Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  rcu: Fix whitespace inconsistencies
  rcu: Fix thinko, actually initialize full tree
  rcu: Apply results of code inspection of kernel/rcutree_plugin.h
  rcu: Add WARN_ON_ONCE() consistency checks covering state transitions
  rcu: Fix synchronize_rcu() for TREE_PREEMPT_RCU
  rcu: Simplify rcu_read_unlock_special() quiescent-state accounting
  rcu: Add debug checks to TREE_PREEMPT_RCU for premature grace periods
  rcu: Kconfig help needs to say that TREE_PREEMPT_RCU scales down
  rcutorture: Occasionally delay readers enough to make RCU force_quiescent_state
  rcu: Initialize multi-level RCU grace periods holding locks
  rcu: Need to update rnp->gpnum if preemptable RCU is to be reliable
This commit is contained in:
Linus Torvalds 2009-09-21 09:06:52 -07:00
Родитель f4eccb6d97 a71fca58b7
Коммит b8c7f1dc5c
11 изменённых файлов: 195 добавлений и 156 удалений

Просмотреть файл

@ -102,7 +102,7 @@ static inline void hlist_nulls_add_head_rcu(struct hlist_nulls_node *n,
*/
#define hlist_nulls_for_each_entry_rcu(tpos, pos, head, member) \
for (pos = rcu_dereference((head)->first); \
(!is_a_nulls(pos)) && \
(!is_a_nulls(pos)) && \
({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1; }); \
pos = rcu_dereference(pos->next))

Просмотреть файл

@ -1,5 +1,5 @@
/*
* Read-Copy Update mechanism for mutual exclusion
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -18,7 +18,7 @@
* Copyright IBM Corporation, 2001
*
* Author: Dipankar Sarma <dipankar@in.ibm.com>
*
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
@ -26,7 +26,7 @@
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
@ -52,8 +52,13 @@ struct rcu_head {
};
/* Exported common interfaces */
#ifdef CONFIG_TREE_PREEMPT_RCU
extern void synchronize_rcu(void);
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#define synchronize_rcu synchronize_sched
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
extern void synchronize_rcu_bh(void);
extern void synchronize_sched(void);
extern void rcu_barrier(void);
extern void rcu_barrier_bh(void);
extern void rcu_barrier_sched(void);
@ -261,24 +266,6 @@ struct rcu_synchronize {
extern void wakeme_after_rcu(struct rcu_head *head);
/**
* synchronize_sched - block until all CPUs have exited any non-preemptive
* kernel code sequences.
*
* This means that all preempt_disable code sequences, including NMI and
* hardware-interrupt handlers, in progress on entry will have completed
* before this primitive returns. However, this does not guarantee that
* softirq handlers will have completed, since in some kernels, these
* handlers can run in process context, and can block.
*
* This primitive provides the guarantees made by the (now removed)
* synchronize_kernel() API. In contrast, synchronize_rcu() only
* guarantees that rcu_read_lock() sections will have completed.
* In "classic RCU", these two guarantees happen to be one and
* the same, but can differ in realtime RCU implementations.
*/
#define synchronize_sched() __synchronize_sched()
/**
* call_rcu - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.

Просмотреть файл

@ -24,7 +24,7 @@
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
* Documentation/RCU
*/
#ifndef __LINUX_RCUTREE_H
@ -53,6 +53,8 @@ static inline void __rcu_read_unlock(void)
preempt_enable();
}
#define __synchronize_sched() synchronize_rcu()
static inline void exit_rcu(void)
{
}
@ -68,8 +70,6 @@ static inline void __rcu_read_unlock_bh(void)
local_bh_enable();
}
#define __synchronize_sched() synchronize_rcu()
extern void call_rcu_sched(struct rcu_head *head,
void (*func)(struct rcu_head *rcu));

Просмотреть файл

@ -1755,7 +1755,6 @@ extern cputime_t task_gtime(struct task_struct *p);
#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
#define RCU_READ_UNLOCK_GOT_QS (1 << 2) /* CPU has responded to RCU core. */
static inline void rcu_copy_process(struct task_struct *p)
{

Просмотреть файл

@ -331,7 +331,8 @@ config TREE_PREEMPT_RCU
This option selects the RCU implementation that is
designed for very large SMP systems with hundreds or
thousands of CPUs, but for which real-time response
is also required.
is also required. It also scales down nicely to
smaller systems.
endchoice

Просмотреть файл

@ -19,7 +19,7 @@
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
*
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
@ -27,7 +27,7 @@
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#include <linux/types.h>
@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head)
complete(&rcu->completion);
}
#ifdef CONFIG_TREE_PREEMPT_RCU
/**
* synchronize_rcu - wait until a grace period has elapsed.
*
@ -87,7 +89,7 @@ void synchronize_rcu(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
if (!rcu_scheduler_active)
return;
init_completion(&rcu.completion);
@ -98,6 +100,46 @@ void synchronize_rcu(void)
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
/**
* synchronize_sched - wait until an rcu-sched grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-sched
* grace period has elapsed, in other words after all currently executing
* rcu-sched read-side critical sections have completed. These read-side
* critical sections are delimited by rcu_read_lock_sched() and
* rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
* local_irq_disable(), and so on may be used in place of
* rcu_read_lock_sched().
*
* This means that all preempt_disable code sequences, including NMI and
* hardware-interrupt handlers, in progress on entry will have completed
* before this primitive returns. However, this does not guarantee that
* softirq handlers will have completed, since in some kernels, these
* handlers can run in process context, and can block.
*
* This primitive provides the guarantees made by the (now removed)
* synchronize_kernel() API. In contrast, synchronize_rcu() only
* guarantees that rcu_read_lock() sections will have completed.
* In "classic RCU", these two guarantees happen to be one and
* the same, but can differ in realtime RCU implementations.
*/
void synchronize_sched(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_sched);
/**
* synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
*

Просмотреть файл

@ -18,7 +18,7 @@
* Copyright (C) IBM Corporation, 2005, 2006
*
* Authors: Paul E. McKenney <paulmck@us.ibm.com>
* Josh Triplett <josh@freedesktop.org>
* Josh Triplett <josh@freedesktop.org>
*
* See also: Documentation/RCU/torture.txt
*/
@ -50,7 +50,7 @@
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and "
"Josh Triplett <josh@freedesktop.org>");
"Josh Triplett <josh@freedesktop.org>");
static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */
static int nfakewriters = 4; /* # fake writer threads */
@ -110,8 +110,8 @@ struct rcu_torture {
};
static LIST_HEAD(rcu_torture_freelist);
static struct rcu_torture *rcu_torture_current = NULL;
static long rcu_torture_current_version = 0;
static struct rcu_torture *rcu_torture_current;
static long rcu_torture_current_version;
static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN];
static DEFINE_SPINLOCK(rcu_torture_lock);
static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) =
@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail;
static atomic_t n_rcu_torture_free;
static atomic_t n_rcu_torture_mberror;
static atomic_t n_rcu_torture_error;
static long n_rcu_torture_timers = 0;
static long n_rcu_torture_timers;
static struct list_head rcu_torture_removed;
static cpumask_var_t shuffle_tmp_mask;
static int stutter_pause_test = 0;
static int stutter_pause_test;
#if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE)
#define RCUTORTURE_RUNNABLE_INIT 1
@ -267,7 +267,8 @@ struct rcu_torture_ops {
int irq_capable;
char *name;
};
static struct rcu_torture_ops *cur_ops = NULL;
static struct rcu_torture_ops *cur_ops;
/*
* Definitions for rcu torture testing.
@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU)
static void rcu_read_delay(struct rcu_random_state *rrsp)
{
long delay;
const long longdelay = 200;
const unsigned long shortdelay_us = 200;
const unsigned long longdelay_ms = 50;
/* We want there to be long-running readers, but not all the time. */
/* We want a short delay sometimes to make a reader delay the grace
* period, and we want a long delay occasionally to trigger
* force_quiescent_state. */
delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay);
if (!delay)
udelay(longdelay);
if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms)))
mdelay(longdelay_ms);
if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us)))
udelay(shortdelay_us);
}
static void rcu_torture_read_unlock(int idx) __releases(RCU)
@ -339,8 +343,8 @@ static struct rcu_torture_ops rcu_ops = {
.sync = synchronize_rcu,
.cb_barrier = rcu_barrier,
.stats = NULL,
.irq_capable = 1,
.name = "rcu"
.irq_capable = 1,
.name = "rcu"
};
static void rcu_sync_torture_deferred_free(struct rcu_torture *p)
@ -638,7 +642,8 @@ rcu_torture_writer(void *arg)
do {
schedule_timeout_uninterruptible(1);
if ((rp = rcu_torture_alloc()) == NULL)
rp = rcu_torture_alloc();
if (rp == NULL)
continue;
rp->rtort_pipe_count = 0;
udelay(rcu_random(&rand) & 0x3ff);
@ -1110,7 +1115,7 @@ rcu_torture_init(void)
printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n",
torture_type);
mutex_unlock(&fullstop_mutex);
return (-EINVAL);
return -EINVAL;
}
if (cur_ops->init)
cur_ops->init(); /* no "goto unwind" prior to this point!!! */
@ -1161,7 +1166,7 @@ rcu_torture_init(void)
goto unwind;
}
fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]),
GFP_KERNEL);
GFP_KERNEL);
if (fakewriter_tasks == NULL) {
VERBOSE_PRINTK_ERRSTRING("out of memory");
firsterr = -ENOMEM;
@ -1170,7 +1175,7 @@ rcu_torture_init(void)
for (i = 0; i < nfakewriters; i++) {
VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task");
fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL,
"rcu_torture_fakewriter");
"rcu_torture_fakewriter");
if (IS_ERR(fakewriter_tasks[i])) {
firsterr = PTR_ERR(fakewriter_tasks[i]);
VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter");

Просмотреть файл

@ -25,7 +25,7 @@
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
* Documentation/RCU
*/
#include <linux/types.h>
#include <linux/kernel.h>
@ -107,27 +107,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
*/
void rcu_sched_qs(int cpu)
{
unsigned long flags;
struct rcu_data *rdp;
local_irq_save(flags);
rdp = &per_cpu(rcu_sched_data, cpu);
rdp->passed_quiesc = 1;
rdp->passed_quiesc_completed = rdp->completed;
rcu_preempt_qs(cpu);
local_irq_restore(flags);
barrier();
rdp->passed_quiesc = 1;
rcu_preempt_note_context_switch(cpu);
}
void rcu_bh_qs(int cpu)
{
unsigned long flags;
struct rcu_data *rdp;
local_irq_save(flags);
rdp = &per_cpu(rcu_bh_data, cpu);
rdp->passed_quiesc = 1;
rdp->passed_quiesc_completed = rdp->completed;
local_irq_restore(flags);
barrier();
rdp->passed_quiesc = 1;
}
#ifdef CONFIG_NO_HZ
@ -605,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
{
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
struct rcu_node *rnp = rcu_get_root(rsp);
struct rcu_node *rnp_cur;
struct rcu_node *rnp_end;
if (!cpu_needs_another_gp(rsp, rdp)) {
spin_unlock_irqrestore(&rnp->lock, flags);
@ -615,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
/* Advance to a new grace period and initialize state. */
rsp->gpnum++;
WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
record_gp_stall_check_time(rsp);
@ -631,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
/* Special-case the common single-level case. */
if (NUM_RCU_NODES == 1) {
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
spin_unlock_irqrestore(&rnp->lock, flags);
return;
@ -644,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
spin_lock(&rsp->onofflock); /* irqs already disabled. */
/*
* Set the quiescent-state-needed bits in all the non-leaf RCU
* nodes for all currently online CPUs. This operation relies
* on the layout of the hierarchy within the rsp->node[] array.
* Note that other CPUs will access only the leaves of the
* hierarchy, which still indicate that no grace period is in
* progress. In addition, we have excluded CPU-hotplug operations.
*
* We therefore do not need to hold any locks. Any required
* memory barriers will be supplied by the locks guarding the
* leaf rcu_nodes in the hierarchy.
*/
rnp_end = rsp->level[NUM_RCU_LVLS - 1];
for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
rnp_cur->qsmask = rnp_cur->qsmaskinit;
/*
* Now set up the leaf nodes. Here we must be careful. First,
* we need to hold the lock in order to exclude other CPUs, which
* might be contending for the leaf nodes' locks. Second, as
* soon as we initialize a given leaf node, its CPUs might run
* up the rest of the hierarchy. We must therefore acquire locks
* for each node that we touch during this stage. (But we still
* are excluding CPU-hotplug operations.)
* Set the quiescent-state-needed bits in all the rcu_node
* structures for all currently online CPUs in breadth-first
* order, starting from the root rcu_node structure. This
* operation relies on the layout of the hierarchy within the
* rsp->node[] array. Note that other CPUs will access only
* the leaves of the hierarchy, which still indicate that no
* grace period is in progress, at least until the corresponding
* leaf node has been initialized. In addition, we have excluded
* CPU-hotplug operations.
*
* Note that the grace period cannot complete until we finish
* the initialization process, as there will be at least one
* qsmask bit set in the root node until that time, namely the
* one corresponding to this CPU.
* one corresponding to this CPU, due to the fact that we have
* irqs disabled.
*/
rnp_end = &rsp->node[NUM_RCU_NODES];
rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
for (; rnp_cur < rnp_end; rnp_cur++) {
spin_lock(&rnp_cur->lock); /* irqs already disabled. */
rnp_cur->qsmask = rnp_cur->qsmaskinit;
spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) {
spin_lock(&rnp->lock); /* irqs already disabled. */
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
spin_unlock(&rnp->lock); /* irqs already disabled. */
}
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
@ -722,6 +705,7 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
__releases(rnp->lock)
{
WARN_ON_ONCE(rsp->completed == rsp->gpnum);
rsp->completed = rsp->gpnum;
rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
@ -739,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
unsigned long flags)
__releases(rnp->lock)
{
struct rcu_node *rnp_c;
/* Walk up the rcu_node hierarchy. */
for (;;) {
if (!(rnp->qsmask & mask)) {
@ -762,8 +748,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
break;
}
spin_unlock_irqrestore(&rnp->lock, flags);
rnp_c = rnp;
rnp = rnp->parent;
spin_lock_irqsave(&rnp->lock, flags);
WARN_ON_ONCE(rnp_c->qsmask);
}
/*
@ -776,10 +764,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
/*
* Record a quiescent state for the specified CPU, which must either be
* the current CPU or an offline CPU. The lastcomp argument is used to
* make sure we are still in the grace period of interest. We don't want
* to end the current grace period based on quiescent states detected in
* an earlier grace period!
* the current CPU. The lastcomp argument is used to make sure we are
* still in the grace period of interest. We don't want to end the current
* grace period based on quiescent states detected in an earlier grace
* period!
*/
static void
cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
@ -814,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
* This GP can't end until cpu checks in, so all of our
* callbacks can be processed during the next GP.
*/
rdp = rsp->rda[smp_processor_id()];
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
@ -872,7 +859,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
spin_lock_irqsave(&rsp->onofflock, flags);
/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
rnp = rdp->mynode;
rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
mask = rdp->grpmask; /* rnp->grplo is constant. */
do {
spin_lock(&rnp->lock); /* irqs already disabled. */
@ -881,7 +868,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
spin_unlock(&rnp->lock); /* irqs remain disabled. */
break;
}
rcu_preempt_offline_tasks(rsp, rnp);
rcu_preempt_offline_tasks(rsp, rnp, rdp);
mask = rnp->grpmask;
spin_unlock(&rnp->lock); /* irqs remain disabled. */
rnp = rnp->parent;
@ -890,9 +877,6 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
/* Being offline is a quiescent state, so go record it. */
cpu_quiet(cpu, rsp, rdp, lastcomp);
/*
* Move callbacks from the outgoing CPU to the running CPU.
* Note that the outgoing CPU is now quiscent, so it is now
@ -1457,20 +1441,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
rnp = rnp->parent;
} while (rnp != NULL && !(rnp->qsmaskinit & mask));
spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
/*
* A new grace period might start here. If so, we will be part of
* it, and its gpnum will be greater than ours, so we will
* participate. It is also possible for the gpnum to have been
* incremented before this function was called, and the bitmasks
* to not be filled out until now, in which case we will also
* participate due to our gpnum being behind.
*/
/* Since it is coming online, the CPU is in a quiescent state. */
cpu_quiet(cpu, rsp, rdp, lastcomp);
local_irq_restore(flags);
spin_unlock_irqrestore(&rsp->onofflock, flags);
}
static void __cpuinit rcu_online_cpu(int cpu)

Просмотреть файл

@ -142,7 +142,7 @@ struct rcu_data {
*/
struct rcu_head *nxtlist;
struct rcu_head **nxttail[RCU_NEXT_SIZE];
long qlen; /* # of queued callbacks */
long qlen; /* # of queued callbacks */
long blimit; /* Upper limit on a processed batch */
#ifdef CONFIG_NO_HZ

Просмотреть файл

@ -64,22 +64,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed);
* not in a quiescent state. There might be any number of tasks blocked
* while in an RCU read-side critical section.
*/
static void rcu_preempt_qs_record(int cpu)
static void rcu_preempt_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
rdp->passed_quiesc = 1;
rdp->passed_quiesc_completed = rdp->completed;
barrier();
rdp->passed_quiesc = 1;
}
/*
* We have entered the scheduler or are between softirqs in ksoftirqd.
* If we are in an RCU read-side critical section, we need to reflect
* that in the state of the rcu_node structure corresponding to this CPU.
* Caller must disable hardirqs.
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the appropriate entry
* of the blocked_tasks[] array. The task will dequeue itself when
* it exits the outermost enclosing RCU read-side critical section.
* Therefore, the current grace period cannot be permitted to complete
* until the blocked_tasks[] entry indexed by the low-order bit of
* rnp->gpnum empties.
*
* Caller must disable preemption.
*/
static void rcu_preempt_qs(int cpu)
static void rcu_preempt_note_context_switch(int cpu)
{
struct task_struct *t = current;
unsigned long flags;
int phase;
struct rcu_data *rdp;
struct rcu_node *rnp;
@ -90,7 +99,7 @@ static void rcu_preempt_qs(int cpu)
/* Possibly blocking in an RCU read-side critical section. */
rdp = rcu_preempt_state.rda[cpu];
rnp = rdp->mynode;
spin_lock(&rnp->lock);
spin_lock_irqsave(&rnp->lock, flags);
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
t->rcu_blocked_node = rnp;
@ -103,11 +112,15 @@ static void rcu_preempt_qs(int cpu)
* state for the current grace period), then as long
* as that task remains queued, the current grace period
* cannot end.
*
* But first, note that the current CPU must still be
* on line!
*/
phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
smp_mb(); /* Ensure later ctxt swtch seen after above. */
spin_unlock(&rnp->lock);
spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
@ -119,9 +132,10 @@ static void rcu_preempt_qs(int cpu)
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
rcu_preempt_qs_record(cpu);
t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
RCU_READ_UNLOCK_GOT_QS);
rcu_preempt_qs(cpu);
local_irq_save(flags);
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
local_irq_restore(flags);
}
/*
@ -157,7 +171,7 @@ static void rcu_read_unlock_special(struct task_struct *t)
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
rcu_preempt_qs(smp_processor_id());
}
/* Hardware IRQ handlers cannot block. */
@ -177,10 +191,10 @@ static void rcu_read_unlock_special(struct task_struct *t)
*/
for (;;) {
rnp = t->rcu_blocked_node;
spin_lock(&rnp->lock);
spin_lock(&rnp->lock); /* irqs already disabled. */
if (rnp == t->rcu_blocked_node)
break;
spin_unlock(&rnp->lock);
spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
list_del_init(&t->rcu_node_entry);
@ -194,9 +208,8 @@ static void rcu_read_unlock_special(struct task_struct *t)
*/
if (!empty && rnp->qsmask == 0 &&
list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
t->rcu_read_unlock_special &=
~(RCU_READ_UNLOCK_NEED_QS |
RCU_READ_UNLOCK_GOT_QS);
struct rcu_node *rnp_p;
if (rnp->parent == NULL) {
/* Only one rcu_node in the tree. */
cpu_quiet_msk_finish(&rcu_preempt_state, flags);
@ -205,9 +218,10 @@ static void rcu_read_unlock_special(struct task_struct *t)
/* Report up the rest of the hierarchy. */
mask = rnp->grpmask;
spin_unlock_irqrestore(&rnp->lock, flags);
rnp = rnp->parent;
spin_lock_irqsave(&rnp->lock, flags);
cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
rnp_p = rnp->parent;
spin_lock_irqsave(&rnp_p->lock, flags);
WARN_ON_ONCE(rnp->qsmask);
cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
return;
}
spin_unlock(&rnp->lock);
@ -258,6 +272,19 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
* must be held by the caller.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]));
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check for preempted RCU readers for the specified rcu_node structure.
* If the caller needs a reliable answer, it must hold the rcu_node's
@ -280,7 +307,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp)
* The caller must hold rnp->lock with irqs disabled.
*/
static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp)
struct rcu_node *rnp,
struct rcu_data *rdp)
{
int i;
struct list_head *lp;
@ -292,6 +320,9 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
WARN_ONCE(1, "Last CPU thought to be offlined?");
return; /* Shouldn't happen: at least one CPU online. */
}
WARN_ON_ONCE(rnp != rdp->mynode &&
(!list_empty(&rnp->blocked_tasks[0]) ||
!list_empty(&rnp->blocked_tasks[1])));
/*
* Move tasks up to root rcu_node. Rely on the fact that the
@ -335,20 +366,12 @@ static void rcu_preempt_check_callbacks(int cpu)
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0) {
t->rcu_read_unlock_special &=
~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
rcu_preempt_qs_record(cpu);
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
rcu_preempt_qs(cpu);
return;
}
if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
rcu_preempt_qs_record(cpu);
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
} else if (!(t->rcu_read_unlock_special &
RCU_READ_UNLOCK_NEED_QS)) {
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}
}
if (per_cpu(rcu_preempt_data, cpu).qs_pending)
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}
/*
@ -434,7 +457,7 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed);
* Because preemptable RCU does not exist, we never have to check for
* CPUs being in quiescent states.
*/
static void rcu_preempt_qs(int cpu)
static void rcu_preempt_note_context_switch(int cpu)
{
}
@ -450,6 +473,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* Because there is no preemptable RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Because preemptable RCU does not exist, there are never any preempted
* RCU readers.
@ -466,7 +499,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp)
* tasks that were blocked within RCU read-side critical sections.
*/
static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp)
struct rcu_node *rnp,
struct rcu_data *rdp)
{
}

Просмотреть файл

@ -20,7 +20,7 @@
* Papers: http://www.rdrop.com/users/paulmck/RCU
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
* Documentation/RCU
*
*/
#include <linux/types.h>