net: wan: remove support for Z85230-based devices
Looks like all the changes to this driver had been automated churn since git era begun. The driver is using virt_to_bus(), it's just a maintenance burden unlikely to have any users. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
89fbca3307
Коммит
bc6df26f1f
|
@ -17,7 +17,6 @@ Contents:
|
|||
fddi/index
|
||||
hamradio/index
|
||||
qlogic/index
|
||||
wan/index
|
||||
wifi/index
|
||||
wwan/index
|
||||
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
||||
|
||||
Classic WAN Device Drivers
|
||||
==========================
|
||||
|
||||
Contents:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
z8530book
|
||||
|
||||
.. only:: subproject and html
|
||||
|
||||
Indices
|
||||
=======
|
||||
|
||||
* :ref:`genindex`
|
|
@ -1,256 +0,0 @@
|
|||
=======================
|
||||
Z8530 Programming Guide
|
||||
=======================
|
||||
|
||||
:Author: Alan Cox
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
The Z85x30 family synchronous/asynchronous controller chips are used on
|
||||
a large number of cheap network interface cards. The kernel provides a
|
||||
core interface layer that is designed to make it easy to provide WAN
|
||||
services using this chip.
|
||||
|
||||
The current driver only support synchronous operation. Merging the
|
||||
asynchronous driver support into this code to allow any Z85x30 device to
|
||||
be used as both a tty interface and as a synchronous controller is a
|
||||
project for Linux post the 2.4 release
|
||||
|
||||
Driver Modes
|
||||
============
|
||||
|
||||
The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in
|
||||
three different modes. Each mode can be applied to an individual channel
|
||||
on the chip (each chip has two channels).
|
||||
|
||||
The PIO synchronous mode supports the most common Z8530 wiring. Here the
|
||||
chip is interface to the I/O and interrupt facilities of the host
|
||||
machine but not to the DMA subsystem. When running PIO the Z8530 has
|
||||
extremely tight timing requirements. Doing high speeds, even with a
|
||||
Z85230 will be tricky. Typically you should expect to achieve at best
|
||||
9600 baud with a Z8C530 and 64Kbits with a Z85230.
|
||||
|
||||
The DMA mode supports the chip when it is configured to use dual DMA
|
||||
channels on an ISA bus. The better cards tend to support this mode of
|
||||
operation for a single channel. With DMA running the Z85230 tops out
|
||||
when it starts to hit ISA DMA constraints at about 512Kbits. It is worth
|
||||
noting here that many PC machines hang or crash when the chip is driven
|
||||
fast enough to hold the ISA bus solid.
|
||||
|
||||
Transmit DMA mode uses a single DMA channel. The DMA channel is used for
|
||||
transmission as the transmit FIFO is smaller than the receive FIFO. it
|
||||
gives better performance than pure PIO mode but is nowhere near as ideal
|
||||
as pure DMA mode.
|
||||
|
||||
Using the Z85230 driver
|
||||
=======================
|
||||
|
||||
The Z85230 driver provides the back end interface to your board. To
|
||||
configure a Z8530 interface you need to detect the board and to identify
|
||||
its ports and interrupt resources. It is also your problem to verify the
|
||||
resources are available.
|
||||
|
||||
Having identified the chip you need to fill in a struct z8530_dev,
|
||||
which describes each chip. This object must exist until you finally
|
||||
shutdown the board. Firstly zero the active field. This ensures nothing
|
||||
goes off without you intending it. The irq field should be set to the
|
||||
interrupt number of the chip. (Each chip has a single interrupt source
|
||||
rather than each channel). You are responsible for allocating the
|
||||
interrupt line. The interrupt handler should be set to
|
||||
:c:func:`z8530_interrupt()`. The device id should be set to the
|
||||
z8530_dev structure pointer. Whether the interrupt can be shared or not
|
||||
is board dependent, and up to you to initialise.
|
||||
|
||||
The structure holds two channel structures. Initialise chanA.ctrlio and
|
||||
chanA.dataio with the address of the control and data ports. You can or
|
||||
this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS
|
||||
delay for chip settling done in software. The PORT_SLEEP option is
|
||||
architecture specific. Other flags may become available on future
|
||||
platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to
|
||||
start the chip up as disabled and discarding interrupt events. This
|
||||
ensures that stray interrupts will be mopped up and not hang the bus.
|
||||
Set chanA.dev to point to the device structure itself. The private and
|
||||
name field you may use as you wish. The private field is unused by the
|
||||
Z85230 layer. The name is used for error reporting and it may thus make
|
||||
sense to make it match the network name.
|
||||
|
||||
Repeat the same operation with the B channel if your chip has both
|
||||
channels wired to something useful. This isn't always the case. If it is
|
||||
not wired then the I/O values do not matter, but you must initialise
|
||||
chanB.dev.
|
||||
|
||||
If your board has DMA facilities then initialise the txdma and rxdma
|
||||
fields for the relevant channels. You must also allocate the ISA DMA
|
||||
channels and do any necessary board level initialisation to configure
|
||||
them. The low level driver will do the Z8530 and DMA controller
|
||||
programming but not board specific magic.
|
||||
|
||||
Having initialised the device you can then call
|
||||
:c:func:`z8530_init()`. This will probe the chip and reset it into
|
||||
a known state. An identification sequence is then run to identify the
|
||||
chip type. If the checks fail to pass the function returns a non zero
|
||||
error code. Typically this indicates that the port given is not valid.
|
||||
After this call the type field of the z8530_dev structure is
|
||||
initialised to either Z8530, Z85C30 or Z85230 according to the chip
|
||||
found.
|
||||
|
||||
Once you have called z8530_init you can also make use of the utility
|
||||
function :c:func:`z8530_describe()`. This provides a consistent
|
||||
reporting format for the Z8530 devices, and allows all the drivers to
|
||||
provide consistent reporting.
|
||||
|
||||
Attaching Network Interfaces
|
||||
============================
|
||||
|
||||
If you wish to use the network interface facilities of the driver, then
|
||||
you need to attach a network device to each channel that is present and
|
||||
in use. In addition to use the generic HDLC you need to follow some
|
||||
additional plumbing rules. They may seem complex but a look at the
|
||||
example hostess_sv11 driver should reassure you.
|
||||
|
||||
The network device used for each channel should be pointed to by the
|
||||
netdevice field of each channel. The hdlc-> priv field of the network
|
||||
device points to your private data - you will need to be able to find
|
||||
your private data from this.
|
||||
|
||||
The way most drivers approach this particular problem is to create a
|
||||
structure holding the Z8530 device definition and put that into the
|
||||
private field of the network device. The network device fields of the
|
||||
channels then point back to the network devices.
|
||||
|
||||
If you wish to use the generic HDLC then you need to register the HDLC
|
||||
device.
|
||||
|
||||
Before you register your network device you will also need to provide
|
||||
suitable handlers for most of the network device callbacks. See the
|
||||
network device documentation for more details on this.
|
||||
|
||||
Configuring And Activating The Port
|
||||
===================================
|
||||
|
||||
The Z85230 driver provides helper functions and tables to load the port
|
||||
registers on the Z8530 chips. When programming the register settings for
|
||||
a channel be aware that the documentation recommends initialisation
|
||||
orders. Strange things happen when these are not followed.
|
||||
|
||||
:c:func:`z8530_channel_load()` takes an array of pairs of
|
||||
initialisation values in an array of u8 type. The first value is the
|
||||
Z8530 register number. Add 16 to indicate the alternate register bank on
|
||||
the later chips. The array is terminated by a 255.
|
||||
|
||||
The driver provides a pair of public tables. The z8530_hdlc_kilostream
|
||||
table is for the UK 'Kilostream' service and also happens to cover most
|
||||
other end host configurations. The z8530_hdlc_kilostream_85230 table
|
||||
is the same configuration using the enhancements of the 85230 chip. The
|
||||
configuration loaded is standard NRZ encoded synchronous data with HDLC
|
||||
bitstuffing. All of the timing is taken from the other end of the link.
|
||||
|
||||
When writing your own tables be aware that the driver internally tracks
|
||||
register values. It may need to reload values. You should therefore be
|
||||
sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where
|
||||
the register settings depend on DMA selection the driver will update the
|
||||
bits itself when you open or close. Loading a new table with the
|
||||
interface open is not recommended.
|
||||
|
||||
There are three standard configurations supported by the core code. In
|
||||
PIO mode the interface is programmed up to use interrupt driven PIO.
|
||||
This places high demands on the host processor to avoid latency. The
|
||||
driver is written to take account of latency issues but it cannot avoid
|
||||
latencies caused by other drivers, notably IDE in PIO mode. Because the
|
||||
drivers allocate buffers you must also prevent MTU changes while the
|
||||
port is open.
|
||||
|
||||
Once the port is open it will call the rx_function of each channel
|
||||
whenever a completed packet arrived. This is invoked from interrupt
|
||||
context and passes you the channel and a network buffer (struct
|
||||
sk_buff) holding the data. The data includes the CRC bytes so most
|
||||
users will want to trim the last two bytes before processing the data.
|
||||
This function is very timing critical. When you wish to simply discard
|
||||
data the support code provides the function
|
||||
:c:func:`z8530_null_rx()` to discard the data.
|
||||
|
||||
To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
|
||||
This expects to be passed the network device and the channel. Typically
|
||||
this is called from your network device open callback. On a failure a
|
||||
non zero error status is returned.
|
||||
The :c:func:`z8530_sync_close()` function shuts down a PIO
|
||||
channel. This must be done before the channel is opened again and before
|
||||
the driver shuts down and unloads.
|
||||
|
||||
The ideal mode of operation is dual channel DMA mode. Here the kernel
|
||||
driver will configure the board for DMA in both directions. The driver
|
||||
also handles ISA DMA issues such as controller programming and the
|
||||
memory range limit for you. This mode is activated by calling the
|
||||
:c:func:`z8530_sync_dma_open()` function. On failure a non zero
|
||||
error value is returned. Once this mode is activated it can be shut down
|
||||
by calling the :c:func:`z8530_sync_dma_close()`. You must call
|
||||
the close function matching the open mode you used.
|
||||
|
||||
The final supported mode uses a single DMA channel to drive the transmit
|
||||
side. As the Z85C30 has a larger FIFO on the receive channel this tends
|
||||
to increase the maximum speed a little. This is activated by calling the
|
||||
``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
|
||||
:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
|
||||
interface from this mode.
|
||||
|
||||
Network Layer Functions
|
||||
=======================
|
||||
|
||||
The Z8530 layer provides functions to queue packets for transmission.
|
||||
The driver internally buffers the frame currently being transmitted and
|
||||
one further frame (in order to keep back to back transmission running).
|
||||
Any further buffering is up to the caller.
|
||||
|
||||
The function :c:func:`z8530_queue_xmit()` takes a network buffer
|
||||
in sk_buff format and queues it for transmission. The caller must
|
||||
provide the entire packet with the exception of the bitstuffing and CRC.
|
||||
This is normally done by the caller via the generic HDLC interface
|
||||
layer. It returns 0 if the buffer has been queued and non zero values
|
||||
for queue full. If the function accepts the buffer it becomes property
|
||||
of the Z8530 layer and the caller should not free it.
|
||||
|
||||
The function :c:func:`z8530_get_stats()` returns a pointer to an
|
||||
internally maintained per interface statistics block. This provides most
|
||||
of the interface code needed to implement the network layer get_stats
|
||||
callback.
|
||||
|
||||
Porting The Z8530 Driver
|
||||
========================
|
||||
|
||||
The Z8530 driver is written to be portable. In DMA mode it makes
|
||||
assumptions about the use of ISA DMA. These are probably warranted in
|
||||
most cases as the Z85230 in particular was designed to glue to PC type
|
||||
machines. The PIO mode makes no real assumptions.
|
||||
|
||||
Should you need to retarget the Z8530 driver to another architecture the
|
||||
only code that should need changing are the port I/O functions. At the
|
||||
moment these assume PC I/O port accesses. This may not be appropriate
|
||||
for all platforms. Replacing :c:func:`z8530_read_port()` and
|
||||
``z8530_write_port`` is intended to be all that is required to port
|
||||
this driver layer.
|
||||
|
||||
Known Bugs And Assumptions
|
||||
==========================
|
||||
|
||||
Interrupt Locking
|
||||
The locking in the driver is done via the global cli/sti lock. This
|
||||
makes for relatively poor SMP performance. Switching this to use a
|
||||
per device spin lock would probably materially improve performance.
|
||||
|
||||
Occasional Failures
|
||||
We have reports of occasional failures when run for very long
|
||||
periods of time and the driver starts to receive junk frames. At the
|
||||
moment the cause of this is not clear.
|
||||
|
||||
Public Functions Provided
|
||||
=========================
|
||||
|
||||
.. kernel-doc:: drivers/net/wan/z85230.c
|
||||
:export:
|
||||
|
||||
Internal Functions
|
||||
==================
|
||||
|
||||
.. kernel-doc:: drivers/net/wan/z85230.c
|
||||
:internal:
|
|
@ -23,28 +23,6 @@ menuconfig WAN
|
|||
|
||||
if WAN
|
||||
|
||||
# There is no way to detect a comtrol sv11 - force it modular for now.
|
||||
config HOSTESS_SV11
|
||||
tristate "Comtrol Hostess SV-11 support"
|
||||
depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
|
||||
help
|
||||
Driver for Comtrol Hostess SV-11 network card which
|
||||
operates on low speed synchronous serial links at up to
|
||||
256Kbps, supporting PPP and Cisco HDLC.
|
||||
|
||||
The driver will be compiled as a module: the
|
||||
module will be called hostess_sv11.
|
||||
|
||||
# There is no way to detect a Sealevel board. Force it modular
|
||||
config SEALEVEL_4021
|
||||
tristate "Sealevel Systems 4021 support"
|
||||
depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
|
||||
help
|
||||
This is a driver for the Sealevel Systems ACB 56 serial I/O adapter.
|
||||
|
||||
The driver will be compiled as a module: the
|
||||
module will be called sealevel.
|
||||
|
||||
# Generic HDLC
|
||||
config HDLC
|
||||
tristate "Generic HDLC layer"
|
||||
|
|
|
@ -14,8 +14,6 @@ obj-$(CONFIG_HDLC_FR) += hdlc_fr.o
|
|||
obj-$(CONFIG_HDLC_PPP) += hdlc_ppp.o
|
||||
obj-$(CONFIG_HDLC_X25) += hdlc_x25.o
|
||||
|
||||
obj-$(CONFIG_HOSTESS_SV11) += z85230.o hostess_sv11.o
|
||||
obj-$(CONFIG_SEALEVEL_4021) += z85230.o sealevel.o
|
||||
obj-$(CONFIG_FARSYNC) += farsync.o
|
||||
|
||||
obj-$(CONFIG_LAPBETHER) += lapbether.o
|
||||
|
|
|
@ -1,336 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* Comtrol SV11 card driver
|
||||
*
|
||||
* This is a slightly odd Z85230 synchronous driver. All you need to
|
||||
* know basically is
|
||||
*
|
||||
* Its a genuine Z85230
|
||||
*
|
||||
* It supports DMA using two DMA channels in SYNC mode. The driver doesn't
|
||||
* use these facilities
|
||||
*
|
||||
* The control port is at io+1, the data at io+3 and turning off the DMA
|
||||
* is done by writing 0 to io+4
|
||||
*
|
||||
* The hardware does the bus handling to avoid the need for delays between
|
||||
* touching control registers.
|
||||
*
|
||||
* Port B isn't wired (why - beats me)
|
||||
*
|
||||
* Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl>
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/net.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/if_arp.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/hdlc.h>
|
||||
#include <linux/ioport.h>
|
||||
#include <linux/slab.h>
|
||||
#include <net/arp.h>
|
||||
|
||||
#include <asm/irq.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/dma.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include "z85230.h"
|
||||
|
||||
static int dma;
|
||||
|
||||
/* Network driver support routines
|
||||
*/
|
||||
|
||||
static inline struct z8530_dev *dev_to_sv(struct net_device *dev)
|
||||
{
|
||||
return (struct z8530_dev *)dev_to_hdlc(dev)->priv;
|
||||
}
|
||||
|
||||
/* Frame receive. Simple for our card as we do HDLC and there
|
||||
* is no funny garbage involved
|
||||
*/
|
||||
|
||||
static void hostess_input(struct z8530_channel *c, struct sk_buff *skb)
|
||||
{
|
||||
/* Drop the CRC - it's not a good idea to try and negotiate it ;) */
|
||||
skb_trim(skb, skb->len - 2);
|
||||
skb->protocol = hdlc_type_trans(skb, c->netdevice);
|
||||
skb_reset_mac_header(skb);
|
||||
skb->dev = c->netdevice;
|
||||
/* Send it to the PPP layer. We don't have time to process
|
||||
* it right now.
|
||||
*/
|
||||
netif_rx(skb);
|
||||
}
|
||||
|
||||
/* We've been placed in the UP state
|
||||
*/
|
||||
|
||||
static int hostess_open(struct net_device *d)
|
||||
{
|
||||
struct z8530_dev *sv11 = dev_to_sv(d);
|
||||
int err = -1;
|
||||
|
||||
/* Link layer up
|
||||
*/
|
||||
switch (dma) {
|
||||
case 0:
|
||||
err = z8530_sync_open(d, &sv11->chanA);
|
||||
break;
|
||||
case 1:
|
||||
err = z8530_sync_dma_open(d, &sv11->chanA);
|
||||
break;
|
||||
case 2:
|
||||
err = z8530_sync_txdma_open(d, &sv11->chanA);
|
||||
break;
|
||||
}
|
||||
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = hdlc_open(d);
|
||||
if (err) {
|
||||
switch (dma) {
|
||||
case 0:
|
||||
z8530_sync_close(d, &sv11->chanA);
|
||||
break;
|
||||
case 1:
|
||||
z8530_sync_dma_close(d, &sv11->chanA);
|
||||
break;
|
||||
case 2:
|
||||
z8530_sync_txdma_close(d, &sv11->chanA);
|
||||
break;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
sv11->chanA.rx_function = hostess_input;
|
||||
|
||||
/*
|
||||
* Go go go
|
||||
*/
|
||||
|
||||
netif_start_queue(d);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int hostess_close(struct net_device *d)
|
||||
{
|
||||
struct z8530_dev *sv11 = dev_to_sv(d);
|
||||
/* Discard new frames
|
||||
*/
|
||||
sv11->chanA.rx_function = z8530_null_rx;
|
||||
|
||||
hdlc_close(d);
|
||||
netif_stop_queue(d);
|
||||
|
||||
switch (dma) {
|
||||
case 0:
|
||||
z8530_sync_close(d, &sv11->chanA);
|
||||
break;
|
||||
case 1:
|
||||
z8530_sync_dma_close(d, &sv11->chanA);
|
||||
break;
|
||||
case 2:
|
||||
z8530_sync_txdma_close(d, &sv11->chanA);
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Passed network frames, fire them downwind.
|
||||
*/
|
||||
|
||||
static netdev_tx_t hostess_queue_xmit(struct sk_buff *skb,
|
||||
struct net_device *d)
|
||||
{
|
||||
return z8530_queue_xmit(&dev_to_sv(d)->chanA, skb);
|
||||
}
|
||||
|
||||
static int hostess_attach(struct net_device *dev, unsigned short encoding,
|
||||
unsigned short parity)
|
||||
{
|
||||
if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
|
||||
return 0;
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Description block for a Comtrol Hostess SV11 card
|
||||
*/
|
||||
|
||||
static const struct net_device_ops hostess_ops = {
|
||||
.ndo_open = hostess_open,
|
||||
.ndo_stop = hostess_close,
|
||||
.ndo_start_xmit = hdlc_start_xmit,
|
||||
.ndo_siocwandev = hdlc_ioctl,
|
||||
};
|
||||
|
||||
static struct z8530_dev *sv11_init(int iobase, int irq)
|
||||
{
|
||||
struct z8530_dev *sv;
|
||||
struct net_device *netdev;
|
||||
/* Get the needed I/O space
|
||||
*/
|
||||
|
||||
if (!request_region(iobase, 8, "Comtrol SV11")) {
|
||||
pr_warn("I/O 0x%X already in use\n", iobase);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
sv = kzalloc(sizeof(struct z8530_dev), GFP_KERNEL);
|
||||
if (!sv)
|
||||
goto err_kzalloc;
|
||||
|
||||
/* Stuff in the I/O addressing
|
||||
*/
|
||||
|
||||
sv->active = 0;
|
||||
|
||||
sv->chanA.ctrlio = iobase + 1;
|
||||
sv->chanA.dataio = iobase + 3;
|
||||
sv->chanB.ctrlio = -1;
|
||||
sv->chanB.dataio = -1;
|
||||
sv->chanA.irqs = &z8530_nop;
|
||||
sv->chanB.irqs = &z8530_nop;
|
||||
|
||||
outb(0, iobase + 4); /* DMA off */
|
||||
|
||||
/* We want a fast IRQ for this device. Actually we'd like an even faster
|
||||
* IRQ ;) - This is one driver RtLinux is made for
|
||||
*/
|
||||
|
||||
if (request_irq(irq, z8530_interrupt, 0,
|
||||
"Hostess SV11", sv) < 0) {
|
||||
pr_warn("IRQ %d already in use\n", irq);
|
||||
goto err_irq;
|
||||
}
|
||||
|
||||
sv->irq = irq;
|
||||
sv->chanA.private = sv;
|
||||
sv->chanA.dev = sv;
|
||||
sv->chanB.dev = sv;
|
||||
|
||||
if (dma) {
|
||||
/* You can have DMA off or 1 and 3 thats the lot
|
||||
* on the Comtrol.
|
||||
*/
|
||||
sv->chanA.txdma = 3;
|
||||
sv->chanA.rxdma = 1;
|
||||
outb(0x03 | 0x08, iobase + 4); /* DMA on */
|
||||
if (request_dma(sv->chanA.txdma, "Hostess SV/11 (TX)"))
|
||||
goto err_txdma;
|
||||
|
||||
if (dma == 1)
|
||||
if (request_dma(sv->chanA.rxdma, "Hostess SV/11 (RX)"))
|
||||
goto err_rxdma;
|
||||
}
|
||||
|
||||
/* Kill our private IRQ line the hostess can end up chattering
|
||||
* until the configuration is set
|
||||
*/
|
||||
disable_irq(irq);
|
||||
|
||||
/* Begin normal initialise
|
||||
*/
|
||||
|
||||
if (z8530_init(sv)) {
|
||||
pr_err("Z8530 series device not found\n");
|
||||
enable_irq(irq);
|
||||
goto free_dma;
|
||||
}
|
||||
z8530_channel_load(&sv->chanB, z8530_dead_port);
|
||||
if (sv->type == Z85C30)
|
||||
z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream);
|
||||
else
|
||||
z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream_85230);
|
||||
|
||||
enable_irq(irq);
|
||||
|
||||
/* Now we can take the IRQ
|
||||
*/
|
||||
|
||||
sv->chanA.netdevice = netdev = alloc_hdlcdev(sv);
|
||||
if (!netdev)
|
||||
goto free_dma;
|
||||
|
||||
dev_to_hdlc(netdev)->attach = hostess_attach;
|
||||
dev_to_hdlc(netdev)->xmit = hostess_queue_xmit;
|
||||
netdev->netdev_ops = &hostess_ops;
|
||||
netdev->base_addr = iobase;
|
||||
netdev->irq = irq;
|
||||
|
||||
if (register_hdlc_device(netdev)) {
|
||||
pr_err("unable to register HDLC device\n");
|
||||
free_netdev(netdev);
|
||||
goto free_dma;
|
||||
}
|
||||
|
||||
z8530_describe(sv, "I/O", iobase);
|
||||
sv->active = 1;
|
||||
return sv;
|
||||
|
||||
free_dma:
|
||||
if (dma == 1)
|
||||
free_dma(sv->chanA.rxdma);
|
||||
err_rxdma:
|
||||
if (dma)
|
||||
free_dma(sv->chanA.txdma);
|
||||
err_txdma:
|
||||
free_irq(irq, sv);
|
||||
err_irq:
|
||||
kfree(sv);
|
||||
err_kzalloc:
|
||||
release_region(iobase, 8);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void sv11_shutdown(struct z8530_dev *dev)
|
||||
{
|
||||
unregister_hdlc_device(dev->chanA.netdevice);
|
||||
z8530_shutdown(dev);
|
||||
free_irq(dev->irq, dev);
|
||||
if (dma) {
|
||||
if (dma == 1)
|
||||
free_dma(dev->chanA.rxdma);
|
||||
free_dma(dev->chanA.txdma);
|
||||
}
|
||||
release_region(dev->chanA.ctrlio - 1, 8);
|
||||
free_netdev(dev->chanA.netdevice);
|
||||
kfree(dev);
|
||||
}
|
||||
|
||||
static int io = 0x200;
|
||||
static int irq = 9;
|
||||
|
||||
module_param_hw(io, int, ioport, 0);
|
||||
MODULE_PARM_DESC(io, "The I/O base of the Comtrol Hostess SV11 card");
|
||||
module_param_hw(dma, int, dma, 0);
|
||||
MODULE_PARM_DESC(dma, "Set this to 1 to use DMA1/DMA3 for TX/RX");
|
||||
module_param_hw(irq, int, irq, 0);
|
||||
MODULE_PARM_DESC(irq, "The interrupt line setting for the Comtrol Hostess SV11 card");
|
||||
|
||||
MODULE_AUTHOR("Alan Cox");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("Modular driver for the Comtrol Hostess SV11");
|
||||
|
||||
static struct z8530_dev *sv11_unit;
|
||||
|
||||
static int sv11_module_init(void)
|
||||
{
|
||||
sv11_unit = sv11_init(io, irq);
|
||||
if (!sv11_unit)
|
||||
return -ENODEV;
|
||||
return 0;
|
||||
}
|
||||
module_init(sv11_module_init);
|
||||
|
||||
static void sv11_module_cleanup(void)
|
||||
{
|
||||
if (sv11_unit)
|
||||
sv11_shutdown(sv11_unit);
|
||||
}
|
||||
module_exit(sv11_module_cleanup);
|
|
@ -1,352 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/* Sealevel Systems 4021 driver.
|
||||
*
|
||||
* (c) Copyright 1999, 2001 Alan Cox
|
||||
* (c) Copyright 2001 Red Hat Inc.
|
||||
* Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl>
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/net.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/if_arp.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/hdlc.h>
|
||||
#include <linux/ioport.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/slab.h>
|
||||
#include <net/arp.h>
|
||||
|
||||
#include <asm/irq.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/dma.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include "z85230.h"
|
||||
|
||||
struct slvl_device {
|
||||
struct z8530_channel *chan;
|
||||
int channel;
|
||||
};
|
||||
|
||||
struct slvl_board {
|
||||
struct slvl_device dev[2];
|
||||
struct z8530_dev board;
|
||||
int iobase;
|
||||
};
|
||||
|
||||
/* Network driver support routines */
|
||||
|
||||
static inline struct slvl_device *dev_to_chan(struct net_device *dev)
|
||||
{
|
||||
return (struct slvl_device *)dev_to_hdlc(dev)->priv;
|
||||
}
|
||||
|
||||
/* Frame receive. Simple for our card as we do HDLC and there
|
||||
* is no funny garbage involved
|
||||
*/
|
||||
|
||||
static void sealevel_input(struct z8530_channel *c, struct sk_buff *skb)
|
||||
{
|
||||
/* Drop the CRC - it's not a good idea to try and negotiate it ;) */
|
||||
skb_trim(skb, skb->len - 2);
|
||||
skb->protocol = hdlc_type_trans(skb, c->netdevice);
|
||||
skb_reset_mac_header(skb);
|
||||
skb->dev = c->netdevice;
|
||||
netif_rx(skb);
|
||||
}
|
||||
|
||||
/* We've been placed in the UP state */
|
||||
|
||||
static int sealevel_open(struct net_device *d)
|
||||
{
|
||||
struct slvl_device *slvl = dev_to_chan(d);
|
||||
int err = -1;
|
||||
int unit = slvl->channel;
|
||||
|
||||
/* Link layer up. */
|
||||
|
||||
switch (unit) {
|
||||
case 0:
|
||||
err = z8530_sync_dma_open(d, slvl->chan);
|
||||
break;
|
||||
case 1:
|
||||
err = z8530_sync_open(d, slvl->chan);
|
||||
break;
|
||||
}
|
||||
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = hdlc_open(d);
|
||||
if (err) {
|
||||
switch (unit) {
|
||||
case 0:
|
||||
z8530_sync_dma_close(d, slvl->chan);
|
||||
break;
|
||||
case 1:
|
||||
z8530_sync_close(d, slvl->chan);
|
||||
break;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
slvl->chan->rx_function = sealevel_input;
|
||||
|
||||
netif_start_queue(d);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sealevel_close(struct net_device *d)
|
||||
{
|
||||
struct slvl_device *slvl = dev_to_chan(d);
|
||||
int unit = slvl->channel;
|
||||
|
||||
/* Discard new frames */
|
||||
|
||||
slvl->chan->rx_function = z8530_null_rx;
|
||||
|
||||
hdlc_close(d);
|
||||
netif_stop_queue(d);
|
||||
|
||||
switch (unit) {
|
||||
case 0:
|
||||
z8530_sync_dma_close(d, slvl->chan);
|
||||
break;
|
||||
case 1:
|
||||
z8530_sync_close(d, slvl->chan);
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Passed network frames, fire them downwind. */
|
||||
|
||||
static netdev_tx_t sealevel_queue_xmit(struct sk_buff *skb,
|
||||
struct net_device *d)
|
||||
{
|
||||
return z8530_queue_xmit(dev_to_chan(d)->chan, skb);
|
||||
}
|
||||
|
||||
static int sealevel_attach(struct net_device *dev, unsigned short encoding,
|
||||
unsigned short parity)
|
||||
{
|
||||
if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
|
||||
return 0;
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static const struct net_device_ops sealevel_ops = {
|
||||
.ndo_open = sealevel_open,
|
||||
.ndo_stop = sealevel_close,
|
||||
.ndo_start_xmit = hdlc_start_xmit,
|
||||
.ndo_siocwandev = hdlc_ioctl,
|
||||
};
|
||||
|
||||
static int slvl_setup(struct slvl_device *sv, int iobase, int irq)
|
||||
{
|
||||
struct net_device *dev = alloc_hdlcdev(sv);
|
||||
|
||||
if (!dev)
|
||||
return -1;
|
||||
|
||||
dev_to_hdlc(dev)->attach = sealevel_attach;
|
||||
dev_to_hdlc(dev)->xmit = sealevel_queue_xmit;
|
||||
dev->netdev_ops = &sealevel_ops;
|
||||
dev->base_addr = iobase;
|
||||
dev->irq = irq;
|
||||
|
||||
if (register_hdlc_device(dev)) {
|
||||
pr_err("unable to register HDLC device\n");
|
||||
free_netdev(dev);
|
||||
return -1;
|
||||
}
|
||||
|
||||
sv->chan->netdevice = dev;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Allocate and setup Sealevel board. */
|
||||
|
||||
static __init struct slvl_board *slvl_init(int iobase, int irq,
|
||||
int txdma, int rxdma, int slow)
|
||||
{
|
||||
struct z8530_dev *dev;
|
||||
struct slvl_board *b;
|
||||
|
||||
/* Get the needed I/O space */
|
||||
|
||||
if (!request_region(iobase, 8, "Sealevel 4021")) {
|
||||
pr_warn("I/O 0x%X already in use\n", iobase);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
b = kzalloc(sizeof(struct slvl_board), GFP_KERNEL);
|
||||
if (!b)
|
||||
goto err_kzalloc;
|
||||
|
||||
b->dev[0].chan = &b->board.chanA;
|
||||
b->dev[0].channel = 0;
|
||||
|
||||
b->dev[1].chan = &b->board.chanB;
|
||||
b->dev[1].channel = 1;
|
||||
|
||||
dev = &b->board;
|
||||
|
||||
/* Stuff in the I/O addressing */
|
||||
|
||||
dev->active = 0;
|
||||
|
||||
b->iobase = iobase;
|
||||
|
||||
/* Select 8530 delays for the old board */
|
||||
|
||||
if (slow)
|
||||
iobase |= Z8530_PORT_SLEEP;
|
||||
|
||||
dev->chanA.ctrlio = iobase + 1;
|
||||
dev->chanA.dataio = iobase;
|
||||
dev->chanB.ctrlio = iobase + 3;
|
||||
dev->chanB.dataio = iobase + 2;
|
||||
|
||||
dev->chanA.irqs = &z8530_nop;
|
||||
dev->chanB.irqs = &z8530_nop;
|
||||
|
||||
/* Assert DTR enable DMA */
|
||||
|
||||
outb(3 | (1 << 7), b->iobase + 4);
|
||||
|
||||
/* We want a fast IRQ for this device. Actually we'd like an even faster
|
||||
* IRQ ;) - This is one driver RtLinux is made for
|
||||
*/
|
||||
|
||||
if (request_irq(irq, z8530_interrupt, 0,
|
||||
"SeaLevel", dev) < 0) {
|
||||
pr_warn("IRQ %d already in use\n", irq);
|
||||
goto err_request_irq;
|
||||
}
|
||||
|
||||
dev->irq = irq;
|
||||
dev->chanA.private = &b->dev[0];
|
||||
dev->chanB.private = &b->dev[1];
|
||||
dev->chanA.dev = dev;
|
||||
dev->chanB.dev = dev;
|
||||
|
||||
dev->chanA.txdma = 3;
|
||||
dev->chanA.rxdma = 1;
|
||||
if (request_dma(dev->chanA.txdma, "SeaLevel (TX)"))
|
||||
goto err_dma_tx;
|
||||
|
||||
if (request_dma(dev->chanA.rxdma, "SeaLevel (RX)"))
|
||||
goto err_dma_rx;
|
||||
|
||||
disable_irq(irq);
|
||||
|
||||
/* Begin normal initialise */
|
||||
|
||||
if (z8530_init(dev) != 0) {
|
||||
pr_err("Z8530 series device not found\n");
|
||||
enable_irq(irq);
|
||||
goto free_hw;
|
||||
}
|
||||
if (dev->type == Z85C30) {
|
||||
z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream);
|
||||
z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream);
|
||||
} else {
|
||||
z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream_85230);
|
||||
z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream_85230);
|
||||
}
|
||||
|
||||
/* Now we can take the IRQ */
|
||||
|
||||
enable_irq(irq);
|
||||
|
||||
if (slvl_setup(&b->dev[0], iobase, irq))
|
||||
goto free_hw;
|
||||
if (slvl_setup(&b->dev[1], iobase, irq))
|
||||
goto free_netdev0;
|
||||
|
||||
z8530_describe(dev, "I/O", iobase);
|
||||
dev->active = 1;
|
||||
return b;
|
||||
|
||||
free_netdev0:
|
||||
unregister_hdlc_device(b->dev[0].chan->netdevice);
|
||||
free_netdev(b->dev[0].chan->netdevice);
|
||||
free_hw:
|
||||
free_dma(dev->chanA.rxdma);
|
||||
err_dma_rx:
|
||||
free_dma(dev->chanA.txdma);
|
||||
err_dma_tx:
|
||||
free_irq(irq, dev);
|
||||
err_request_irq:
|
||||
kfree(b);
|
||||
err_kzalloc:
|
||||
release_region(iobase, 8);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void __exit slvl_shutdown(struct slvl_board *b)
|
||||
{
|
||||
int u;
|
||||
|
||||
z8530_shutdown(&b->board);
|
||||
|
||||
for (u = 0; u < 2; u++) {
|
||||
struct net_device *d = b->dev[u].chan->netdevice;
|
||||
|
||||
unregister_hdlc_device(d);
|
||||
free_netdev(d);
|
||||
}
|
||||
|
||||
free_irq(b->board.irq, &b->board);
|
||||
free_dma(b->board.chanA.rxdma);
|
||||
free_dma(b->board.chanA.txdma);
|
||||
/* DMA off on the card, drop DTR */
|
||||
outb(0, b->iobase);
|
||||
release_region(b->iobase, 8);
|
||||
kfree(b);
|
||||
}
|
||||
|
||||
static int io = 0x238;
|
||||
static int txdma = 1;
|
||||
static int rxdma = 3;
|
||||
static int irq = 5;
|
||||
static bool slow;
|
||||
|
||||
module_param_hw(io, int, ioport, 0);
|
||||
MODULE_PARM_DESC(io, "The I/O base of the Sealevel card");
|
||||
module_param_hw(txdma, int, dma, 0);
|
||||
MODULE_PARM_DESC(txdma, "Transmit DMA channel");
|
||||
module_param_hw(rxdma, int, dma, 0);
|
||||
MODULE_PARM_DESC(rxdma, "Receive DMA channel");
|
||||
module_param_hw(irq, int, irq, 0);
|
||||
MODULE_PARM_DESC(irq, "The interrupt line setting for the SeaLevel card");
|
||||
module_param(slow, bool, 0);
|
||||
MODULE_PARM_DESC(slow, "Set this for an older Sealevel card such as the 4012");
|
||||
|
||||
MODULE_AUTHOR("Alan Cox");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("Modular driver for the SeaLevel 4021");
|
||||
|
||||
static struct slvl_board *slvl_unit;
|
||||
|
||||
static int __init slvl_init_module(void)
|
||||
{
|
||||
slvl_unit = slvl_init(io, irq, txdma, rxdma, slow);
|
||||
|
||||
return slvl_unit ? 0 : -ENODEV;
|
||||
}
|
||||
|
||||
static void __exit slvl_cleanup_module(void)
|
||||
{
|
||||
if (slvl_unit)
|
||||
slvl_shutdown(slvl_unit);
|
||||
}
|
||||
|
||||
module_init(slvl_init_module);
|
||||
module_exit(slvl_cleanup_module);
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -1,407 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/*
|
||||
* Description of Z8530 Z85C30 and Z85230 communications chips
|
||||
*
|
||||
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
||||
* Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
||||
*/
|
||||
|
||||
#ifndef _Z8530_H
|
||||
#define _Z8530_H
|
||||
|
||||
#include <linux/tty.h>
|
||||
#include <linux/interrupt.h>
|
||||
|
||||
/* Conversion routines to/from brg time constants from/to bits
|
||||
* per second.
|
||||
*/
|
||||
#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
|
||||
#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
|
||||
|
||||
/* The Zilog register set */
|
||||
|
||||
#define FLAG 0x7e
|
||||
|
||||
/* Write Register 0 */
|
||||
#define R0 0 /* Register selects */
|
||||
#define R1 1
|
||||
#define R2 2
|
||||
#define R3 3
|
||||
#define R4 4
|
||||
#define R5 5
|
||||
#define R6 6
|
||||
#define R7 7
|
||||
#define R8 8
|
||||
#define R9 9
|
||||
#define R10 10
|
||||
#define R11 11
|
||||
#define R12 12
|
||||
#define R13 13
|
||||
#define R14 14
|
||||
#define R15 15
|
||||
|
||||
#define RPRIME 16 /* Indicate a prime register access on 230 */
|
||||
|
||||
#define NULLCODE 0 /* Null Code */
|
||||
#define POINT_HIGH 0x8 /* Select upper half of registers */
|
||||
#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
|
||||
#define SEND_ABORT 0x18 /* HDLC Abort */
|
||||
#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
|
||||
#define RES_Tx_P 0x28 /* Reset TxINT Pending */
|
||||
#define ERR_RES 0x30 /* Error Reset */
|
||||
#define RES_H_IUS 0x38 /* Reset highest IUS */
|
||||
|
||||
#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
|
||||
#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
|
||||
#define RES_EOM_L 0xC0 /* Reset EOM latch */
|
||||
|
||||
/* Write Register 1 */
|
||||
|
||||
#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
|
||||
#define TxINT_ENAB 0x2 /* Tx Int Enable */
|
||||
#define PAR_SPEC 0x4 /* Parity is special condition */
|
||||
|
||||
#define RxINT_DISAB 0 /* Rx Int Disable */
|
||||
#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
|
||||
#define INT_ALL_Rx 0x10 /* Int on all Rx Characters or error */
|
||||
#define INT_ERR_Rx 0x18 /* Int on error only */
|
||||
|
||||
#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */
|
||||
#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */
|
||||
#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */
|
||||
|
||||
/* Write Register #2 (Interrupt Vector) */
|
||||
|
||||
/* Write Register 3 */
|
||||
|
||||
#define RxENABLE 0x1 /* Rx Enable */
|
||||
#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
|
||||
#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
|
||||
#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
|
||||
#define ENT_HM 0x10 /* Enter Hunt Mode */
|
||||
#define AUTO_ENAB 0x20 /* Auto Enables */
|
||||
#define Rx5 0x0 /* Rx 5 Bits/Character */
|
||||
#define Rx7 0x40 /* Rx 7 Bits/Character */
|
||||
#define Rx6 0x80 /* Rx 6 Bits/Character */
|
||||
#define Rx8 0xc0 /* Rx 8 Bits/Character */
|
||||
|
||||
/* Write Register 4 */
|
||||
|
||||
#define PAR_ENA 0x1 /* Parity Enable */
|
||||
#define PAR_EVEN 0x2 /* Parity Even/Odd* */
|
||||
|
||||
#define SYNC_ENAB 0 /* Sync Modes Enable */
|
||||
#define SB1 0x4 /* 1 stop bit/char */
|
||||
#define SB15 0x8 /* 1.5 stop bits/char */
|
||||
#define SB2 0xc /* 2 stop bits/char */
|
||||
|
||||
#define MONSYNC 0 /* 8 Bit Sync character */
|
||||
#define BISYNC 0x10 /* 16 bit sync character */
|
||||
#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
|
||||
#define EXTSYNC 0x30 /* External Sync Mode */
|
||||
|
||||
#define X1CLK 0x0 /* x1 clock mode */
|
||||
#define X16CLK 0x40 /* x16 clock mode */
|
||||
#define X32CLK 0x80 /* x32 clock mode */
|
||||
#define X64CLK 0xC0 /* x64 clock mode */
|
||||
|
||||
/* Write Register 5 */
|
||||
|
||||
#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
|
||||
#define RTS 0x2 /* RTS */
|
||||
#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
|
||||
#define TxENAB 0x8 /* Tx Enable */
|
||||
#define SND_BRK 0x10 /* Send Break */
|
||||
#define Tx5 0x0 /* Tx 5 bits (or less)/character */
|
||||
#define Tx7 0x20 /* Tx 7 bits/character */
|
||||
#define Tx6 0x40 /* Tx 6 bits/character */
|
||||
#define Tx8 0x60 /* Tx 8 bits/character */
|
||||
#define DTR 0x80 /* DTR */
|
||||
|
||||
/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
|
||||
|
||||
/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
|
||||
|
||||
/* Write Register 8 (transmit buffer) */
|
||||
|
||||
/* Write Register 9 (Master interrupt control) */
|
||||
#define VIS 1 /* Vector Includes Status */
|
||||
#define NV 2 /* No Vector */
|
||||
#define DLC 4 /* Disable Lower Chain */
|
||||
#define MIE 8 /* Master Interrupt Enable */
|
||||
#define STATHI 0x10 /* Status high */
|
||||
#define NORESET 0 /* No reset on write to R9 */
|
||||
#define CHRB 0x40 /* Reset channel B */
|
||||
#define CHRA 0x80 /* Reset channel A */
|
||||
#define FHWRES 0xc0 /* Force hardware reset */
|
||||
|
||||
/* Write Register 10 (misc control bits) */
|
||||
#define BIT6 1 /* 6 bit/8bit sync */
|
||||
#define LOOPMODE 2 /* SDLC Loop mode */
|
||||
#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
|
||||
#define MARKIDLE 8 /* Mark/flag on idle */
|
||||
#define GAOP 0x10 /* Go active on poll */
|
||||
#define NRZ 0 /* NRZ mode */
|
||||
#define NRZI 0x20 /* NRZI mode */
|
||||
#define FM1 0x40 /* FM1 (transition = 1) */
|
||||
#define FM0 0x60 /* FM0 (transition = 0) */
|
||||
#define CRCPS 0x80 /* CRC Preset I/O */
|
||||
|
||||
/* Write Register 11 (Clock Mode control) */
|
||||
#define TRxCXT 0 /* TRxC = Xtal output */
|
||||
#define TRxCTC 1 /* TRxC = Transmit clock */
|
||||
#define TRxCBR 2 /* TRxC = BR Generator Output */
|
||||
#define TRxCDP 3 /* TRxC = DPLL output */
|
||||
#define TRxCOI 4 /* TRxC O/I */
|
||||
#define TCRTxCP 0 /* Transmit clock = RTxC pin */
|
||||
#define TCTRxCP 8 /* Transmit clock = TRxC pin */
|
||||
#define TCBR 0x10 /* Transmit clock = BR Generator output */
|
||||
#define TCDPLL 0x18 /* Transmit clock = DPLL output */
|
||||
#define RCRTxCP 0 /* Receive clock = RTxC pin */
|
||||
#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
|
||||
#define RCBR 0x40 /* Receive clock = BR Generator output */
|
||||
#define RCDPLL 0x60 /* Receive clock = DPLL output */
|
||||
#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
|
||||
|
||||
/* Write Register 12 (lower byte of baud rate generator time constant) */
|
||||
|
||||
/* Write Register 13 (upper byte of baud rate generator time constant) */
|
||||
|
||||
/* Write Register 14 (Misc control bits) */
|
||||
#define BRENABL 1 /* Baud rate generator enable */
|
||||
#define BRSRC 2 /* Baud rate generator source */
|
||||
#define DTRREQ 4 /* DTR/Request function */
|
||||
#define AUTOECHO 8 /* Auto Echo */
|
||||
#define LOOPBAK 0x10 /* Local loopback */
|
||||
#define SEARCH 0x20 /* Enter search mode */
|
||||
#define RMC 0x40 /* Reset missing clock */
|
||||
#define DISDPLL 0x60 /* Disable DPLL */
|
||||
#define SSBR 0x80 /* Set DPLL source = BR generator */
|
||||
#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
|
||||
#define SFMM 0xc0 /* Set FM mode */
|
||||
#define SNRZI 0xe0 /* Set NRZI mode */
|
||||
|
||||
/* Write Register 15 (external/status interrupt control) */
|
||||
#define PRIME 1 /* R5' etc register access (Z85C30/230 only) */
|
||||
#define ZCIE 2 /* Zero count IE */
|
||||
#define FIFOE 4 /* Z85230 only */
|
||||
#define DCDIE 8 /* DCD IE */
|
||||
#define SYNCIE 0x10 /* Sync/hunt IE */
|
||||
#define CTSIE 0x20 /* CTS IE */
|
||||
#define TxUIE 0x40 /* Tx Underrun/EOM IE */
|
||||
#define BRKIE 0x80 /* Break/Abort IE */
|
||||
|
||||
|
||||
/* Read Register 0 */
|
||||
#define Rx_CH_AV 0x1 /* Rx Character Available */
|
||||
#define ZCOUNT 0x2 /* Zero count */
|
||||
#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
|
||||
#define DCD 0x8 /* DCD */
|
||||
#define SYNC_HUNT 0x10 /* Sync/hunt */
|
||||
#define CTS 0x20 /* CTS */
|
||||
#define TxEOM 0x40 /* Tx underrun */
|
||||
#define BRK_ABRT 0x80 /* Break/Abort */
|
||||
|
||||
/* Read Register 1 */
|
||||
#define ALL_SNT 0x1 /* All sent */
|
||||
/* Residue Data for 8 Rx bits/char programmed */
|
||||
#define RES3 0x8 /* 0/3 */
|
||||
#define RES4 0x4 /* 0/4 */
|
||||
#define RES5 0xc /* 0/5 */
|
||||
#define RES6 0x2 /* 0/6 */
|
||||
#define RES7 0xa /* 0/7 */
|
||||
#define RES8 0x6 /* 0/8 */
|
||||
#define RES18 0xe /* 1/8 */
|
||||
#define RES28 0x0 /* 2/8 */
|
||||
/* Special Rx Condition Interrupts */
|
||||
#define PAR_ERR 0x10 /* Parity error */
|
||||
#define Rx_OVR 0x20 /* Rx Overrun Error */
|
||||
#define CRC_ERR 0x40 /* CRC/Framing Error */
|
||||
#define END_FR 0x80 /* End of Frame (SDLC) */
|
||||
|
||||
/* Read Register 2 (channel b only) - Interrupt vector */
|
||||
|
||||
/* Read Register 3 (interrupt pending register) ch a only */
|
||||
#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
|
||||
#define CHBTxIP 0x2 /* Channel B Tx IP */
|
||||
#define CHBRxIP 0x4 /* Channel B Rx IP */
|
||||
#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
|
||||
#define CHATxIP 0x10 /* Channel A Tx IP */
|
||||
#define CHARxIP 0x20 /* Channel A Rx IP */
|
||||
|
||||
/* Read Register 8 (receive data register) */
|
||||
|
||||
/* Read Register 10 (misc status bits) */
|
||||
#define ONLOOP 2 /* On loop */
|
||||
#define LOOPSEND 0x10 /* Loop sending */
|
||||
#define CLK2MIS 0x40 /* Two clocks missing */
|
||||
#define CLK1MIS 0x80 /* One clock missing */
|
||||
|
||||
/* Read Register 12 (lower byte of baud rate generator constant) */
|
||||
|
||||
/* Read Register 13 (upper byte of baud rate generator constant) */
|
||||
|
||||
/* Read Register 15 (value of WR 15) */
|
||||
|
||||
|
||||
/*
|
||||
* Interrupt handling functions for this SCC
|
||||
*/
|
||||
|
||||
struct z8530_channel;
|
||||
|
||||
struct z8530_irqhandler
|
||||
{
|
||||
void (*rx)(struct z8530_channel *);
|
||||
void (*tx)(struct z8530_channel *);
|
||||
void (*status)(struct z8530_channel *);
|
||||
};
|
||||
|
||||
/*
|
||||
* A channel of the Z8530
|
||||
*/
|
||||
|
||||
struct z8530_channel
|
||||
{
|
||||
struct z8530_irqhandler *irqs; /* IRQ handlers */
|
||||
/*
|
||||
* Synchronous
|
||||
*/
|
||||
u16 count; /* Buyes received */
|
||||
u16 max; /* Most we can receive this frame */
|
||||
u16 mtu; /* MTU of the device */
|
||||
u8 *dptr; /* Pointer into rx buffer */
|
||||
struct sk_buff *skb; /* Buffer dptr points into */
|
||||
struct sk_buff *skb2; /* Pending buffer */
|
||||
u8 status; /* Current DCD */
|
||||
u8 dcdcheck; /* which bit to check for line */
|
||||
u8 sync; /* Set if in sync mode */
|
||||
|
||||
u8 regs[32]; /* Register map for the chip */
|
||||
u8 pendregs[32]; /* Pending register values */
|
||||
|
||||
struct sk_buff *tx_skb; /* Buffer being transmitted */
|
||||
struct sk_buff *tx_next_skb; /* Next transmit buffer */
|
||||
u8 *tx_ptr; /* Byte pointer into the buffer */
|
||||
u8 *tx_next_ptr; /* Next pointer to use */
|
||||
u8 *tx_dma_buf[2]; /* TX flip buffers for DMA */
|
||||
u8 tx_dma_used; /* Flip buffer usage toggler */
|
||||
u16 txcount; /* Count of bytes to transmit */
|
||||
|
||||
void (*rx_function)(struct z8530_channel *, struct sk_buff *);
|
||||
|
||||
/*
|
||||
* Sync DMA
|
||||
*/
|
||||
|
||||
u8 rxdma; /* DMA channels */
|
||||
u8 txdma;
|
||||
u8 rxdma_on; /* DMA active if flag set */
|
||||
u8 txdma_on;
|
||||
u8 dma_num; /* Buffer we are DMAing into */
|
||||
u8 dma_ready; /* Is the other buffer free */
|
||||
u8 dma_tx; /* TX is to use DMA */
|
||||
u8 *rx_buf[2]; /* The flip buffers */
|
||||
|
||||
/*
|
||||
* System
|
||||
*/
|
||||
|
||||
struct z8530_dev *dev; /* Z85230 chip instance we are from */
|
||||
unsigned long ctrlio; /* I/O ports */
|
||||
unsigned long dataio;
|
||||
|
||||
/*
|
||||
* For PC we encode this way.
|
||||
*/
|
||||
#define Z8530_PORT_SLEEP 0x80000000
|
||||
#define Z8530_PORT_OF(x) ((x)&0xFFFF)
|
||||
|
||||
u32 rx_overrun; /* Overruns - not done yet */
|
||||
u32 rx_crc_err;
|
||||
|
||||
/*
|
||||
* Bound device pointers
|
||||
*/
|
||||
|
||||
void *private; /* For our owner */
|
||||
struct net_device *netdevice; /* Network layer device */
|
||||
|
||||
spinlock_t *lock; /* Device lock */
|
||||
};
|
||||
|
||||
/*
|
||||
* Each Z853x0 device.
|
||||
*/
|
||||
|
||||
struct z8530_dev
|
||||
{
|
||||
char *name; /* Device instance name */
|
||||
struct z8530_channel chanA; /* SCC channel A */
|
||||
struct z8530_channel chanB; /* SCC channel B */
|
||||
int type;
|
||||
#define Z8530 0 /* NMOS dinosaur */
|
||||
#define Z85C30 1 /* CMOS - better */
|
||||
#define Z85230 2 /* CMOS with real FIFO */
|
||||
int irq; /* Interrupt for the device */
|
||||
int active; /* Soft interrupt enable - the Mac doesn't
|
||||
always have a hard disable on its 8530s... */
|
||||
spinlock_t lock;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Functions
|
||||
*/
|
||||
|
||||
extern u8 z8530_dead_port[];
|
||||
extern u8 z8530_hdlc_kilostream_85230[];
|
||||
extern u8 z8530_hdlc_kilostream[];
|
||||
irqreturn_t z8530_interrupt(int, void *);
|
||||
void z8530_describe(struct z8530_dev *, char *mapping, unsigned long io);
|
||||
int z8530_init(struct z8530_dev *);
|
||||
int z8530_shutdown(struct z8530_dev *);
|
||||
int z8530_sync_open(struct net_device *, struct z8530_channel *);
|
||||
int z8530_sync_close(struct net_device *, struct z8530_channel *);
|
||||
int z8530_sync_dma_open(struct net_device *, struct z8530_channel *);
|
||||
int z8530_sync_dma_close(struct net_device *, struct z8530_channel *);
|
||||
int z8530_sync_txdma_open(struct net_device *, struct z8530_channel *);
|
||||
int z8530_sync_txdma_close(struct net_device *, struct z8530_channel *);
|
||||
int z8530_channel_load(struct z8530_channel *, u8 *);
|
||||
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb);
|
||||
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb);
|
||||
|
||||
|
||||
/*
|
||||
* Standard interrupt vector sets
|
||||
*/
|
||||
|
||||
extern struct z8530_irqhandler z8530_sync, z8530_async, z8530_nop;
|
||||
|
||||
/*
|
||||
* Asynchronous Interfacing
|
||||
*/
|
||||
|
||||
/*
|
||||
* The size of the serial xmit buffer is 1 page, or 4096 bytes
|
||||
*/
|
||||
|
||||
#define SERIAL_XMIT_SIZE 4096
|
||||
#define WAKEUP_CHARS 256
|
||||
|
||||
/*
|
||||
* Events are used to schedule things to happen at timer-interrupt
|
||||
* time, instead of at rs interrupt time.
|
||||
*/
|
||||
#define RS_EVENT_WRITE_WAKEUP 0
|
||||
|
||||
/* Internal flags used only by kernel/chr_drv/serial.c */
|
||||
#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */
|
||||
#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */
|
||||
#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */
|
||||
#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */
|
||||
#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */
|
||||
#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */
|
||||
#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */
|
||||
|
||||
#endif /* !(_Z8530_H) */
|
Загрузка…
Ссылка в новой задаче