cpufreq: imx6q: correct VDDSOC/PU voltage scaling when cpufreq is changed

on i.MX6Q, cpu freq change need to follow below flows:

1. each setpoint has different VDDARM, VDDSOC/PU voltage, get the setpoint
   table from dts;
2. when cpu freq is scaling up, need to increase VDDSOC/PU voltage before
   VDDARM, if VDDPU is off, no need to change it;
3. when cpu freq is scaling down, need to decrease VDDARM voltage before
   VDDSOC/PU, if VDDPU is off, no need to change it;

normally dts will pass vddsoc/pu freq/volt info to kernel, if not, will
use fixed value for vddsoc/pu voltage setting.

Signed-off-by: Anson Huang <b20788@freescale.com>
Acked-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:
Anson Huang 2013-12-19 09:16:47 -05:00 коммит произвёл Rafael J. Wysocki
Родитель ab1b1c4e82
Коммит b4573d1d65
1 изменённых файлов: 77 добавлений и 29 удалений

Просмотреть файл

@ -35,6 +35,9 @@ static struct device *cpu_dev;
static struct cpufreq_frequency_table *freq_table;
static unsigned int transition_latency;
static u32 *imx6_soc_volt;
static u32 soc_opp_count;
static unsigned int imx6q_get_speed(unsigned int cpu)
{
return clk_get_rate(arm_clk) / 1000;
@ -69,23 +72,22 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
/* scaling up? scale voltage before frequency */
if (new_freq > old_freq) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
return ret;
}
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
return ret;
}
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev,
"failed to scale vddarm up: %d\n", ret);
return ret;
}
/*
* Need to increase vddpu and vddsoc for safety
* if we are about to run at 1.2 GHz.
*/
if (new_freq == FREQ_1P2_GHZ / 1000) {
regulator_set_voltage_tol(pu_reg,
PU_SOC_VOLTAGE_HIGH, 0);
regulator_set_voltage_tol(soc_reg,
PU_SOC_VOLTAGE_HIGH, 0);
}
}
/*
@ -120,12 +122,15 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
"failed to scale vddarm down: %d\n", ret);
ret = 0;
}
if (old_freq == FREQ_1P2_GHZ / 1000) {
regulator_set_voltage_tol(pu_reg,
PU_SOC_VOLTAGE_NORMAL, 0);
regulator_set_voltage_tol(soc_reg,
PU_SOC_VOLTAGE_NORMAL, 0);
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
ret = 0;
}
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
ret = 0;
}
}
@ -153,6 +158,9 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
struct dev_pm_opp *opp;
unsigned long min_volt, max_volt;
int num, ret;
const struct property *prop;
const __be32 *val;
u32 nr, i, j;
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
@ -201,9 +209,61 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
goto put_node;
}
/* Make imx6_soc_volt array's size same as arm opp number */
imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
if (imx6_soc_volt == NULL) {
ret = -ENOMEM;
goto free_freq_table;
}
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
if (!prop || !prop->value)
goto soc_opp_out;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2 || (nr / 2) < num)
goto soc_opp_out;
for (j = 0; j < num; j++) {
val = prop->value;
for (i = 0; i < nr / 2; i++) {
unsigned long freq = be32_to_cpup(val++);
unsigned long volt = be32_to_cpup(val++);
if (freq_table[j].frequency == freq) {
imx6_soc_volt[soc_opp_count++] = volt;
break;
}
}
}
soc_opp_out:
/* use fixed soc opp volt if no valid soc opp info found in dtb */
if (soc_opp_count != num) {
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
for (j = 0; j < num; j++)
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/*
* Calculate the ramp time for max voltage change in the
* VDDSOC and VDDPU regulators.
*/
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
/*
* OPP is maintained in order of increasing frequency, and
* freq_table initialised from OPP is therefore sorted in the
@ -221,18 +281,6 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
if (ret > 0)
transition_latency += ret * 1000;
/* Count vddpu and vddsoc latency in for 1.2 GHz support */
if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
PU_SOC_VOLTAGE_HIGH);
if (ret > 0)
transition_latency += ret * 1000;
ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
PU_SOC_VOLTAGE_HIGH);
if (ret > 0)
transition_latency += ret * 1000;
}
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);