Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: hrtimers: fix warning in kernel/hrtimer.c x86: make sure we really have an hpet mapping before using it x86: enable HPET on Fujitsu u9200 linux/timex.h: cleanup for userspace posix-timers: simplify de_thread()->exit_itimers() path posix-timers: check ->it_signal instead of ->it_pid to validate the timer posix-timers: use "struct pid*" instead of "struct task_struct*" nohz: suppress needless timer reprogramming clocksource, acpi_pm.c: put acpi_pm_read_slow() under CONFIG_PCI nohz: no softirq pending warnings for offline cpus hrtimer: removing all ur callback modes, fix hrtimer: removing all ur callback modes, fix hotplug hrtimer: removing all ur callback modes x86: correct link to HPET timer specification rtc-cmos: export second NVRAM bank Fixed up conflicts in sound/drivers/pcsp/pcsp.c and sound/core/hrtimer.c manually.
This commit is contained in:
Коммит
bb758e9637
|
@ -479,7 +479,7 @@ config HPET_TIMER
|
|||
The HPET provides a stable time base on SMP
|
||||
systems, unlike the TSC, but it is more expensive to access,
|
||||
as it is off-chip. You can find the HPET spec at
|
||||
<http://www.intel.com/hardwaredesign/hpetspec.htm>.
|
||||
<http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
|
||||
|
||||
You can safely choose Y here. However, HPET will only be
|
||||
activated if the platform and the BIOS support this feature.
|
||||
|
|
|
@ -813,7 +813,7 @@ int __init hpet_enable(void)
|
|||
|
||||
out_nohpet:
|
||||
hpet_clear_mapping();
|
||||
boot_hpet_disable = 1;
|
||||
hpet_address = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -836,10 +836,11 @@ static __init int hpet_late_init(void)
|
|||
|
||||
hpet_address = force_hpet_address;
|
||||
hpet_enable();
|
||||
if (!hpet_virt_address)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (!hpet_virt_address)
|
||||
return -ENODEV;
|
||||
|
||||
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
|
|
|
@ -168,6 +168,8 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_31,
|
|||
ich_force_enable_hpet);
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_1,
|
||||
ich_force_enable_hpet);
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_4,
|
||||
ich_force_enable_hpet);
|
||||
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_7,
|
||||
ich_force_enable_hpet);
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@
|
|||
/*
|
||||
* The High Precision Event Timer driver.
|
||||
* This driver is closely modelled after the rtc.c driver.
|
||||
* http://www.intel.com/hardwaredesign/hpetspec.htm
|
||||
* http://www.intel.com/hardwaredesign/hpetspec_1.pdf
|
||||
*/
|
||||
#define HPET_USER_FREQ (64)
|
||||
#define HPET_DRIFT (500)
|
||||
|
|
|
@ -57,11 +57,6 @@ u32 acpi_pm_read_verified(void)
|
|||
return v2;
|
||||
}
|
||||
|
||||
static cycle_t acpi_pm_read_slow(void)
|
||||
{
|
||||
return (cycle_t)acpi_pm_read_verified();
|
||||
}
|
||||
|
||||
static cycle_t acpi_pm_read(void)
|
||||
{
|
||||
return (cycle_t)read_pmtmr();
|
||||
|
@ -88,6 +83,11 @@ static int __init acpi_pm_good_setup(char *__str)
|
|||
}
|
||||
__setup("acpi_pm_good", acpi_pm_good_setup);
|
||||
|
||||
static cycle_t acpi_pm_read_slow(void)
|
||||
{
|
||||
return (cycle_t)acpi_pm_read_verified();
|
||||
}
|
||||
|
||||
static inline void acpi_pm_need_workaround(void)
|
||||
{
|
||||
clocksource_acpi_pm.read = acpi_pm_read_slow;
|
||||
|
|
|
@ -697,7 +697,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
|
|||
struct ads7846 *ts = container_of(handle, struct ads7846, timer);
|
||||
int status = 0;
|
||||
|
||||
spin_lock_irq(&ts->lock);
|
||||
spin_lock(&ts->lock);
|
||||
|
||||
if (unlikely(!get_pendown_state(ts) ||
|
||||
device_suspended(&ts->spi->dev))) {
|
||||
|
@ -728,7 +728,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
|
|||
dev_err(&ts->spi->dev, "spi_async --> %d\n", status);
|
||||
}
|
||||
|
||||
spin_unlock_irq(&ts->lock);
|
||||
spin_unlock(&ts->lock);
|
||||
return HRTIMER_NORESTART;
|
||||
}
|
||||
|
||||
|
|
|
@ -773,7 +773,6 @@ static int de_thread(struct task_struct *tsk)
|
|||
struct signal_struct *sig = tsk->signal;
|
||||
struct sighand_struct *oldsighand = tsk->sighand;
|
||||
spinlock_t *lock = &oldsighand->siglock;
|
||||
struct task_struct *leader = NULL;
|
||||
int count;
|
||||
|
||||
if (thread_group_empty(tsk))
|
||||
|
@ -811,7 +810,7 @@ static int de_thread(struct task_struct *tsk)
|
|||
* and to assume its PID:
|
||||
*/
|
||||
if (!thread_group_leader(tsk)) {
|
||||
leader = tsk->group_leader;
|
||||
struct task_struct *leader = tsk->group_leader;
|
||||
|
||||
sig->notify_count = -1; /* for exit_notify() */
|
||||
for (;;) {
|
||||
|
@ -863,8 +862,9 @@ static int de_thread(struct task_struct *tsk)
|
|||
|
||||
BUG_ON(leader->exit_state != EXIT_ZOMBIE);
|
||||
leader->exit_state = EXIT_DEAD;
|
||||
|
||||
write_unlock_irq(&tasklist_lock);
|
||||
|
||||
release_task(leader);
|
||||
}
|
||||
|
||||
sig->group_exit_task = NULL;
|
||||
|
@ -873,8 +873,6 @@ static int de_thread(struct task_struct *tsk)
|
|||
no_thread_group:
|
||||
exit_itimers(sig);
|
||||
flush_itimer_signals();
|
||||
if (leader)
|
||||
release_task(leader);
|
||||
|
||||
if (atomic_read(&oldsighand->count) != 1) {
|
||||
struct sighand_struct *newsighand;
|
||||
|
|
|
@ -42,26 +42,6 @@ enum hrtimer_restart {
|
|||
HRTIMER_RESTART, /* Timer must be restarted */
|
||||
};
|
||||
|
||||
/*
|
||||
* hrtimer callback modes:
|
||||
*
|
||||
* HRTIMER_CB_SOFTIRQ: Callback must run in softirq context
|
||||
* HRTIMER_CB_IRQSAFE_PERCPU: Callback must run in hardirq context
|
||||
* Special mode for tick emulation and
|
||||
* scheduler timer. Such timers are per
|
||||
* cpu and not allowed to be migrated on
|
||||
* cpu unplug.
|
||||
* HRTIMER_CB_IRQSAFE_UNLOCKED: Callback should run in hardirq context
|
||||
* with timer->base lock unlocked
|
||||
* used for timers which call wakeup to
|
||||
* avoid lock order problems with rq->lock
|
||||
*/
|
||||
enum hrtimer_cb_mode {
|
||||
HRTIMER_CB_SOFTIRQ,
|
||||
HRTIMER_CB_IRQSAFE_PERCPU,
|
||||
HRTIMER_CB_IRQSAFE_UNLOCKED,
|
||||
};
|
||||
|
||||
/*
|
||||
* Values to track state of the timer
|
||||
*
|
||||
|
@ -70,7 +50,6 @@ enum hrtimer_cb_mode {
|
|||
* 0x00 inactive
|
||||
* 0x01 enqueued into rbtree
|
||||
* 0x02 callback function running
|
||||
* 0x04 callback pending (high resolution mode)
|
||||
*
|
||||
* Special cases:
|
||||
* 0x03 callback function running and enqueued
|
||||
|
@ -92,8 +71,7 @@ enum hrtimer_cb_mode {
|
|||
#define HRTIMER_STATE_INACTIVE 0x00
|
||||
#define HRTIMER_STATE_ENQUEUED 0x01
|
||||
#define HRTIMER_STATE_CALLBACK 0x02
|
||||
#define HRTIMER_STATE_PENDING 0x04
|
||||
#define HRTIMER_STATE_MIGRATE 0x08
|
||||
#define HRTIMER_STATE_MIGRATE 0x04
|
||||
|
||||
/**
|
||||
* struct hrtimer - the basic hrtimer structure
|
||||
|
@ -109,8 +87,6 @@ enum hrtimer_cb_mode {
|
|||
* @function: timer expiry callback function
|
||||
* @base: pointer to the timer base (per cpu and per clock)
|
||||
* @state: state information (See bit values above)
|
||||
* @cb_mode: high resolution timer feature to select the callback execution
|
||||
* mode
|
||||
* @cb_entry: list head to enqueue an expired timer into the callback list
|
||||
* @start_site: timer statistics field to store the site where the timer
|
||||
* was started
|
||||
|
@ -129,7 +105,6 @@ struct hrtimer {
|
|||
struct hrtimer_clock_base *base;
|
||||
unsigned long state;
|
||||
struct list_head cb_entry;
|
||||
enum hrtimer_cb_mode cb_mode;
|
||||
#ifdef CONFIG_TIMER_STATS
|
||||
int start_pid;
|
||||
void *start_site;
|
||||
|
@ -188,15 +163,11 @@ struct hrtimer_clock_base {
|
|||
* @check_clocks: Indictator, when set evaluate time source and clock
|
||||
* event devices whether high resolution mode can be
|
||||
* activated.
|
||||
* @cb_pending: Expired timers are moved from the rbtree to this
|
||||
* list in the timer interrupt. The list is processed
|
||||
* in the softirq.
|
||||
* @nr_events: Total number of timer interrupt events
|
||||
*/
|
||||
struct hrtimer_cpu_base {
|
||||
spinlock_t lock;
|
||||
struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];
|
||||
struct list_head cb_pending;
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
ktime_t expires_next;
|
||||
int hres_active;
|
||||
|
@ -404,8 +375,7 @@ static inline int hrtimer_active(const struct hrtimer *timer)
|
|||
*/
|
||||
static inline int hrtimer_is_queued(struct hrtimer *timer)
|
||||
{
|
||||
return timer->state &
|
||||
(HRTIMER_STATE_ENQUEUED | HRTIMER_STATE_PENDING);
|
||||
return timer->state & HRTIMER_STATE_ENQUEUED;
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -251,9 +251,6 @@ enum
|
|||
BLOCK_SOFTIRQ,
|
||||
TASKLET_SOFTIRQ,
|
||||
SCHED_SOFTIRQ,
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
HRTIMER_SOFTIRQ,
|
||||
#endif
|
||||
RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
|
||||
|
||||
NR_SOFTIRQS
|
||||
|
|
|
@ -45,7 +45,11 @@ struct k_itimer {
|
|||
int it_requeue_pending; /* waiting to requeue this timer */
|
||||
#define REQUEUE_PENDING 1
|
||||
int it_sigev_notify; /* notify word of sigevent struct */
|
||||
struct task_struct *it_process; /* process to send signal to */
|
||||
struct signal_struct *it_signal;
|
||||
union {
|
||||
struct pid *it_pid; /* pid of process to send signal to */
|
||||
struct task_struct *it_process; /* for clock_nanosleep */
|
||||
};
|
||||
struct sigqueue *sigq; /* signal queue entry. */
|
||||
union {
|
||||
struct {
|
||||
|
|
|
@ -53,46 +53,10 @@
|
|||
#ifndef _LINUX_TIMEX_H
|
||||
#define _LINUX_TIMEX_H
|
||||
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/time.h>
|
||||
|
||||
#include <asm/param.h>
|
||||
|
||||
#define NTP_API 4 /* NTP API version */
|
||||
|
||||
/*
|
||||
* SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
|
||||
* for a slightly underdamped convergence characteristic. SHIFT_KH
|
||||
* establishes the damping of the FLL and is chosen by wisdom and black
|
||||
* art.
|
||||
*
|
||||
* MAXTC establishes the maximum time constant of the PLL. With the
|
||||
* SHIFT_KG and SHIFT_KF values given and a time constant range from
|
||||
* zero to MAXTC, the PLL will converge in 15 minutes to 16 hours,
|
||||
* respectively.
|
||||
*/
|
||||
#define SHIFT_PLL 4 /* PLL frequency factor (shift) */
|
||||
#define SHIFT_FLL 2 /* FLL frequency factor (shift) */
|
||||
#define MAXTC 10 /* maximum time constant (shift) */
|
||||
|
||||
/*
|
||||
* SHIFT_USEC defines the scaling (shift) of the time_freq and
|
||||
* time_tolerance variables, which represent the current frequency
|
||||
* offset and maximum frequency tolerance.
|
||||
*/
|
||||
#define SHIFT_USEC 16 /* frequency offset scale (shift) */
|
||||
#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
|
||||
#define PPM_SCALE_INV_SHIFT 19
|
||||
#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
|
||||
PPM_SCALE + 1)
|
||||
|
||||
#define MAXPHASE 500000000l /* max phase error (ns) */
|
||||
#define MAXFREQ 500000 /* max frequency error (ns/s) */
|
||||
#define MAXFREQ_SCALED ((s64)MAXFREQ << NTP_SCALE_SHIFT)
|
||||
#define MINSEC 256 /* min interval between updates (s) */
|
||||
#define MAXSEC 2048 /* max interval between updates (s) */
|
||||
#define NTP_PHASE_LIMIT ((MAXPHASE / NSEC_PER_USEC) << 5) /* beyond max. dispersion */
|
||||
|
||||
/*
|
||||
* syscall interface - used (mainly by NTP daemon)
|
||||
* to discipline kernel clock oscillator
|
||||
|
@ -199,8 +163,45 @@ struct timex {
|
|||
#define TIME_BAD TIME_ERROR /* bw compat */
|
||||
|
||||
#ifdef __KERNEL__
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/param.h>
|
||||
|
||||
#include <asm/timex.h>
|
||||
|
||||
/*
|
||||
* SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
|
||||
* for a slightly underdamped convergence characteristic. SHIFT_KH
|
||||
* establishes the damping of the FLL and is chosen by wisdom and black
|
||||
* art.
|
||||
*
|
||||
* MAXTC establishes the maximum time constant of the PLL. With the
|
||||
* SHIFT_KG and SHIFT_KF values given and a time constant range from
|
||||
* zero to MAXTC, the PLL will converge in 15 minutes to 16 hours,
|
||||
* respectively.
|
||||
*/
|
||||
#define SHIFT_PLL 4 /* PLL frequency factor (shift) */
|
||||
#define SHIFT_FLL 2 /* FLL frequency factor (shift) */
|
||||
#define MAXTC 10 /* maximum time constant (shift) */
|
||||
|
||||
/*
|
||||
* SHIFT_USEC defines the scaling (shift) of the time_freq and
|
||||
* time_tolerance variables, which represent the current frequency
|
||||
* offset and maximum frequency tolerance.
|
||||
*/
|
||||
#define SHIFT_USEC 16 /* frequency offset scale (shift) */
|
||||
#define PPM_SCALE (NSEC_PER_USEC << (NTP_SCALE_SHIFT - SHIFT_USEC))
|
||||
#define PPM_SCALE_INV_SHIFT 19
|
||||
#define PPM_SCALE_INV ((1ll << (PPM_SCALE_INV_SHIFT + NTP_SCALE_SHIFT)) / \
|
||||
PPM_SCALE + 1)
|
||||
|
||||
#define MAXPHASE 500000000l /* max phase error (ns) */
|
||||
#define MAXFREQ 500000 /* max frequency error (ns/s) */
|
||||
#define MAXFREQ_SCALED ((s64)MAXFREQ << NTP_SCALE_SHIFT)
|
||||
#define MINSEC 256 /* min interval between updates (s) */
|
||||
#define MAXSEC 2048 /* max interval between updates (s) */
|
||||
#define NTP_PHASE_LIMIT ((MAXPHASE / NSEC_PER_USEC) << 5) /* beyond max. dispersion */
|
||||
|
||||
/*
|
||||
* kernel variables
|
||||
* Note: maximum error = NTP synch distance = dispersion + delay / 2;
|
||||
|
|
331
kernel/hrtimer.c
331
kernel/hrtimer.c
|
@ -442,22 +442,6 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
|
|||
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Check, whether the timer is on the callback pending list
|
||||
*/
|
||||
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
|
||||
{
|
||||
return timer->state & HRTIMER_STATE_PENDING;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove a timer from the callback pending list
|
||||
*/
|
||||
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
|
||||
{
|
||||
list_del_init(&timer->cb_entry);
|
||||
}
|
||||
|
||||
/* High resolution timer related functions */
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
|
||||
|
@ -651,6 +635,8 @@ static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
|
|||
{
|
||||
}
|
||||
|
||||
static void __run_hrtimer(struct hrtimer *timer);
|
||||
|
||||
/*
|
||||
* When High resolution timers are active, try to reprogram. Note, that in case
|
||||
* the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
|
||||
|
@ -661,31 +647,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
|
|||
struct hrtimer_clock_base *base)
|
||||
{
|
||||
if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
|
||||
|
||||
/* Timer is expired, act upon the callback mode */
|
||||
switch(timer->cb_mode) {
|
||||
case HRTIMER_CB_IRQSAFE_PERCPU:
|
||||
case HRTIMER_CB_IRQSAFE_UNLOCKED:
|
||||
/*
|
||||
* This is solely for the sched tick emulation with
|
||||
* dynamic tick support to ensure that we do not
|
||||
* restart the tick right on the edge and end up with
|
||||
* the tick timer in the softirq ! The calling site
|
||||
* takes care of this. Also used for hrtimer sleeper !
|
||||
*/
|
||||
debug_hrtimer_deactivate(timer);
|
||||
return 1;
|
||||
case HRTIMER_CB_SOFTIRQ:
|
||||
/*
|
||||
* Move everything else into the softirq pending list !
|
||||
*/
|
||||
list_add_tail(&timer->cb_entry,
|
||||
&base->cpu_base->cb_pending);
|
||||
timer->state = HRTIMER_STATE_PENDING;
|
||||
return 1;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
/*
|
||||
* XXX: recursion check?
|
||||
* hrtimer_forward() should round up with timer granularity
|
||||
* so that we never get into inf recursion here,
|
||||
* it doesn't do that though
|
||||
*/
|
||||
__run_hrtimer(timer);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -724,11 +693,6 @@ static int hrtimer_switch_to_hres(void)
|
|||
return 1;
|
||||
}
|
||||
|
||||
static inline void hrtimer_raise_softirq(void)
|
||||
{
|
||||
raise_softirq(HRTIMER_SOFTIRQ);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline int hrtimer_hres_active(void) { return 0; }
|
||||
|
@ -747,7 +711,6 @@ static inline int hrtimer_reprogram(struct hrtimer *timer,
|
|||
{
|
||||
return 0;
|
||||
}
|
||||
static inline void hrtimer_raise_softirq(void) { }
|
||||
|
||||
#endif /* CONFIG_HIGH_RES_TIMERS */
|
||||
|
||||
|
@ -890,10 +853,7 @@ static void __remove_hrtimer(struct hrtimer *timer,
|
|||
struct hrtimer_clock_base *base,
|
||||
unsigned long newstate, int reprogram)
|
||||
{
|
||||
/* High res. callback list. NOP for !HIGHRES */
|
||||
if (hrtimer_cb_pending(timer))
|
||||
hrtimer_remove_cb_pending(timer);
|
||||
else {
|
||||
if (timer->state & HRTIMER_STATE_ENQUEUED) {
|
||||
/*
|
||||
* Remove the timer from the rbtree and replace the
|
||||
* first entry pointer if necessary.
|
||||
|
@ -953,7 +913,7 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
|
|||
{
|
||||
struct hrtimer_clock_base *base, *new_base;
|
||||
unsigned long flags;
|
||||
int ret, raise;
|
||||
int ret;
|
||||
|
||||
base = lock_hrtimer_base(timer, &flags);
|
||||
|
||||
|
@ -988,26 +948,8 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
|
|||
enqueue_hrtimer(timer, new_base,
|
||||
new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
|
||||
|
||||
/*
|
||||
* The timer may be expired and moved to the cb_pending
|
||||
* list. We can not raise the softirq with base lock held due
|
||||
* to a possible deadlock with runqueue lock.
|
||||
*/
|
||||
raise = timer->state == HRTIMER_STATE_PENDING;
|
||||
|
||||
/*
|
||||
* We use preempt_disable to prevent this task from migrating after
|
||||
* setting up the softirq and raising it. Otherwise, if me migrate
|
||||
* we will raise the softirq on the wrong CPU.
|
||||
*/
|
||||
preempt_disable();
|
||||
|
||||
unlock_hrtimer_base(timer, &flags);
|
||||
|
||||
if (raise)
|
||||
hrtimer_raise_softirq();
|
||||
preempt_enable();
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
|
||||
|
@ -1192,75 +1134,6 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(hrtimer_get_res);
|
||||
|
||||
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
|
||||
{
|
||||
spin_lock_irq(&cpu_base->lock);
|
||||
|
||||
while (!list_empty(&cpu_base->cb_pending)) {
|
||||
enum hrtimer_restart (*fn)(struct hrtimer *);
|
||||
struct hrtimer *timer;
|
||||
int restart;
|
||||
int emulate_hardirq_ctx = 0;
|
||||
|
||||
timer = list_entry(cpu_base->cb_pending.next,
|
||||
struct hrtimer, cb_entry);
|
||||
|
||||
debug_hrtimer_deactivate(timer);
|
||||
timer_stats_account_hrtimer(timer);
|
||||
|
||||
fn = timer->function;
|
||||
/*
|
||||
* A timer might have been added to the cb_pending list
|
||||
* when it was migrated during a cpu-offline operation.
|
||||
* Emulate hardirq context for such timers.
|
||||
*/
|
||||
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
|
||||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED)
|
||||
emulate_hardirq_ctx = 1;
|
||||
|
||||
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
|
||||
spin_unlock_irq(&cpu_base->lock);
|
||||
|
||||
if (unlikely(emulate_hardirq_ctx)) {
|
||||
local_irq_disable();
|
||||
restart = fn(timer);
|
||||
local_irq_enable();
|
||||
} else
|
||||
restart = fn(timer);
|
||||
|
||||
spin_lock_irq(&cpu_base->lock);
|
||||
|
||||
timer->state &= ~HRTIMER_STATE_CALLBACK;
|
||||
if (restart == HRTIMER_RESTART) {
|
||||
BUG_ON(hrtimer_active(timer));
|
||||
/*
|
||||
* Enqueue the timer, allow reprogramming of the event
|
||||
* device
|
||||
*/
|
||||
enqueue_hrtimer(timer, timer->base, 1);
|
||||
} else if (hrtimer_active(timer)) {
|
||||
/*
|
||||
* If the timer was rearmed on another CPU, reprogram
|
||||
* the event device.
|
||||
*/
|
||||
struct hrtimer_clock_base *base = timer->base;
|
||||
|
||||
if (base->first == &timer->node &&
|
||||
hrtimer_reprogram(timer, base)) {
|
||||
/*
|
||||
* Timer is expired. Thus move it from tree to
|
||||
* pending list again.
|
||||
*/
|
||||
__remove_hrtimer(timer, base,
|
||||
HRTIMER_STATE_PENDING, 0);
|
||||
list_add_tail(&timer->cb_entry,
|
||||
&base->cpu_base->cb_pending);
|
||||
}
|
||||
}
|
||||
}
|
||||
spin_unlock_irq(&cpu_base->lock);
|
||||
}
|
||||
|
||||
static void __run_hrtimer(struct hrtimer *timer)
|
||||
{
|
||||
struct hrtimer_clock_base *base = timer->base;
|
||||
|
@ -1268,25 +1141,21 @@ static void __run_hrtimer(struct hrtimer *timer)
|
|||
enum hrtimer_restart (*fn)(struct hrtimer *);
|
||||
int restart;
|
||||
|
||||
WARN_ON(!irqs_disabled());
|
||||
|
||||
debug_hrtimer_deactivate(timer);
|
||||
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
|
||||
timer_stats_account_hrtimer(timer);
|
||||
|
||||
fn = timer->function;
|
||||
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
|
||||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
|
||||
/*
|
||||
* Used for scheduler timers, avoid lock inversion with
|
||||
* rq->lock and tasklist_lock.
|
||||
*
|
||||
* These timers are required to deal with enqueue expiry
|
||||
* themselves and are not allowed to migrate.
|
||||
*/
|
||||
spin_unlock(&cpu_base->lock);
|
||||
restart = fn(timer);
|
||||
spin_lock(&cpu_base->lock);
|
||||
} else
|
||||
restart = fn(timer);
|
||||
|
||||
/*
|
||||
* Because we run timers from hardirq context, there is no chance
|
||||
* they get migrated to another cpu, therefore its safe to unlock
|
||||
* the timer base.
|
||||
*/
|
||||
spin_unlock(&cpu_base->lock);
|
||||
restart = fn(timer);
|
||||
spin_lock(&cpu_base->lock);
|
||||
|
||||
/*
|
||||
* Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
|
||||
|
@ -1311,7 +1180,7 @@ void hrtimer_interrupt(struct clock_event_device *dev)
|
|||
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
|
||||
struct hrtimer_clock_base *base;
|
||||
ktime_t expires_next, now;
|
||||
int i, raise = 0;
|
||||
int i;
|
||||
|
||||
BUG_ON(!cpu_base->hres_active);
|
||||
cpu_base->nr_events++;
|
||||
|
@ -1360,16 +1229,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
|
|||
break;
|
||||
}
|
||||
|
||||
/* Move softirq callbacks to the pending list */
|
||||
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
|
||||
__remove_hrtimer(timer, base,
|
||||
HRTIMER_STATE_PENDING, 0);
|
||||
list_add_tail(&timer->cb_entry,
|
||||
&base->cpu_base->cb_pending);
|
||||
raise = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
__run_hrtimer(timer);
|
||||
}
|
||||
spin_unlock(&cpu_base->lock);
|
||||
|
@ -1383,10 +1242,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
|
|||
if (tick_program_event(expires_next, 0))
|
||||
goto retry;
|
||||
}
|
||||
|
||||
/* Raise softirq ? */
|
||||
if (raise)
|
||||
raise_softirq(HRTIMER_SOFTIRQ);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1413,11 +1268,6 @@ void hrtimer_peek_ahead_timers(void)
|
|||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void run_hrtimer_softirq(struct softirq_action *h)
|
||||
{
|
||||
run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
|
||||
}
|
||||
|
||||
#endif /* CONFIG_HIGH_RES_TIMERS */
|
||||
|
||||
/*
|
||||
|
@ -1429,8 +1279,6 @@ static void run_hrtimer_softirq(struct softirq_action *h)
|
|||
*/
|
||||
void hrtimer_run_pending(void)
|
||||
{
|
||||
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
|
||||
|
||||
if (hrtimer_hres_active())
|
||||
return;
|
||||
|
||||
|
@ -1444,8 +1292,6 @@ void hrtimer_run_pending(void)
|
|||
*/
|
||||
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
|
||||
hrtimer_switch_to_hres();
|
||||
|
||||
run_hrtimer_pending(cpu_base);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1482,14 +1328,6 @@ void hrtimer_run_queues(void)
|
|||
hrtimer_get_expires_tv64(timer))
|
||||
break;
|
||||
|
||||
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
|
||||
__remove_hrtimer(timer, base,
|
||||
HRTIMER_STATE_PENDING, 0);
|
||||
list_add_tail(&timer->cb_entry,
|
||||
&base->cpu_base->cb_pending);
|
||||
continue;
|
||||
}
|
||||
|
||||
__run_hrtimer(timer);
|
||||
}
|
||||
spin_unlock(&cpu_base->lock);
|
||||
|
@ -1516,9 +1354,6 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
|
|||
{
|
||||
sl->timer.function = hrtimer_wakeup;
|
||||
sl->task = task;
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
|
||||
#endif
|
||||
}
|
||||
|
||||
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
|
||||
|
@ -1655,36 +1490,22 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
|
|||
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
|
||||
cpu_base->clock_base[i].cpu_base = cpu_base;
|
||||
|
||||
INIT_LIST_HEAD(&cpu_base->cb_pending);
|
||||
hrtimer_init_hres(cpu_base);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
|
||||
static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
||||
struct hrtimer_clock_base *new_base, int dcpu)
|
||||
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
||||
struct hrtimer_clock_base *new_base)
|
||||
{
|
||||
struct hrtimer *timer;
|
||||
struct rb_node *node;
|
||||
int raise = 0;
|
||||
|
||||
while ((node = rb_first(&old_base->active))) {
|
||||
timer = rb_entry(node, struct hrtimer, node);
|
||||
BUG_ON(hrtimer_callback_running(timer));
|
||||
debug_hrtimer_deactivate(timer);
|
||||
|
||||
/*
|
||||
* Should not happen. Per CPU timers should be
|
||||
* canceled _before_ the migration code is called
|
||||
*/
|
||||
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
|
||||
__remove_hrtimer(timer, old_base,
|
||||
HRTIMER_STATE_INACTIVE, 0);
|
||||
WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
|
||||
timer, timer->function, dcpu);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Mark it as STATE_MIGRATE not INACTIVE otherwise the
|
||||
* timer could be seen as !active and just vanish away
|
||||
|
@ -1693,69 +1514,34 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
|||
__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
|
||||
timer->base = new_base;
|
||||
/*
|
||||
* Enqueue the timer. Allow reprogramming of the event device
|
||||
* Enqueue the timers on the new cpu, but do not reprogram
|
||||
* the timer as that would enable a deadlock between
|
||||
* hrtimer_enqueue_reprogramm() running the timer and us still
|
||||
* holding a nested base lock.
|
||||
*
|
||||
* Instead we tickle the hrtimer interrupt after the migration
|
||||
* is done, which will run all expired timers and re-programm
|
||||
* the timer device.
|
||||
*/
|
||||
enqueue_hrtimer(timer, new_base, 1);
|
||||
enqueue_hrtimer(timer, new_base, 0);
|
||||
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
/*
|
||||
* Happens with high res enabled when the timer was
|
||||
* already expired and the callback mode is
|
||||
* HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
|
||||
* enqueue code does not move them to the soft irq
|
||||
* pending list for performance/latency reasons, but
|
||||
* in the migration state, we need to do that
|
||||
* otherwise we end up with a stale timer.
|
||||
*/
|
||||
if (timer->state == HRTIMER_STATE_MIGRATE) {
|
||||
timer->state = HRTIMER_STATE_PENDING;
|
||||
list_add_tail(&timer->cb_entry,
|
||||
&new_base->cpu_base->cb_pending);
|
||||
raise = 1;
|
||||
}
|
||||
#endif
|
||||
/* Clear the migration state bit */
|
||||
timer->state &= ~HRTIMER_STATE_MIGRATE;
|
||||
}
|
||||
return raise;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
|
||||
struct hrtimer_cpu_base *new_base)
|
||||
{
|
||||
struct hrtimer *timer;
|
||||
int raise = 0;
|
||||
|
||||
while (!list_empty(&old_base->cb_pending)) {
|
||||
timer = list_entry(old_base->cb_pending.next,
|
||||
struct hrtimer, cb_entry);
|
||||
|
||||
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
|
||||
timer->base = &new_base->clock_base[timer->base->index];
|
||||
list_add_tail(&timer->cb_entry, &new_base->cb_pending);
|
||||
raise = 1;
|
||||
}
|
||||
return raise;
|
||||
}
|
||||
#else
|
||||
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
|
||||
struct hrtimer_cpu_base *new_base)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void migrate_hrtimers(int cpu)
|
||||
static int migrate_hrtimers(int scpu)
|
||||
{
|
||||
struct hrtimer_cpu_base *old_base, *new_base;
|
||||
int i, raise = 0;
|
||||
int dcpu, i;
|
||||
|
||||
BUG_ON(cpu_online(cpu));
|
||||
old_base = &per_cpu(hrtimer_bases, cpu);
|
||||
BUG_ON(cpu_online(scpu));
|
||||
old_base = &per_cpu(hrtimer_bases, scpu);
|
||||
new_base = &get_cpu_var(hrtimer_bases);
|
||||
|
||||
tick_cancel_sched_timer(cpu);
|
||||
dcpu = smp_processor_id();
|
||||
|
||||
tick_cancel_sched_timer(scpu);
|
||||
/*
|
||||
* The caller is globally serialized and nobody else
|
||||
* takes two locks at once, deadlock is not possible.
|
||||
|
@ -1764,41 +1550,47 @@ static void migrate_hrtimers(int cpu)
|
|||
spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
|
||||
|
||||
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
|
||||
if (migrate_hrtimer_list(&old_base->clock_base[i],
|
||||
&new_base->clock_base[i], cpu))
|
||||
raise = 1;
|
||||
migrate_hrtimer_list(&old_base->clock_base[i],
|
||||
&new_base->clock_base[i]);
|
||||
}
|
||||
|
||||
if (migrate_hrtimer_pending(old_base, new_base))
|
||||
raise = 1;
|
||||
|
||||
spin_unlock(&old_base->lock);
|
||||
spin_unlock_irq(&new_base->lock);
|
||||
put_cpu_var(hrtimer_bases);
|
||||
|
||||
if (raise)
|
||||
hrtimer_raise_softirq();
|
||||
return dcpu;
|
||||
}
|
||||
|
||||
static void tickle_timers(void *arg)
|
||||
{
|
||||
hrtimer_peek_ahead_timers();
|
||||
}
|
||||
|
||||
#endif /* CONFIG_HOTPLUG_CPU */
|
||||
|
||||
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
|
||||
unsigned long action, void *hcpu)
|
||||
{
|
||||
unsigned int cpu = (long)hcpu;
|
||||
int scpu = (long)hcpu;
|
||||
|
||||
switch (action) {
|
||||
|
||||
case CPU_UP_PREPARE:
|
||||
case CPU_UP_PREPARE_FROZEN:
|
||||
init_hrtimers_cpu(cpu);
|
||||
init_hrtimers_cpu(scpu);
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
case CPU_DEAD:
|
||||
case CPU_DEAD_FROZEN:
|
||||
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
|
||||
migrate_hrtimers(cpu);
|
||||
{
|
||||
int dcpu;
|
||||
|
||||
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
|
||||
dcpu = migrate_hrtimers(scpu);
|
||||
smp_call_function_single(dcpu, tickle_timers, NULL, 0);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
default:
|
||||
|
@ -1817,9 +1609,6 @@ void __init hrtimers_init(void)
|
|||
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
|
||||
(void *)(long)smp_processor_id());
|
||||
register_cpu_notifier(&hrtimers_nb);
|
||||
#ifdef CONFIG_HIGH_RES_TIMERS
|
||||
open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -116,7 +116,7 @@ static DEFINE_SPINLOCK(idr_lock);
|
|||
* must supply functions here, even if the function just returns
|
||||
* ENOSYS. The standard POSIX timer management code assumes the
|
||||
* following: 1.) The k_itimer struct (sched.h) is used for the
|
||||
* timer. 2.) The list, it_lock, it_clock, it_id and it_process
|
||||
* timer. 2.) The list, it_lock, it_clock, it_id and it_pid
|
||||
* fields are not modified by timer code.
|
||||
*
|
||||
* At this time all functions EXCEPT clock_nanosleep can be
|
||||
|
@ -319,7 +319,8 @@ void do_schedule_next_timer(struct siginfo *info)
|
|||
|
||||
int posix_timer_event(struct k_itimer *timr, int si_private)
|
||||
{
|
||||
int shared, ret;
|
||||
struct task_struct *task;
|
||||
int shared, ret = -1;
|
||||
/*
|
||||
* FIXME: if ->sigq is queued we can race with
|
||||
* dequeue_signal()->do_schedule_next_timer().
|
||||
|
@ -333,8 +334,13 @@ int posix_timer_event(struct k_itimer *timr, int si_private)
|
|||
*/
|
||||
timr->sigq->info.si_sys_private = si_private;
|
||||
|
||||
shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
|
||||
ret = send_sigqueue(timr->sigq, timr->it_process, shared);
|
||||
rcu_read_lock();
|
||||
task = pid_task(timr->it_pid, PIDTYPE_PID);
|
||||
if (task) {
|
||||
shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
|
||||
ret = send_sigqueue(timr->sigq, task, shared);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
/* If we failed to send the signal the timer stops. */
|
||||
return ret > 0;
|
||||
}
|
||||
|
@ -411,7 +417,7 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static struct task_struct * good_sigevent(sigevent_t * event)
|
||||
static struct pid *good_sigevent(sigevent_t * event)
|
||||
{
|
||||
struct task_struct *rtn = current->group_leader;
|
||||
|
||||
|
@ -425,7 +431,7 @@ static struct task_struct * good_sigevent(sigevent_t * event)
|
|||
((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
|
||||
return NULL;
|
||||
|
||||
return rtn;
|
||||
return task_pid(rtn);
|
||||
}
|
||||
|
||||
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
|
||||
|
@ -464,6 +470,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
|
|||
idr_remove(&posix_timers_id, tmr->it_id);
|
||||
spin_unlock_irqrestore(&idr_lock, flags);
|
||||
}
|
||||
put_pid(tmr->it_pid);
|
||||
sigqueue_free(tmr->sigq);
|
||||
kmem_cache_free(posix_timers_cache, tmr);
|
||||
}
|
||||
|
@ -477,7 +484,6 @@ sys_timer_create(const clockid_t which_clock,
|
|||
{
|
||||
struct k_itimer *new_timer;
|
||||
int error, new_timer_id;
|
||||
struct task_struct *process;
|
||||
sigevent_t event;
|
||||
int it_id_set = IT_ID_NOT_SET;
|
||||
|
||||
|
@ -531,11 +537,9 @@ sys_timer_create(const clockid_t which_clock,
|
|||
goto out;
|
||||
}
|
||||
rcu_read_lock();
|
||||
process = good_sigevent(&event);
|
||||
if (process)
|
||||
get_task_struct(process);
|
||||
new_timer->it_pid = get_pid(good_sigevent(&event));
|
||||
rcu_read_unlock();
|
||||
if (!process) {
|
||||
if (!new_timer->it_pid) {
|
||||
error = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
@ -543,8 +547,7 @@ sys_timer_create(const clockid_t which_clock,
|
|||
event.sigev_notify = SIGEV_SIGNAL;
|
||||
event.sigev_signo = SIGALRM;
|
||||
event.sigev_value.sival_int = new_timer->it_id;
|
||||
process = current->group_leader;
|
||||
get_task_struct(process);
|
||||
new_timer->it_pid = get_pid(task_tgid(current));
|
||||
}
|
||||
|
||||
new_timer->it_sigev_notify = event.sigev_notify;
|
||||
|
@ -554,7 +557,7 @@ sys_timer_create(const clockid_t which_clock,
|
|||
new_timer->sigq->info.si_code = SI_TIMER;
|
||||
|
||||
spin_lock_irq(¤t->sighand->siglock);
|
||||
new_timer->it_process = process;
|
||||
new_timer->it_signal = current->signal;
|
||||
list_add(&new_timer->list, ¤t->signal->posix_timers);
|
||||
spin_unlock_irq(¤t->sighand->siglock);
|
||||
|
||||
|
@ -589,8 +592,7 @@ static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
|
|||
timr = idr_find(&posix_timers_id, (int)timer_id);
|
||||
if (timr) {
|
||||
spin_lock(&timr->it_lock);
|
||||
if (timr->it_process &&
|
||||
same_thread_group(timr->it_process, current)) {
|
||||
if (timr->it_signal == current->signal) {
|
||||
spin_unlock(&idr_lock);
|
||||
return timr;
|
||||
}
|
||||
|
@ -837,8 +839,7 @@ retry_delete:
|
|||
* This keeps any tasks waiting on the spin lock from thinking
|
||||
* they got something (see the lock code above).
|
||||
*/
|
||||
put_task_struct(timer->it_process);
|
||||
timer->it_process = NULL;
|
||||
timer->it_signal = NULL;
|
||||
|
||||
unlock_timer(timer, flags);
|
||||
release_posix_timer(timer, IT_ID_SET);
|
||||
|
@ -864,8 +865,7 @@ retry_delete:
|
|||
* This keeps any tasks waiting on the spin lock from thinking
|
||||
* they got something (see the lock code above).
|
||||
*/
|
||||
put_task_struct(timer->it_process);
|
||||
timer->it_process = NULL;
|
||||
timer->it_signal = NULL;
|
||||
|
||||
unlock_timer(timer, flags);
|
||||
release_posix_timer(timer, IT_ID_SET);
|
||||
|
|
|
@ -209,7 +209,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
|
|||
hrtimer_init(&rt_b->rt_period_timer,
|
||||
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
rt_b->rt_period_timer.function = sched_rt_period_timer;
|
||||
rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
|
||||
}
|
||||
|
||||
static inline int rt_bandwidth_enabled(void)
|
||||
|
@ -1139,7 +1138,6 @@ static void init_rq_hrtick(struct rq *rq)
|
|||
|
||||
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
rq->hrtick_timer.function = hrtick;
|
||||
rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
|
||||
}
|
||||
#else /* CONFIG_SCHED_HRTICK */
|
||||
static inline void hrtick_clear(struct rq *rq)
|
||||
|
|
|
@ -131,7 +131,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
|||
{
|
||||
enum hrtimer_restart res = HRTIMER_NORESTART;
|
||||
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
write_seqlock(&xtime_lock);
|
||||
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
|
@ -164,7 +164,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
|||
}
|
||||
update_vsyscall(&xtime, clock);
|
||||
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
write_sequnlock(&xtime_lock);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
|
@ -247,7 +247,7 @@ void tick_nohz_stop_sched_tick(int inidle)
|
|||
if (need_resched())
|
||||
goto end;
|
||||
|
||||
if (unlikely(local_softirq_pending())) {
|
||||
if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
|
||||
static int ratelimit;
|
||||
|
||||
if (ratelimit < 10) {
|
||||
|
@ -282,8 +282,31 @@ void tick_nohz_stop_sched_tick(int inidle)
|
|||
/* Schedule the tick, if we are at least one jiffie off */
|
||||
if ((long)delta_jiffies >= 1) {
|
||||
|
||||
/*
|
||||
* calculate the expiry time for the next timer wheel
|
||||
* timer
|
||||
*/
|
||||
expires = ktime_add_ns(last_update, tick_period.tv64 *
|
||||
delta_jiffies);
|
||||
|
||||
/*
|
||||
* If this cpu is the one which updates jiffies, then
|
||||
* give up the assignment and let it be taken by the
|
||||
* cpu which runs the tick timer next, which might be
|
||||
* this cpu as well. If we don't drop this here the
|
||||
* jiffies might be stale and do_timer() never
|
||||
* invoked.
|
||||
*/
|
||||
if (cpu == tick_do_timer_cpu)
|
||||
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
|
||||
|
||||
if (delta_jiffies > 1)
|
||||
cpu_set(cpu, nohz_cpu_mask);
|
||||
|
||||
/* Skip reprogram of event if its not changed */
|
||||
if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* nohz_stop_sched_tick can be called several times before
|
||||
* the nohz_restart_sched_tick is called. This happens when
|
||||
|
@ -306,17 +329,6 @@ void tick_nohz_stop_sched_tick(int inidle)
|
|||
rcu_enter_nohz();
|
||||
}
|
||||
|
||||
/*
|
||||
* If this cpu is the one which updates jiffies, then
|
||||
* give up the assignment and let it be taken by the
|
||||
* cpu which runs the tick timer next, which might be
|
||||
* this cpu as well. If we don't drop this here the
|
||||
* jiffies might be stale and do_timer() never
|
||||
* invoked.
|
||||
*/
|
||||
if (cpu == tick_do_timer_cpu)
|
||||
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
|
||||
|
||||
ts->idle_sleeps++;
|
||||
|
||||
/*
|
||||
|
@ -332,12 +344,7 @@ void tick_nohz_stop_sched_tick(int inidle)
|
|||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* calculate the expiry time for the next timer wheel
|
||||
* timer
|
||||
*/
|
||||
expires = ktime_add_ns(last_update, tick_period.tv64 *
|
||||
delta_jiffies);
|
||||
/* Mark expiries */
|
||||
ts->idle_expires = expires;
|
||||
|
||||
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
||||
|
@ -681,7 +688,6 @@ void tick_setup_sched_timer(void)
|
|||
*/
|
||||
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
||||
ts->sched_timer.function = tick_sched_timer;
|
||||
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
|
||||
|
||||
/* Get the next period (per cpu) */
|
||||
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
|
||||
|
|
|
@ -202,7 +202,6 @@ static void start_stack_timer(int cpu)
|
|||
|
||||
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
hrtimer->function = stack_trace_timer_fn;
|
||||
hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
|
||||
|
||||
hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
|
||||
}
|
||||
|
|
|
@ -57,7 +57,6 @@ static int snd_hrtimer_open(struct snd_timer *t)
|
|||
return -ENOMEM;
|
||||
hrtimer_init(&stime->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
stime->timer = t;
|
||||
stime->hrt.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
|
||||
stime->hrt.function = snd_hrtimer_callback;
|
||||
t->private_data = stime;
|
||||
return 0;
|
||||
|
|
|
@ -96,7 +96,6 @@ static int __devinit snd_card_pcsp_probe(int devnum, struct device *dev)
|
|||
return -EINVAL;
|
||||
|
||||
hrtimer_init(&pcsp_chip.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
pcsp_chip.timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
|
||||
pcsp_chip.timer.function = pcsp_do_timer;
|
||||
|
||||
card = snd_card_new(index, id, THIS_MODULE, 0);
|
||||
|
|
Загрузка…
Ссылка в новой задаче