parent");
|
||||
pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
printk(KERN_CONT "span %s level %s\n", str, sd->name);
|
||||
pr_cont("span %s level %s\n", str, sd->name);
|
||||
|
||||
if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
||||
printk(KERN_ERR "ERROR: domain->span does not contain "
|
||||
"CPU%d\n", cpu);
|
||||
pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
|
||||
}
|
||||
if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
|
||||
printk(KERN_ERR "ERROR: domain->groups does not contain"
|
||||
" CPU%d\n", cpu);
|
||||
pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
|
||||
}
|
||||
|
||||
printk(KERN_DEBUG "%*s groups:", level + 1, "");
|
||||
do {
|
||||
if (!group) {
|
||||
printk("\n");
|
||||
printk(KERN_ERR "ERROR: group is NULL\n");
|
||||
pr_cont("\n");
|
||||
pr_err("ERROR: group is NULL\n");
|
||||
break;
|
||||
}
|
||||
|
||||
if (!group->cpu_power) {
|
||||
printk(KERN_CONT "\n");
|
||||
printk(KERN_ERR "ERROR: domain->cpu_power not "
|
||||
"set\n");
|
||||
pr_cont("\n");
|
||||
pr_err("ERROR: domain->cpu_power not set\n");
|
||||
break;
|
||||
}
|
||||
|
||||
if (!cpumask_weight(sched_group_cpus(group))) {
|
||||
printk(KERN_CONT "\n");
|
||||
printk(KERN_ERR "ERROR: empty group\n");
|
||||
pr_cont("\n");
|
||||
pr_err("ERROR: empty group\n");
|
||||
break;
|
||||
}
|
||||
|
||||
if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
|
||||
printk(KERN_CONT "\n");
|
||||
printk(KERN_ERR "ERROR: repeated CPUs\n");
|
||||
pr_cont("\n");
|
||||
pr_err("ERROR: repeated CPUs\n");
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -7855,23 +7873,21 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
|||
|
||||
cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
|
||||
|
||||
printk(KERN_CONT " %s", str);
|
||||
pr_cont(" %s", str);
|
||||
if (group->cpu_power != SCHED_LOAD_SCALE) {
|
||||
printk(KERN_CONT " (cpu_power = %d)",
|
||||
group->cpu_power);
|
||||
pr_cont(" (cpu_power = %d)", group->cpu_power);
|
||||
}
|
||||
|
||||
group = group->next;
|
||||
} while (group != sd->groups);
|
||||
printk(KERN_CONT "\n");
|
||||
pr_cont("\n");
|
||||
|
||||
if (!cpumask_equal(sched_domain_span(sd), groupmask))
|
||||
printk(KERN_ERR "ERROR: groups don't span domain->span\n");
|
||||
pr_err("ERROR: groups don't span domain->span\n");
|
||||
|
||||
if (sd->parent &&
|
||||
!cpumask_subset(groupmask, sched_domain_span(sd->parent)))
|
||||
printk(KERN_ERR "ERROR: parent span is not a superset "
|
||||
"of domain->span\n");
|
||||
pr_err("ERROR: parent span is not a superset of domain->span\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -8427,8 +8443,7 @@ static int build_numa_sched_groups(struct s_data *d,
|
|||
sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
||||
GFP_KERNEL, num);
|
||||
if (!sg) {
|
||||
printk(KERN_WARNING "Can not alloc domain group for node %d\n",
|
||||
num);
|
||||
pr_warning("Can not alloc domain group for node %d\n", num);
|
||||
return -ENOMEM;
|
||||
}
|
||||
d->sched_group_nodes[num] = sg;
|
||||
|
@ -8457,8 +8472,8 @@ static int build_numa_sched_groups(struct s_data *d,
|
|||
sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
||||
GFP_KERNEL, num);
|
||||
if (!sg) {
|
||||
printk(KERN_WARNING
|
||||
"Can not alloc domain group for node %d\n", j);
|
||||
pr_warning("Can not alloc domain group for node %d\n",
|
||||
j);
|
||||
return -ENOMEM;
|
||||
}
|
||||
sg->cpu_power = 0;
|
||||
|
@ -8686,7 +8701,7 @@ static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
|
|||
d->sched_group_nodes = kcalloc(nr_node_ids,
|
||||
sizeof(struct sched_group *), GFP_KERNEL);
|
||||
if (!d->sched_group_nodes) {
|
||||
printk(KERN_WARNING "Can not alloc sched group node list\n");
|
||||
pr_warning("Can not alloc sched group node list\n");
|
||||
return sa_notcovered;
|
||||
}
|
||||
sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
|
||||
|
@ -8703,7 +8718,7 @@ static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
|
|||
return sa_send_covered;
|
||||
d->rd = alloc_rootdomain();
|
||||
if (!d->rd) {
|
||||
printk(KERN_WARNING "Cannot alloc root domain\n");
|
||||
pr_warning("Cannot alloc root domain\n");
|
||||
return sa_tmpmask;
|
||||
}
|
||||
return sa_rootdomain;
|
||||
|
@ -9668,7 +9683,7 @@ void __init sched_init(void)
|
|||
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
|
||||
static inline int preempt_count_equals(int preempt_offset)
|
||||
{
|
||||
int nested = preempt_count() & ~PREEMPT_ACTIVE;
|
||||
int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
|
||||
|
||||
return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
|
||||
}
|
||||
|
@ -9685,13 +9700,11 @@ void __might_sleep(char *file, int line, int preempt_offset)
|
|||
return;
|
||||
prev_jiffy = jiffies;
|
||||
|
||||
printk(KERN_ERR
|
||||
"BUG: sleeping function called from invalid context at %s:%d\n",
|
||||
file, line);
|
||||
printk(KERN_ERR
|
||||
"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
|
||||
in_atomic(), irqs_disabled(),
|
||||
current->pid, current->comm);
|
||||
pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
|
||||
file, line);
|
||||
pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
|
||||
in_atomic(), irqs_disabled(),
|
||||
current->pid, current->comm);
|
||||
|
||||
debug_show_held_locks(current);
|
||||
if (irqs_disabled())
|
||||
|
@ -10083,7 +10096,7 @@ void sched_move_task(struct task_struct *tsk)
|
|||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
if (tsk->sched_class->moved_group)
|
||||
tsk->sched_class->moved_group(tsk);
|
||||
tsk->sched_class->moved_group(tsk, on_rq);
|
||||
#endif
|
||||
|
||||
if (unlikely(running))
|
||||
|
|
|
@ -236,6 +236,18 @@ void sched_clock_idle_wakeup_event(u64 delta_ns)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
|
||||
|
||||
unsigned long long cpu_clock(int cpu)
|
||||
{
|
||||
unsigned long long clock;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
clock = sched_clock_cpu(cpu);
|
||||
local_irq_restore(flags);
|
||||
|
||||
return clock;
|
||||
}
|
||||
|
||||
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
|
||||
|
||||
void sched_clock_init(void)
|
||||
|
@ -251,17 +263,12 @@ u64 sched_clock_cpu(int cpu)
|
|||
return sched_clock();
|
||||
}
|
||||
|
||||
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
|
||||
|
||||
unsigned long long cpu_clock(int cpu)
|
||||
{
|
||||
unsigned long long clock;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
clock = sched_clock_cpu(cpu);
|
||||
local_irq_restore(flags);
|
||||
|
||||
return clock;
|
||||
return sched_clock_cpu(cpu);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
|
||||
|
||||
EXPORT_SYMBOL_GPL(cpu_clock);
|
||||
|
|
|
@ -510,6 +510,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
|
|||
curr->sum_exec_runtime += delta_exec;
|
||||
schedstat_add(cfs_rq, exec_clock, delta_exec);
|
||||
delta_exec_weighted = calc_delta_fair(delta_exec, curr);
|
||||
|
||||
curr->vruntime += delta_exec_weighted;
|
||||
update_min_vruntime(cfs_rq);
|
||||
}
|
||||
|
@ -765,16 +766,26 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
|||
se->vruntime = vruntime;
|
||||
}
|
||||
|
||||
#define ENQUEUE_WAKEUP 1
|
||||
#define ENQUEUE_MIGRATE 2
|
||||
|
||||
static void
|
||||
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
|
||||
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
{
|
||||
/*
|
||||
* Update the normalized vruntime before updating min_vruntime
|
||||
* through callig update_curr().
|
||||
*/
|
||||
if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
|
||||
se->vruntime += cfs_rq->min_vruntime;
|
||||
|
||||
/*
|
||||
* Update run-time statistics of the 'current'.
|
||||
*/
|
||||
update_curr(cfs_rq);
|
||||
account_entity_enqueue(cfs_rq, se);
|
||||
|
||||
if (wakeup) {
|
||||
if (flags & ENQUEUE_WAKEUP) {
|
||||
place_entity(cfs_rq, se, 0);
|
||||
enqueue_sleeper(cfs_rq, se);
|
||||
}
|
||||
|
@ -828,6 +839,14 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
|
|||
__dequeue_entity(cfs_rq, se);
|
||||
account_entity_dequeue(cfs_rq, se);
|
||||
update_min_vruntime(cfs_rq);
|
||||
|
||||
/*
|
||||
* Normalize the entity after updating the min_vruntime because the
|
||||
* update can refer to the ->curr item and we need to reflect this
|
||||
* movement in our normalized position.
|
||||
*/
|
||||
if (!sleep)
|
||||
se->vruntime -= cfs_rq->min_vruntime;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1038,13 +1057,19 @@ static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
|
|||
{
|
||||
struct cfs_rq *cfs_rq;
|
||||
struct sched_entity *se = &p->se;
|
||||
int flags = 0;
|
||||
|
||||
if (wakeup)
|
||||
flags |= ENQUEUE_WAKEUP;
|
||||
if (p->state == TASK_WAKING)
|
||||
flags |= ENQUEUE_MIGRATE;
|
||||
|
||||
for_each_sched_entity(se) {
|
||||
if (se->on_rq)
|
||||
break;
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
enqueue_entity(cfs_rq, se, wakeup);
|
||||
wakeup = 1;
|
||||
enqueue_entity(cfs_rq, se, flags);
|
||||
flags = ENQUEUE_WAKEUP;
|
||||
}
|
||||
|
||||
hrtick_update(rq);
|
||||
|
@ -1120,6 +1145,14 @@ static void yield_task_fair(struct rq *rq)
|
|||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
static void task_waking_fair(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
struct sched_entity *se = &p->se;
|
||||
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
||||
|
||||
se->vruntime -= cfs_rq->min_vruntime;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
/*
|
||||
* effective_load() calculates the load change as seen from the root_task_group
|
||||
|
@ -1429,6 +1462,9 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
|
|||
}
|
||||
|
||||
for_each_domain(cpu, tmp) {
|
||||
if (!(tmp->flags & SD_LOAD_BALANCE))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* If power savings logic is enabled for a domain, see if we
|
||||
* are not overloaded, if so, don't balance wider.
|
||||
|
@ -1975,6 +2011,8 @@ static void task_fork_fair(struct task_struct *p)
|
|||
resched_task(rq->curr);
|
||||
}
|
||||
|
||||
se->vruntime -= cfs_rq->min_vruntime;
|
||||
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
}
|
||||
|
||||
|
@ -2028,12 +2066,13 @@ static void set_curr_task_fair(struct rq *rq)
|
|||
}
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
static void moved_group_fair(struct task_struct *p)
|
||||
static void moved_group_fair(struct task_struct *p, int on_rq)
|
||||
{
|
||||
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
||||
|
||||
update_curr(cfs_rq);
|
||||
place_entity(cfs_rq, &p->se, 1);
|
||||
if (!on_rq)
|
||||
place_entity(cfs_rq, &p->se, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -2073,6 +2112,8 @@ static const struct sched_class fair_sched_class = {
|
|||
.move_one_task = move_one_task_fair,
|
||||
.rq_online = rq_online_fair,
|
||||
.rq_offline = rq_offline_fair,
|
||||
|
||||
.task_waking = task_waking_fair,
|
||||
#endif
|
||||
|
||||
.set_curr_task = set_curr_task_fair,
|
||||
|
|
|
@ -35,7 +35,7 @@ static void
|
|||
dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep)
|
||||
{
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
||||
pr_err("bad: scheduling from the idle thread!\n");
|
||||
dump_stack();
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
}
|
||||
|
|
|
@ -1472,7 +1472,7 @@ static void post_schedule_rt(struct rq *rq)
|
|||
* If we are not running and we are not going to reschedule soon, we should
|
||||
* try to push tasks away now
|
||||
*/
|
||||
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
|
||||
static void task_woken_rt(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
if (!task_running(rq, p) &&
|
||||
!test_tsk_need_resched(rq->curr) &&
|
||||
|
@ -1753,7 +1753,7 @@ static const struct sched_class rt_sched_class = {
|
|||
.rq_offline = rq_offline_rt,
|
||||
.pre_schedule = pre_schedule_rt,
|
||||
.post_schedule = post_schedule_rt,
|
||||
.task_wake_up = task_wake_up_rt,
|
||||
.task_woken = task_woken_rt,
|
||||
.switched_from = switched_from_rt,
|
||||
#endif
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче