[PATCH] ARM: Convert ARM timer implementations to use readl/writel
Convert ARMs timer implementations to use readl/writel instead of accessing the registers via a struct. People have recently asked if accessing timers via a structure is the "right way" and its not the Linux way. So fix this code to conform to "The Linux Way"(tm). Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
Родитель
6904b2465c
Коммит
b720f73296
|
@ -20,6 +20,7 @@
|
|||
#include <asm/irq.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/hardware/amba.h>
|
||||
#include <asm/hardware/arm_timer.h>
|
||||
#include <asm/arch/cm.h>
|
||||
#include <asm/system.h>
|
||||
#include <asm/leds.h>
|
||||
|
@ -156,16 +157,6 @@ EXPORT_SYMBOL(cm_control);
|
|||
#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* What does it look like?
|
||||
*/
|
||||
typedef struct TimerStruct {
|
||||
unsigned long TimerLoad;
|
||||
unsigned long TimerValue;
|
||||
unsigned long TimerControl;
|
||||
unsigned long TimerClear;
|
||||
} TimerStruct_t;
|
||||
|
||||
static unsigned long timer_reload;
|
||||
|
||||
/*
|
||||
|
@ -174,7 +165,6 @@ static unsigned long timer_reload;
|
|||
*/
|
||||
unsigned long integrator_gettimeoffset(void)
|
||||
{
|
||||
volatile TimerStruct_t *timer1 = (TimerStruct_t *)TIMER1_VA_BASE;
|
||||
unsigned long ticks1, ticks2, status;
|
||||
|
||||
/*
|
||||
|
@ -183,11 +173,11 @@ unsigned long integrator_gettimeoffset(void)
|
|||
* an interrupt. We get around this by ensuring that the
|
||||
* counter has not reloaded between our two reads.
|
||||
*/
|
||||
ticks2 = timer1->TimerValue & 0xffff;
|
||||
ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
|
||||
do {
|
||||
ticks1 = ticks2;
|
||||
status = __raw_readl(VA_IC_BASE + IRQ_RAW_STATUS);
|
||||
ticks2 = timer1->TimerValue & 0xffff;
|
||||
ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
|
||||
} while (ticks2 > ticks1);
|
||||
|
||||
/*
|
||||
|
@ -213,20 +203,19 @@ unsigned long integrator_gettimeoffset(void)
|
|||
static irqreturn_t
|
||||
integrator_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
||||
{
|
||||
volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
|
||||
|
||||
write_seqlock(&xtime_lock);
|
||||
|
||||
/*
|
||||
* clear the interrupt
|
||||
*/
|
||||
timer1->TimerClear = 1;
|
||||
writel(1, TIMER1_VA_BASE + TIMER_INTCLR);
|
||||
|
||||
/*
|
||||
* the clock tick routines are only processed on the
|
||||
* primary CPU
|
||||
*/
|
||||
if (hard_smp_processor_id() == 0) {
|
||||
nmi_tick();
|
||||
timer_tick(regs);
|
||||
#ifdef CONFIG_SMP
|
||||
smp_send_timer();
|
||||
|
@ -256,32 +245,29 @@ static struct irqaction integrator_timer_irq = {
|
|||
*/
|
||||
void __init integrator_time_init(unsigned long reload, unsigned int ctrl)
|
||||
{
|
||||
volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
|
||||
volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
|
||||
volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
|
||||
unsigned int timer_ctrl = 0x80 | 0x40; /* periodic */
|
||||
unsigned int timer_ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
|
||||
|
||||
timer_reload = reload;
|
||||
timer_ctrl |= ctrl;
|
||||
|
||||
if (timer_reload > 0x100000) {
|
||||
timer_reload >>= 8;
|
||||
timer_ctrl |= 0x08; /* /256 */
|
||||
timer_ctrl |= TIMER_CTRL_DIV256;
|
||||
} else if (timer_reload > 0x010000) {
|
||||
timer_reload >>= 4;
|
||||
timer_ctrl |= 0x04; /* /16 */
|
||||
timer_ctrl |= TIMER_CTRL_DIV16;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialise to a known state (all timers off)
|
||||
*/
|
||||
timer0->TimerControl = 0;
|
||||
timer1->TimerControl = 0;
|
||||
timer2->TimerControl = 0;
|
||||
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
|
||||
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
|
||||
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
|
||||
|
||||
timer1->TimerLoad = timer_reload;
|
||||
timer1->TimerValue = timer_reload;
|
||||
timer1->TimerControl = timer_ctrl;
|
||||
writel(timer_reload, TIMER1_VA_BASE + TIMER_LOAD);
|
||||
writel(timer_reload, TIMER1_VA_BASE + TIMER_VALUE);
|
||||
writel(timer_ctrl, TIMER1_VA_BASE + TIMER_CTRL);
|
||||
|
||||
/*
|
||||
* Make irqs happen for the system timer
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include <asm/mach-types.h>
|
||||
#include <asm/hardware/amba.h>
|
||||
#include <asm/hardware/amba_clcd.h>
|
||||
#include <asm/hardware/arm_timer.h>
|
||||
#include <asm/hardware/icst307.h>
|
||||
|
||||
#include <asm/mach/arch.h>
|
||||
|
@ -788,38 +789,25 @@ void __init versatile_init(void)
|
|||
*/
|
||||
#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
|
||||
#if TIMER_INTERVAL >= 0x100000
|
||||
#define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
|
||||
#define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
|
||||
#define TIMER_RELOAD (TIMER_INTERVAL >> 8)
|
||||
#define TIMER_DIVISOR (TIMER_CTRL_DIV256)
|
||||
#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
|
||||
#elif TIMER_INTERVAL >= 0x10000
|
||||
#define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
|
||||
#define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
|
||||
#define TIMER_DIVISOR (TIMER_CTRL_DIV16)
|
||||
#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
|
||||
#else
|
||||
#define TIMER_RELOAD (TIMER_INTERVAL)
|
||||
#define TIMER_CTRL 0x80 /* Enable */
|
||||
#define TIMER_DIVISOR (TIMER_CTRL_DIV1)
|
||||
#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
|
||||
#endif
|
||||
|
||||
#define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
|
||||
|
||||
/*
|
||||
* What does it look like?
|
||||
*/
|
||||
typedef struct TimerStruct {
|
||||
unsigned long TimerLoad;
|
||||
unsigned long TimerValue;
|
||||
unsigned long TimerControl;
|
||||
unsigned long TimerClear;
|
||||
} TimerStruct_t;
|
||||
|
||||
/*
|
||||
* Returns number of ms since last clock interrupt. Note that interrupts
|
||||
* will have been disabled by do_gettimeoffset()
|
||||
*/
|
||||
static unsigned long versatile_gettimeoffset(void)
|
||||
{
|
||||
volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
|
||||
unsigned long ticks1, ticks2, status;
|
||||
|
||||
/*
|
||||
|
@ -828,11 +816,11 @@ static unsigned long versatile_gettimeoffset(void)
|
|||
* an interrupt. We get around this by ensuring that the
|
||||
* counter has not reloaded between our two reads.
|
||||
*/
|
||||
ticks2 = timer0->TimerValue & 0xffff;
|
||||
ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
|
||||
do {
|
||||
ticks1 = ticks2;
|
||||
status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
|
||||
ticks2 = timer0->TimerValue & 0xffff;
|
||||
ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
|
||||
} while (ticks2 > ticks1);
|
||||
|
||||
/*
|
||||
|
@ -859,12 +847,10 @@ static unsigned long versatile_gettimeoffset(void)
|
|||
*/
|
||||
static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
||||
{
|
||||
volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
|
||||
|
||||
write_seqlock(&xtime_lock);
|
||||
|
||||
// ...clear the interrupt
|
||||
timer0->TimerClear = 1;
|
||||
writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
|
||||
|
||||
timer_tick(regs);
|
||||
|
||||
|
@ -884,31 +870,32 @@ static struct irqaction versatile_timer_irq = {
|
|||
*/
|
||||
static void __init versatile_timer_init(void)
|
||||
{
|
||||
volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
|
||||
volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
|
||||
volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
|
||||
volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
|
||||
u32 val;
|
||||
|
||||
/*
|
||||
* set clock frequency:
|
||||
* VERSATILE_REFCLK is 32KHz
|
||||
* VERSATILE_TIMCLK is 1MHz
|
||||
*/
|
||||
*(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
|
||||
((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
|
||||
(VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
|
||||
val = readl(IO_ADDRESS(VERSATILE_SCTL_BASE));
|
||||
writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
|
||||
(VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
|
||||
(VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
|
||||
(VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
|
||||
IO_ADDRESS(VERSATILE_SCTL_BASE));
|
||||
|
||||
/*
|
||||
* Initialise to a known state (all timers off)
|
||||
*/
|
||||
timer0->TimerControl = 0;
|
||||
timer1->TimerControl = 0;
|
||||
timer2->TimerControl = 0;
|
||||
timer3->TimerControl = 0;
|
||||
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
|
||||
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
|
||||
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
|
||||
writel(0, TIMER3_VA_BASE + TIMER_CTRL);
|
||||
|
||||
timer0->TimerLoad = TIMER_RELOAD;
|
||||
timer0->TimerValue = TIMER_RELOAD;
|
||||
timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
|
||||
writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
|
||||
writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
|
||||
writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
|
||||
TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
|
||||
|
||||
/*
|
||||
* Make irqs happen for the system timer
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
#ifndef __ASM_ARM_HARDWARE_ARM_TIMER_H
|
||||
#define __ASM_ARM_HARDWARE_ARM_TIMER_H
|
||||
|
||||
#define TIMER_LOAD 0x00
|
||||
#define TIMER_VALUE 0x04
|
||||
#define TIMER_CTRL 0x08
|
||||
#define TIMER_CTRL_ONESHOT (1 << 0)
|
||||
#define TIMER_CTRL_32BIT (1 << 1)
|
||||
#define TIMER_CTRL_DIV1 (0 << 2)
|
||||
#define TIMER_CTRL_DIV16 (1 << 2)
|
||||
#define TIMER_CTRL_DIV256 (2 << 2)
|
||||
#define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable (versatile only) */
|
||||
#define TIMER_CTRL_PERIODIC (1 << 6)
|
||||
#define TIMER_CTRL_ENABLE (1 << 7)
|
||||
|
||||
#define TIMER_INTCLR 0x0c
|
||||
#define TIMER_RIS 0x10
|
||||
#define TIMER_MIS 0x14
|
||||
#define TIMER_BGLOAD 0x18
|
||||
|
||||
#endif
|
Загрузка…
Ссылка в новой задаче