[MTD] [NAND] FSL-UPM: add multi chip support

This patch adds support for multi-chip NAND devices to the FSL-UPM
driver. This requires support for multiple GPIOs for the RNB pins.
The NAND chips are selected through address lines defined by the
FDT property "fsl,upm-addr-line-cs-offsets".

Signed-off-by: Wolfgang Grandegger <wg@grandegger.com>
Acked-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
Wolfgang Grandegger 2009-03-30 12:02:42 +02:00 коммит произвёл David Woodhouse
Родитель db99a55231
Коммит b6e0e8c077
2 изменённых файлов: 77 добавлений и 24 удалений

Просмотреть файл

@ -150,7 +150,7 @@ int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
spin_lock_irqsave(&fsl_lbc_lock, flags); spin_lock_irqsave(&fsl_lbc_lock, flags);
out_be32(&fsl_lbc_regs->mar, mar << (32 - upm->width)); out_be32(&fsl_lbc_regs->mar, mar);
switch (upm->width) { switch (upm->width) {
case 8: case 8:

Просмотреть файл

@ -36,7 +36,10 @@ struct fsl_upm_nand {
uint8_t upm_addr_offset; uint8_t upm_addr_offset;
uint8_t upm_cmd_offset; uint8_t upm_cmd_offset;
void __iomem *io_base; void __iomem *io_base;
int rnb_gpio; int rnb_gpio[NAND_MAX_CHIPS];
uint32_t mchip_offsets[NAND_MAX_CHIPS];
uint32_t mchip_count;
uint32_t mchip_number;
int chip_delay; int chip_delay;
}; };
@ -46,7 +49,7 @@ static int fun_chip_ready(struct mtd_info *mtd)
{ {
struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
if (gpio_get_value(fun->rnb_gpio)) if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
return 1; return 1;
dev_vdbg(fun->dev, "busy\n"); dev_vdbg(fun->dev, "busy\n");
@ -55,9 +58,9 @@ static int fun_chip_ready(struct mtd_info *mtd)
static void fun_wait_rnb(struct fsl_upm_nand *fun) static void fun_wait_rnb(struct fsl_upm_nand *fun)
{ {
if (fun->rnb_gpio[fun->mchip_number] >= 0) {
int cnt = 1000000; int cnt = 1000000;
if (fun->rnb_gpio >= 0) {
while (--cnt && !fun_chip_ready(&fun->mtd)) while (--cnt && !fun_chip_ready(&fun->mtd))
cpu_relax(); cpu_relax();
if (!cnt) if (!cnt)
@ -69,7 +72,9 @@ static void fun_wait_rnb(struct fsl_upm_nand *fun)
static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{ {
struct nand_chip *chip = mtd->priv;
struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
u32 mar;
if (!(ctrl & fun->last_ctrl)) { if (!(ctrl & fun->last_ctrl)) {
fsl_upm_end_pattern(&fun->upm); fsl_upm_end_pattern(&fun->upm);
@ -87,11 +92,29 @@ static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
} }
fsl_upm_run_pattern(&fun->upm, fun->io_base, cmd); mar = (cmd << (32 - fun->upm.width)) |
fun->mchip_offsets[fun->mchip_number];
fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
fun_wait_rnb(fun); fun_wait_rnb(fun);
} }
static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
{
struct nand_chip *chip = mtd->priv;
struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
if (mchip_nr == -1) {
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
} else if (mchip_nr >= 0) {
fun->mchip_number = mchip_nr;
chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
chip->IO_ADDR_W = chip->IO_ADDR_R;
} else {
BUG();
}
}
static uint8_t fun_read_byte(struct mtd_info *mtd) static uint8_t fun_read_byte(struct mtd_info *mtd)
{ {
struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
@ -137,8 +160,10 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun,
fun->chip.read_buf = fun_read_buf; fun->chip.read_buf = fun_read_buf;
fun->chip.write_buf = fun_write_buf; fun->chip.write_buf = fun_write_buf;
fun->chip.ecc.mode = NAND_ECC_SOFT; fun->chip.ecc.mode = NAND_ECC_SOFT;
if (fun->mchip_count > 1)
fun->chip.select_chip = fun_select_chip;
if (fun->rnb_gpio >= 0) if (fun->rnb_gpio[0] >= 0)
fun->chip.dev_ready = fun_chip_ready; fun->chip.dev_ready = fun_chip_ready;
fun->mtd.priv = &fun->chip; fun->mtd.priv = &fun->chip;
@ -155,7 +180,7 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun,
goto err; goto err;
} }
ret = nand_scan(&fun->mtd, 1); ret = nand_scan(&fun->mtd, fun->mchip_count);
if (ret) if (ret)
goto err; goto err;
@ -185,8 +210,10 @@ static int __devinit fun_probe(struct of_device *ofdev,
struct fsl_upm_nand *fun; struct fsl_upm_nand *fun;
struct resource io_res; struct resource io_res;
const uint32_t *prop; const uint32_t *prop;
int rnb_gpio;
int ret; int ret;
int size; int size;
int i;
fun = kzalloc(sizeof(*fun), GFP_KERNEL); fun = kzalloc(sizeof(*fun), GFP_KERNEL);
if (!fun) if (!fun)
@ -208,7 +235,7 @@ static int __devinit fun_probe(struct of_device *ofdev,
if (!prop || size != sizeof(uint32_t)) { if (!prop || size != sizeof(uint32_t)) {
dev_err(&ofdev->dev, "can't get UPM address offset\n"); dev_err(&ofdev->dev, "can't get UPM address offset\n");
ret = -EINVAL; ret = -EINVAL;
goto err2; goto err1;
} }
fun->upm_addr_offset = *prop; fun->upm_addr_offset = *prop;
@ -216,22 +243,41 @@ static int __devinit fun_probe(struct of_device *ofdev,
if (!prop || size != sizeof(uint32_t)) { if (!prop || size != sizeof(uint32_t)) {
dev_err(&ofdev->dev, "can't get UPM command offset\n"); dev_err(&ofdev->dev, "can't get UPM command offset\n");
ret = -EINVAL; ret = -EINVAL;
goto err2; goto err1;
} }
fun->upm_cmd_offset = *prop; fun->upm_cmd_offset = *prop;
fun->rnb_gpio = of_get_gpio(ofdev->node, 0); prop = of_get_property(ofdev->node,
if (fun->rnb_gpio >= 0) { "fsl,upm-addr-line-cs-offsets", &size);
ret = gpio_request(fun->rnb_gpio, dev_name(&ofdev->dev)); if (prop && (size / sizeof(uint32_t)) > 0) {
fun->mchip_count = size / sizeof(uint32_t);
if (fun->mchip_count >= NAND_MAX_CHIPS) {
dev_err(&ofdev->dev, "too much multiple chips\n");
goto err1;
}
for (i = 0; i < fun->mchip_count; i++)
fun->mchip_offsets[i] = prop[i];
} else {
fun->mchip_count = 1;
}
for (i = 0; i < fun->mchip_count; i++) {
fun->rnb_gpio[i] = -1;
rnb_gpio = of_get_gpio(ofdev->node, i);
if (rnb_gpio >= 0) {
ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
if (ret) { if (ret) {
dev_err(&ofdev->dev, "can't request RNB gpio\n"); dev_err(&ofdev->dev,
"can't request RNB gpio #%d\n", i);
goto err2; goto err2;
} }
gpio_direction_input(fun->rnb_gpio); gpio_direction_input(rnb_gpio);
} else if (fun->rnb_gpio == -EINVAL) { fun->rnb_gpio[i] = rnb_gpio;
dev_err(&ofdev->dev, "specified RNB gpio is invalid\n"); } else if (rnb_gpio == -EINVAL) {
dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
goto err2; goto err2;
} }
}
prop = of_get_property(ofdev->node, "chip-delay", NULL); prop = of_get_property(ofdev->node, "chip-delay", NULL);
if (prop) if (prop)
@ -257,8 +303,11 @@ static int __devinit fun_probe(struct of_device *ofdev,
return 0; return 0;
err2: err2:
if (fun->rnb_gpio >= 0) for (i = 0; i < fun->mchip_count; i++) {
gpio_free(fun->rnb_gpio); if (fun->rnb_gpio[i] < 0)
break;
gpio_free(fun->rnb_gpio[i]);
}
err1: err1:
kfree(fun); kfree(fun);
@ -268,12 +317,16 @@ err1:
static int __devexit fun_remove(struct of_device *ofdev) static int __devexit fun_remove(struct of_device *ofdev)
{ {
struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
int i;
nand_release(&fun->mtd); nand_release(&fun->mtd);
kfree(fun->mtd.name); kfree(fun->mtd.name);
if (fun->rnb_gpio >= 0) for (i = 0; i < fun->mchip_count; i++) {
gpio_free(fun->rnb_gpio); if (fun->rnb_gpio[i] < 0)
break;
gpio_free(fun->rnb_gpio[i]);
}
kfree(fun); kfree(fun);