Merge branch 'cpuidle/biglittle' into next/drivers
From Lorenzo Pieralisi: This patch series contains: - GIC driver update to add a method to disable the GIC CPU IF - TC2 MCPM update to add GIC CPU disabling to suspend method - TC2 CPU idle big.LITTLE driver * cpuidle/biglittle: cpuidle: big.LITTLE: vexpress-TC2 CPU idle driver ARM: vexpress: tc2: disable GIC CPU IF in tc2_pm_suspend drivers: irq-chip: irq-gic: introduce gic_cpu_if_down() ARM: vexpress/TC2: implement PM suspend method ARM: vexpress/TC2: basic PM support ARM: vexpress: Add SCC to V2P-CA15_A7's device tree ARM: vexpress/TC2: add Serial Power Controller (SPC) support ARM: vexpress/dcscb: fix cache disabling sequences Signed-off-by: Olof Johansson <olof@lixom.net>
This commit is contained in:
Коммит
aaf75e454c
|
@ -0,0 +1,33 @@
|
|||
ARM Versatile Express Serial Configuration Controller
|
||||
-----------------------------------------------------
|
||||
|
||||
Test chips for ARM Versatile Express platform implement SCC (Serial
|
||||
Configuration Controller) interface, used to set initial conditions
|
||||
for the test chip.
|
||||
|
||||
In some cases its registers are also mapped in normal address space
|
||||
and can be used to obtain runtime information about the chip internals
|
||||
(like silicon temperature sensors) and as interface to other subsystems
|
||||
like platform configuration control and power management.
|
||||
|
||||
Required properties:
|
||||
|
||||
- compatible value: "arm,vexpress-scc,<model>", "arm,vexpress-scc";
|
||||
where <model> is the full tile model name (as used
|
||||
in the tile's Technical Reference Manual),
|
||||
eg. for Coretile Express A15x2 A7x3 (V2P-CA15_A7):
|
||||
compatible = "arm,vexpress-scc,v2p-ca15_a7", "arm,vexpress-scc";
|
||||
|
||||
Optional properties:
|
||||
|
||||
- reg: when the SCC is memory mapped, physical address and size of the
|
||||
registers window
|
||||
- interrupts: when the SCC can generate a system-level interrupt
|
||||
|
||||
Example:
|
||||
|
||||
scc@7fff0000 {
|
||||
compatible = "arm,vexpress-scc,v2p-ca15_a7", "arm,vexpress-scc";
|
||||
reg = <0 0x7fff0000 0 0x1000>;
|
||||
interrupts = <0 95 4>;
|
||||
};
|
|
@ -2268,6 +2268,15 @@ F: drivers/cpufreq/arm_big_little.h
|
|||
F: drivers/cpufreq/arm_big_little.c
|
||||
F: drivers/cpufreq/arm_big_little_dt.c
|
||||
|
||||
CPUIDLE DRIVER - ARM BIG LITTLE
|
||||
M: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
||||
M: Daniel Lezcano <daniel.lezcano@linaro.org>
|
||||
L: linux-pm@vger.kernel.org
|
||||
L: linux-arm-kernel@lists.infradead.org
|
||||
T: git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
|
||||
S: Maintained
|
||||
F: drivers/cpuidle/cpuidle-big_little.c
|
||||
|
||||
CPUIDLE DRIVERS
|
||||
M: Rafael J. Wysocki <rjw@sisk.pl>
|
||||
M: Daniel Lezcano <daniel.lezcano@linaro.org>
|
||||
|
|
|
@ -125,6 +125,12 @@
|
|||
clock-names = "apb_pclk";
|
||||
};
|
||||
|
||||
scc@7fff0000 {
|
||||
compatible = "arm,vexpress-scc,v2p-ca15_a7", "arm,vexpress-scc";
|
||||
reg = <0 0x7fff0000 0 0x1000>;
|
||||
interrupts = <0 95 4>;
|
||||
};
|
||||
|
||||
timer {
|
||||
compatible = "arm,armv7-timer";
|
||||
interrupts = <1 13 0xf08>,
|
||||
|
|
|
@ -66,4 +66,12 @@ config ARCH_VEXPRESS_DCSCB
|
|||
This is needed to provide CPU and cluster power management
|
||||
on RTSM implementing big.LITTLE.
|
||||
|
||||
config ARCH_VEXPRESS_TC2_PM
|
||||
bool "Versatile Express TC2 power management"
|
||||
depends on MCPM
|
||||
select ARM_CCI
|
||||
help
|
||||
Support for CPU and cluster power management on Versatile Express
|
||||
with a TC2 (A15x2 A7x3) big.LITTLE core tile.
|
||||
|
||||
endmenu
|
||||
|
|
|
@ -7,5 +7,6 @@ ccflags-$(CONFIG_ARCH_MULTIPLATFORM) := -I$(srctree)/$(src)/include \
|
|||
obj-y := v2m.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_CA9X4) += ct-ca9x4.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_DCSCB) += dcscb.o dcscb_setup.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_TC2_PM) += tc2_pm.o spc.o
|
||||
obj-$(CONFIG_SMP) += platsmp.o
|
||||
obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o
|
||||
|
|
|
@ -136,14 +136,29 @@ static void dcscb_power_down(void)
|
|||
/*
|
||||
* Flush all cache levels for this cluster.
|
||||
*
|
||||
* A15/A7 can hit in the cache with SCTLR.C=0, so we don't need
|
||||
* a preliminary flush here for those CPUs. At least, that's
|
||||
* the theory -- without the extra flush, Linux explodes on
|
||||
* RTSM (to be investigated).
|
||||
* To do so we do:
|
||||
* - Clear the SCTLR.C bit to prevent further cache allocations
|
||||
* - Flush the whole cache
|
||||
* - Clear the ACTLR "SMP" bit to disable local coherency
|
||||
*
|
||||
* Let's do it in the safest possible way i.e. with
|
||||
* no memory access within the following sequence
|
||||
* including to the stack.
|
||||
*/
|
||||
flush_cache_all();
|
||||
set_cr(get_cr() & ~CR_C);
|
||||
flush_cache_all();
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_all \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
|
||||
/*
|
||||
* This is a harmless no-op. On platforms with a real
|
||||
|
@ -152,9 +167,6 @@ static void dcscb_power_down(void)
|
|||
*/
|
||||
outer_flush_all();
|
||||
|
||||
/* Disable local coherency by clearing the ACTLR "SMP" bit: */
|
||||
set_auxcr(get_auxcr() & ~(1 << 6));
|
||||
|
||||
/*
|
||||
* Disable cluster-level coherency by masking
|
||||
* incoming snoops and DVM messages:
|
||||
|
@ -167,18 +179,22 @@ static void dcscb_power_down(void)
|
|||
|
||||
/*
|
||||
* Flush the local CPU cache.
|
||||
*
|
||||
* A15/A7 can hit in the cache with SCTLR.C=0, so we don't need
|
||||
* a preliminary flush here for those CPUs. At least, that's
|
||||
* the theory -- without the extra flush, Linux explodes on
|
||||
* RTSM (to be investigated).
|
||||
* Let's do it in the safest possible way as above.
|
||||
*/
|
||||
flush_cache_louis();
|
||||
set_cr(get_cr() & ~CR_C);
|
||||
flush_cache_louis();
|
||||
|
||||
/* Disable local coherency by clearing the ACTLR "SMP" bit: */
|
||||
set_auxcr(get_auxcr() & ~(1 << 6));
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_louis \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
}
|
||||
|
||||
__mcpm_cpu_down(cpu, cluster);
|
||||
|
|
|
@ -0,0 +1,180 @@
|
|||
/*
|
||||
* Versatile Express Serial Power Controller (SPC) support
|
||||
*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
*
|
||||
* Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
|
||||
* Achin Gupta <achin.gupta@arm.com>
|
||||
* Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
||||
* kind, whether express or implied; without even the implied warranty
|
||||
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/err.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
#define SPCLOG "vexpress-spc: "
|
||||
|
||||
/* SPC wake-up IRQs status and mask */
|
||||
#define WAKE_INT_MASK 0x24
|
||||
#define WAKE_INT_RAW 0x28
|
||||
#define WAKE_INT_STAT 0x2c
|
||||
/* SPC power down registers */
|
||||
#define A15_PWRDN_EN 0x30
|
||||
#define A7_PWRDN_EN 0x34
|
||||
/* SPC per-CPU mailboxes */
|
||||
#define A15_BX_ADDR0 0x68
|
||||
#define A7_BX_ADDR0 0x78
|
||||
|
||||
/* wake-up interrupt masks */
|
||||
#define GBL_WAKEUP_INT_MSK (0x3 << 10)
|
||||
|
||||
/* TC2 static dual-cluster configuration */
|
||||
#define MAX_CLUSTERS 2
|
||||
|
||||
struct ve_spc_drvdata {
|
||||
void __iomem *baseaddr;
|
||||
/*
|
||||
* A15s cluster identifier
|
||||
* It corresponds to A15 processors MPIDR[15:8] bitfield
|
||||
*/
|
||||
u32 a15_clusid;
|
||||
};
|
||||
|
||||
static struct ve_spc_drvdata *info;
|
||||
|
||||
static inline bool cluster_is_a15(u32 cluster)
|
||||
{
|
||||
return cluster == info->a15_clusid;
|
||||
}
|
||||
|
||||
/**
|
||||
* ve_spc_global_wakeup_irq()
|
||||
*
|
||||
* Function to set/clear global wakeup IRQs. Not protected by locking since
|
||||
* it might be used in code paths where normal cacheable locks are not
|
||||
* working. Locking must be provided by the caller to ensure atomicity.
|
||||
*
|
||||
* @set: if true, global wake-up IRQs are set, if false they are cleared
|
||||
*/
|
||||
void ve_spc_global_wakeup_irq(bool set)
|
||||
{
|
||||
u32 reg;
|
||||
|
||||
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
|
||||
|
||||
if (set)
|
||||
reg |= GBL_WAKEUP_INT_MSK;
|
||||
else
|
||||
reg &= ~GBL_WAKEUP_INT_MSK;
|
||||
|
||||
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* ve_spc_cpu_wakeup_irq()
|
||||
*
|
||||
* Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
|
||||
* it might be used in code paths where normal cacheable locks are not
|
||||
* working. Locking must be provided by the caller to ensure atomicity.
|
||||
*
|
||||
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
|
||||
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
|
||||
* @set: if true, wake-up IRQs are set, if false they are cleared
|
||||
*/
|
||||
void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
|
||||
{
|
||||
u32 mask, reg;
|
||||
|
||||
if (cluster >= MAX_CLUSTERS)
|
||||
return;
|
||||
|
||||
mask = 1 << cpu;
|
||||
|
||||
if (!cluster_is_a15(cluster))
|
||||
mask <<= 4;
|
||||
|
||||
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
|
||||
|
||||
if (set)
|
||||
reg |= mask;
|
||||
else
|
||||
reg &= ~mask;
|
||||
|
||||
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* ve_spc_set_resume_addr() - set the jump address used for warm boot
|
||||
*
|
||||
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
|
||||
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
|
||||
* @addr: physical resume address
|
||||
*/
|
||||
void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
|
||||
{
|
||||
void __iomem *baseaddr;
|
||||
|
||||
if (cluster >= MAX_CLUSTERS)
|
||||
return;
|
||||
|
||||
if (cluster_is_a15(cluster))
|
||||
baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
|
||||
else
|
||||
baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
|
||||
|
||||
writel_relaxed(addr, baseaddr);
|
||||
}
|
||||
|
||||
/**
|
||||
* ve_spc_powerdown()
|
||||
*
|
||||
* Function to enable/disable cluster powerdown. Not protected by locking
|
||||
* since it might be used in code paths where normal cacheable locks are not
|
||||
* working. Locking must be provided by the caller to ensure atomicity.
|
||||
*
|
||||
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
|
||||
* @enable: if true enables powerdown, if false disables it
|
||||
*/
|
||||
void ve_spc_powerdown(u32 cluster, bool enable)
|
||||
{
|
||||
u32 pwdrn_reg;
|
||||
|
||||
if (cluster >= MAX_CLUSTERS)
|
||||
return;
|
||||
|
||||
pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
|
||||
writel_relaxed(enable, info->baseaddr + pwdrn_reg);
|
||||
}
|
||||
|
||||
int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid)
|
||||
{
|
||||
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
||||
if (!info) {
|
||||
pr_err(SPCLOG "unable to allocate mem\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
info->baseaddr = baseaddr;
|
||||
info->a15_clusid = a15_clusid;
|
||||
|
||||
/*
|
||||
* Multi-cluster systems may need this data when non-coherent, during
|
||||
* cluster power-up/power-down. Make sure driver info reaches main
|
||||
* memory.
|
||||
*/
|
||||
sync_cache_w(info);
|
||||
sync_cache_w(&info);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* Copyright (C) 2012 ARM Limited
|
||||
*/
|
||||
|
||||
|
||||
#ifndef __SPC_H_
|
||||
#define __SPC_H_
|
||||
|
||||
int __init ve_spc_init(void __iomem *base, u32 a15_clusid);
|
||||
void ve_spc_global_wakeup_irq(bool set);
|
||||
void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set);
|
||||
void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr);
|
||||
void ve_spc_powerdown(u32 cluster, bool enable);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,346 @@
|
|||
/*
|
||||
* arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support
|
||||
*
|
||||
* Created by: Nicolas Pitre, October 2012
|
||||
* Copyright: (C) 2012-2013 Linaro Limited
|
||||
*
|
||||
* Some portions of this file were originally written by Achin Gupta
|
||||
* Copyright: (C) 2012 ARM Limited
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/irqchip/arm-gic.h>
|
||||
|
||||
#include <asm/mcpm.h>
|
||||
#include <asm/proc-fns.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/cputype.h>
|
||||
#include <asm/cp15.h>
|
||||
|
||||
#include <linux/arm-cci.h>
|
||||
|
||||
#include "spc.h"
|
||||
|
||||
/* SCC conf registers */
|
||||
#define A15_CONF 0x400
|
||||
#define A7_CONF 0x500
|
||||
#define SYS_INFO 0x700
|
||||
#define SPC_BASE 0xb00
|
||||
|
||||
/*
|
||||
* We can't use regular spinlocks. In the switcher case, it is possible
|
||||
* for an outbound CPU to call power_down() after its inbound counterpart
|
||||
* is already live using the same logical CPU number which trips lockdep
|
||||
* debugging.
|
||||
*/
|
||||
static arch_spinlock_t tc2_pm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
||||
|
||||
#define TC2_CLUSTERS 2
|
||||
#define TC2_MAX_CPUS_PER_CLUSTER 3
|
||||
|
||||
static unsigned int tc2_nr_cpus[TC2_CLUSTERS];
|
||||
|
||||
/* Keep per-cpu usage count to cope with unordered up/down requests */
|
||||
static int tc2_pm_use_count[TC2_MAX_CPUS_PER_CLUSTER][TC2_CLUSTERS];
|
||||
|
||||
#define tc2_cluster_unused(cluster) \
|
||||
(!tc2_pm_use_count[0][cluster] && \
|
||||
!tc2_pm_use_count[1][cluster] && \
|
||||
!tc2_pm_use_count[2][cluster])
|
||||
|
||||
static int tc2_pm_power_up(unsigned int cpu, unsigned int cluster)
|
||||
{
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster])
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
|
||||
* variant exists, we need to disable IRQs manually here.
|
||||
*/
|
||||
local_irq_disable();
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
|
||||
if (tc2_cluster_unused(cluster))
|
||||
ve_spc_powerdown(cluster, false);
|
||||
|
||||
tc2_pm_use_count[cpu][cluster]++;
|
||||
if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||||
ve_spc_set_resume_addr(cluster, cpu,
|
||||
virt_to_phys(mcpm_entry_point));
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||||
} else if (tc2_pm_use_count[cpu][cluster] != 2) {
|
||||
/*
|
||||
* The only possible values are:
|
||||
* 0 = CPU down
|
||||
* 1 = CPU (still) up
|
||||
* 2 = CPU requested to be up before it had a chance
|
||||
* to actually make itself down.
|
||||
* Any other value is a bug.
|
||||
*/
|
||||
BUG();
|
||||
}
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
local_irq_enable();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void tc2_pm_down(u64 residency)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
bool last_man = false, skip_wfi = false;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||||
|
||||
__mcpm_cpu_going_down(cpu, cluster);
|
||||
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
|
||||
tc2_pm_use_count[cpu][cluster]--;
|
||||
if (tc2_pm_use_count[cpu][cluster] == 0) {
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||||
if (tc2_cluster_unused(cluster)) {
|
||||
ve_spc_powerdown(cluster, true);
|
||||
ve_spc_global_wakeup_irq(true);
|
||||
last_man = true;
|
||||
}
|
||||
} else if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||||
/*
|
||||
* A power_up request went ahead of us.
|
||||
* Even if we do not want to shut this CPU down,
|
||||
* the caller expects a certain state as if the WFI
|
||||
* was aborted. So let's continue with cache cleaning.
|
||||
*/
|
||||
skip_wfi = true;
|
||||
} else
|
||||
BUG();
|
||||
|
||||
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
|
||||
if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A15) {
|
||||
/*
|
||||
* On the Cortex-A15 we need to disable
|
||||
* L2 prefetching before flushing the cache.
|
||||
*/
|
||||
asm volatile(
|
||||
"mcr p15, 1, %0, c15, c0, 3 \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : "r" (0x400) );
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to disable and flush the whole (L1 and L2) cache.
|
||||
* Let's do it in the safest possible way i.e. with
|
||||
* no memory access within the following sequence
|
||||
* including the stack.
|
||||
*/
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_all \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
|
||||
cci_disable_port_by_cpu(mpidr);
|
||||
|
||||
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
||||
} else {
|
||||
/*
|
||||
* If last man then undo any setup done previously.
|
||||
*/
|
||||
if (last_man) {
|
||||
ve_spc_powerdown(cluster, false);
|
||||
ve_spc_global_wakeup_irq(false);
|
||||
}
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
|
||||
/*
|
||||
* We need to disable and flush only the L1 cache.
|
||||
* Let's do it in the safest possible way as above.
|
||||
*/
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_louis \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
}
|
||||
|
||||
__mcpm_cpu_down(cpu, cluster);
|
||||
|
||||
/* Now we are prepared for power-down, do it: */
|
||||
if (!skip_wfi)
|
||||
wfi();
|
||||
|
||||
/* Not dead at this point? Let our caller cope. */
|
||||
}
|
||||
|
||||
static void tc2_pm_power_down(void)
|
||||
{
|
||||
tc2_pm_down(0);
|
||||
}
|
||||
|
||||
static void tc2_pm_suspend(u64 residency)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
ve_spc_set_resume_addr(cluster, cpu, virt_to_phys(mcpm_entry_point));
|
||||
gic_cpu_if_down();
|
||||
tc2_pm_down(residency);
|
||||
}
|
||||
|
||||
static void tc2_pm_powered_up(void)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
unsigned long flags;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||||
|
||||
local_irq_save(flags);
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
|
||||
if (tc2_cluster_unused(cluster)) {
|
||||
ve_spc_powerdown(cluster, false);
|
||||
ve_spc_global_wakeup_irq(false);
|
||||
}
|
||||
|
||||
if (!tc2_pm_use_count[cpu][cluster])
|
||||
tc2_pm_use_count[cpu][cluster] = 1;
|
||||
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, false);
|
||||
ve_spc_set_resume_addr(cluster, cpu, 0);
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static const struct mcpm_platform_ops tc2_pm_power_ops = {
|
||||
.power_up = tc2_pm_power_up,
|
||||
.power_down = tc2_pm_power_down,
|
||||
.suspend = tc2_pm_suspend,
|
||||
.powered_up = tc2_pm_powered_up,
|
||||
};
|
||||
|
||||
static bool __init tc2_pm_usage_count_init(void)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) {
|
||||
pr_err("%s: boot CPU is out of bound!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
tc2_pm_use_count[cpu][cluster] = 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable cluster-level coherency, in preparation for turning on the MMU.
|
||||
*/
|
||||
static void __naked tc2_pm_power_up_setup(unsigned int affinity_level)
|
||||
{
|
||||
asm volatile (" \n"
|
||||
" cmp r0, #1 \n"
|
||||
" bxne lr \n"
|
||||
" b cci_enable_port_for_self ");
|
||||
}
|
||||
|
||||
static int __init tc2_pm_init(void)
|
||||
{
|
||||
int ret;
|
||||
void __iomem *scc;
|
||||
u32 a15_cluster_id, a7_cluster_id, sys_info;
|
||||
struct device_node *np;
|
||||
|
||||
/*
|
||||
* The power management-related features are hidden behind
|
||||
* SCC registers. We need to extract runtime information like
|
||||
* cluster ids and number of CPUs really available in clusters.
|
||||
*/
|
||||
np = of_find_compatible_node(NULL, NULL,
|
||||
"arm,vexpress-scc,v2p-ca15_a7");
|
||||
scc = of_iomap(np, 0);
|
||||
if (!scc)
|
||||
return -ENODEV;
|
||||
|
||||
a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf;
|
||||
a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf;
|
||||
if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS)
|
||||
return -EINVAL;
|
||||
|
||||
sys_info = readl_relaxed(scc + SYS_INFO);
|
||||
tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf;
|
||||
tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf;
|
||||
|
||||
/*
|
||||
* A subset of the SCC registers is also used to communicate
|
||||
* with the SPC (power controller). We need to be able to
|
||||
* drive it very early in the boot process to power up
|
||||
* processors, so we initialize the SPC driver here.
|
||||
*/
|
||||
ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!cci_probed())
|
||||
return -ENODEV;
|
||||
|
||||
if (!tc2_pm_usage_count_init())
|
||||
return -EINVAL;
|
||||
|
||||
ret = mcpm_platform_register(&tc2_pm_power_ops);
|
||||
if (!ret) {
|
||||
mcpm_sync_init(tc2_pm_power_up_setup);
|
||||
pr_info("TC2 power management initialized\n");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
early_initcall(tc2_pm_init);
|
|
@ -42,6 +42,16 @@ config CPU_IDLE_ZYNQ
|
|||
help
|
||||
Select this to enable cpuidle on Xilinx Zynq processors.
|
||||
|
||||
config CPU_IDLE_BIG_LITTLE
|
||||
bool "Support for ARM big.LITTLE processors"
|
||||
depends on ARCH_VEXPRESS_TC2_PM
|
||||
select ARM_CPU_SUSPEND
|
||||
select CPU_IDLE_MULTIPLE_DRIVERS
|
||||
help
|
||||
Select this option to enable CPU idle driver for big.LITTLE based
|
||||
ARM systems. Driver manages CPUs coordination through MCPM and
|
||||
define different C-states for little and big cores through the
|
||||
multiple CPU idle drivers infrastructure.
|
||||
endif
|
||||
|
||||
config ARCH_NEEDS_CPU_IDLE_COUPLED
|
||||
|
|
|
@ -8,3 +8,4 @@ obj-$(CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED) += coupled.o
|
|||
obj-$(CONFIG_CPU_IDLE_CALXEDA) += cpuidle-calxeda.o
|
||||
obj-$(CONFIG_ARCH_KIRKWOOD) += cpuidle-kirkwood.o
|
||||
obj-$(CONFIG_CPU_IDLE_ZYNQ) += cpuidle-zynq.o
|
||||
obj-$(CONFIG_CPU_IDLE_BIG_LITTLE) += cpuidle-big_little.o
|
||||
|
|
|
@ -0,0 +1,209 @@
|
|||
/*
|
||||
* Copyright (c) 2013 ARM/Linaro
|
||||
*
|
||||
* Authors: Daniel Lezcano <daniel.lezcano@linaro.org>
|
||||
* Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
||||
* Nicolas Pitre <nicolas.pitre@linaro.org>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* Maintainer: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
||||
* Maintainer: Daniel Lezcano <daniel.lezcano@linaro.org>
|
||||
*/
|
||||
#include <linux/cpuidle.h>
|
||||
#include <linux/cpu_pm.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/of.h>
|
||||
|
||||
#include <asm/cpu.h>
|
||||
#include <asm/cputype.h>
|
||||
#include <asm/cpuidle.h>
|
||||
#include <asm/mcpm.h>
|
||||
#include <asm/smp_plat.h>
|
||||
#include <asm/suspend.h>
|
||||
|
||||
static int bl_enter_powerdown(struct cpuidle_device *dev,
|
||||
struct cpuidle_driver *drv, int idx);
|
||||
|
||||
/*
|
||||
* NB: Owing to current menu governor behaviour big and LITTLE
|
||||
* index 1 states have to define exit_latency and target_residency for
|
||||
* cluster state since, when all CPUs in a cluster hit it, the cluster
|
||||
* can be shutdown. This means that when a single CPU enters this state
|
||||
* the exit_latency and target_residency values are somewhat overkill.
|
||||
* There is no notion of cluster states in the menu governor, so CPUs
|
||||
* have to define CPU states where possibly the cluster will be shutdown
|
||||
* depending on the state of other CPUs. idle states entry and exit happen
|
||||
* at random times; however the cluster state provides target_residency
|
||||
* values as if all CPUs in a cluster enter the state at once; this is
|
||||
* somewhat optimistic and behaviour should be fixed either in the governor
|
||||
* or in the MCPM back-ends.
|
||||
* To make this driver 100% generic the number of states and the exit_latency
|
||||
* target_residency values must be obtained from device tree bindings.
|
||||
*
|
||||
* exit_latency: refers to the TC2 vexpress test chip and depends on the
|
||||
* current cluster operating point. It is the time it takes to get the CPU
|
||||
* up and running when the CPU is powered up on cluster wake-up from shutdown.
|
||||
* Current values for big and LITTLE clusters are provided for clusters
|
||||
* running at default operating points.
|
||||
*
|
||||
* target_residency: it is the minimum amount of time the cluster has
|
||||
* to be down to break even in terms of power consumption. cluster
|
||||
* shutdown has inherent dynamic power costs (L2 writebacks to DRAM
|
||||
* being the main factor) that depend on the current operating points.
|
||||
* The current values for both clusters are provided for a CPU whose half
|
||||
* of L2 lines are dirty and require cleaning to DRAM, and takes into
|
||||
* account leakage static power values related to the vexpress TC2 testchip.
|
||||
*/
|
||||
static struct cpuidle_driver bl_idle_little_driver = {
|
||||
.name = "little_idle",
|
||||
.owner = THIS_MODULE,
|
||||
.states[0] = ARM_CPUIDLE_WFI_STATE,
|
||||
.states[1] = {
|
||||
.enter = bl_enter_powerdown,
|
||||
.exit_latency = 700,
|
||||
.target_residency = 2500,
|
||||
.flags = CPUIDLE_FLAG_TIME_VALID |
|
||||
CPUIDLE_FLAG_TIMER_STOP,
|
||||
.name = "C1",
|
||||
.desc = "ARM little-cluster power down",
|
||||
},
|
||||
.state_count = 2,
|
||||
};
|
||||
|
||||
static struct cpuidle_driver bl_idle_big_driver = {
|
||||
.name = "big_idle",
|
||||
.owner = THIS_MODULE,
|
||||
.states[0] = ARM_CPUIDLE_WFI_STATE,
|
||||
.states[1] = {
|
||||
.enter = bl_enter_powerdown,
|
||||
.exit_latency = 500,
|
||||
.target_residency = 2000,
|
||||
.flags = CPUIDLE_FLAG_TIME_VALID |
|
||||
CPUIDLE_FLAG_TIMER_STOP,
|
||||
.name = "C1",
|
||||
.desc = "ARM big-cluster power down",
|
||||
},
|
||||
.state_count = 2,
|
||||
};
|
||||
|
||||
/*
|
||||
* notrace prevents trace shims from getting inserted where they
|
||||
* should not. Global jumps and ldrex/strex must not be inserted
|
||||
* in power down sequences where caches and MMU may be turned off.
|
||||
*/
|
||||
static int notrace bl_powerdown_finisher(unsigned long arg)
|
||||
{
|
||||
/* MCPM works with HW CPU identifiers */
|
||||
unsigned int mpidr = read_cpuid_mpidr();
|
||||
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
|
||||
mcpm_set_entry_vector(cpu, cluster, cpu_resume);
|
||||
|
||||
/*
|
||||
* Residency value passed to mcpm_cpu_suspend back-end
|
||||
* has to be given clear semantics. Set to 0 as a
|
||||
* temporary value.
|
||||
*/
|
||||
mcpm_cpu_suspend(0);
|
||||
|
||||
/* return value != 0 means failure */
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* bl_enter_powerdown - Programs CPU to enter the specified state
|
||||
* @dev: cpuidle device
|
||||
* @drv: The target state to be programmed
|
||||
* @idx: state index
|
||||
*
|
||||
* Called from the CPUidle framework to program the device to the
|
||||
* specified target state selected by the governor.
|
||||
*/
|
||||
static int bl_enter_powerdown(struct cpuidle_device *dev,
|
||||
struct cpuidle_driver *drv, int idx)
|
||||
{
|
||||
cpu_pm_enter();
|
||||
|
||||
cpu_suspend(0, bl_powerdown_finisher);
|
||||
|
||||
/* signals the MCPM core that CPU is out of low power state */
|
||||
mcpm_cpu_powered_up();
|
||||
|
||||
cpu_pm_exit();
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
static int __init bl_idle_driver_init(struct cpuidle_driver *drv, int cpu_id)
|
||||
{
|
||||
struct cpuinfo_arm *cpu_info;
|
||||
struct cpumask *cpumask;
|
||||
unsigned long cpuid;
|
||||
int cpu;
|
||||
|
||||
cpumask = kzalloc(cpumask_size(), GFP_KERNEL);
|
||||
if (!cpumask)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpu_info = &per_cpu(cpu_data, cpu);
|
||||
cpuid = is_smp() ? cpu_info->cpuid : read_cpuid_id();
|
||||
|
||||
/* read cpu id part number */
|
||||
if ((cpuid & 0xFFF0) == cpu_id)
|
||||
cpumask_set_cpu(cpu, cpumask);
|
||||
}
|
||||
|
||||
drv->cpumask = cpumask;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __init bl_idle_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Initialize the driver just for a compliant set of machines
|
||||
*/
|
||||
if (!of_machine_is_compatible("arm,vexpress,v2p-ca15_a7"))
|
||||
return -ENODEV;
|
||||
/*
|
||||
* For now the differentiation between little and big cores
|
||||
* is based on the part number. A7 cores are considered little
|
||||
* cores, A15 are considered big cores. This distinction may
|
||||
* evolve in the future with a more generic matching approach.
|
||||
*/
|
||||
ret = bl_idle_driver_init(&bl_idle_little_driver,
|
||||
ARM_CPU_PART_CORTEX_A7);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = bl_idle_driver_init(&bl_idle_big_driver, ARM_CPU_PART_CORTEX_A15);
|
||||
if (ret)
|
||||
goto out_uninit_little;
|
||||
|
||||
ret = cpuidle_register(&bl_idle_little_driver, NULL);
|
||||
if (ret)
|
||||
goto out_uninit_big;
|
||||
|
||||
ret = cpuidle_register(&bl_idle_big_driver, NULL);
|
||||
if (ret)
|
||||
goto out_unregister_little;
|
||||
|
||||
return 0;
|
||||
|
||||
out_unregister_little:
|
||||
cpuidle_unregister(&bl_idle_little_driver);
|
||||
out_uninit_big:
|
||||
kfree(bl_idle_big_driver.cpumask);
|
||||
out_uninit_little:
|
||||
kfree(bl_idle_little_driver.cpumask);
|
||||
|
||||
return ret;
|
||||
}
|
||||
device_initcall(bl_idle_init);
|
|
@ -453,6 +453,12 @@ static void gic_cpu_init(struct gic_chip_data *gic)
|
|||
writel_relaxed(1, base + GIC_CPU_CTRL);
|
||||
}
|
||||
|
||||
void gic_cpu_if_down(void)
|
||||
{
|
||||
void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
|
||||
writel_relaxed(0, cpu_base + GIC_CPU_CTRL);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_PM
|
||||
/*
|
||||
* Saves the GIC distributor registers during suspend or idle. Must be called
|
||||
|
|
|
@ -66,6 +66,7 @@ extern struct irq_chip gic_arch_extn;
|
|||
void gic_init_bases(unsigned int, int, void __iomem *, void __iomem *,
|
||||
u32 offset, struct device_node *);
|
||||
void gic_cascade_irq(unsigned int gic_nr, unsigned int irq);
|
||||
void gic_cpu_if_down(void);
|
||||
|
||||
static inline void gic_init(unsigned int nr, int start,
|
||||
void __iomem *dist , void __iomem *cpu)
|
||||
|
|
Загрузка…
Ссылка в новой задаче