Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull slab changes from Pekka Enberg: "The biggest change is byte-sized freelist indices which reduces slab freelist memory usage: https://lkml.org/lkml/2013/12/2/64" * 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: mm: slab/slub: use page->list consistently instead of page->lru mm/slab.c: cleanup outdated comments and unify variables naming slab: fix wrongly used macro slub: fix high order page allocation problem with __GFP_NOFAIL slab: Make allocations with GFP_ZERO slightly more efficient slab: make more slab management structure off the slab slab: introduce byte sized index for the freelist of a slab slab: restrict the number of objects in a slab slab: introduce helper functions to get/set free object slab: factor out calculate nr objects in cache_estimate
This commit is contained in:
Коммит
bf3a340738
|
@ -124,6 +124,8 @@ struct page {
|
|||
union {
|
||||
struct list_head lru; /* Pageout list, eg. active_list
|
||||
* protected by zone->lru_lock !
|
||||
* Can be used as a generic list
|
||||
* by the page owner.
|
||||
*/
|
||||
struct { /* slub per cpu partial pages */
|
||||
struct page *next; /* Next partial slab */
|
||||
|
@ -136,7 +138,6 @@ struct page {
|
|||
#endif
|
||||
};
|
||||
|
||||
struct list_head list; /* slobs list of pages */
|
||||
struct slab *slab_page; /* slab fields */
|
||||
struct rcu_head rcu_head; /* Used by SLAB
|
||||
* when destroying via RCU
|
||||
|
|
|
@ -242,6 +242,17 @@ struct kmem_cache {
|
|||
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This restriction comes from byte sized index implementation.
|
||||
* Page size is normally 2^12 bytes and, in this case, if we want to use
|
||||
* byte sized index which can represent 2^8 entries, the size of the object
|
||||
* should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
|
||||
* If minimum size of kmalloc is less than 16, we use it as minimum object
|
||||
* size and give up to use byte sized index.
|
||||
*/
|
||||
#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
|
||||
(KMALLOC_MIN_SIZE) : 16)
|
||||
|
||||
#ifndef CONFIG_SLOB
|
||||
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
|
|
179
mm/slab.c
179
mm/slab.c
|
@ -157,6 +157,17 @@
|
|||
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
|
||||
#endif
|
||||
|
||||
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
|
||||
<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
|
||||
|
||||
#if FREELIST_BYTE_INDEX
|
||||
typedef unsigned char freelist_idx_t;
|
||||
#else
|
||||
typedef unsigned short freelist_idx_t;
|
||||
#endif
|
||||
|
||||
#define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)
|
||||
|
||||
/*
|
||||
* true if a page was allocated from pfmemalloc reserves for network-based
|
||||
* swap
|
||||
|
@ -277,8 +288,8 @@ static void kmem_cache_node_init(struct kmem_cache_node *parent)
|
|||
* OTOH the cpuarrays can contain lots of objects,
|
||||
* which could lock up otherwise freeable slabs.
|
||||
*/
|
||||
#define REAPTIMEOUT_CPUC (2*HZ)
|
||||
#define REAPTIMEOUT_LIST3 (4*HZ)
|
||||
#define REAPTIMEOUT_AC (2*HZ)
|
||||
#define REAPTIMEOUT_NODE (4*HZ)
|
||||
|
||||
#if STATS
|
||||
#define STATS_INC_ACTIVE(x) ((x)->num_active++)
|
||||
|
@ -565,9 +576,31 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
|
|||
return cachep->array[smp_processor_id()];
|
||||
}
|
||||
|
||||
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
|
||||
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
|
||||
size_t idx_size, size_t align)
|
||||
{
|
||||
return ALIGN(nr_objs * sizeof(unsigned int), align);
|
||||
int nr_objs;
|
||||
size_t freelist_size;
|
||||
|
||||
/*
|
||||
* Ignore padding for the initial guess. The padding
|
||||
* is at most @align-1 bytes, and @buffer_size is at
|
||||
* least @align. In the worst case, this result will
|
||||
* be one greater than the number of objects that fit
|
||||
* into the memory allocation when taking the padding
|
||||
* into account.
|
||||
*/
|
||||
nr_objs = slab_size / (buffer_size + idx_size);
|
||||
|
||||
/*
|
||||
* This calculated number will be either the right
|
||||
* amount, or one greater than what we want.
|
||||
*/
|
||||
freelist_size = slab_size - nr_objs * buffer_size;
|
||||
if (freelist_size < ALIGN(nr_objs * idx_size, align))
|
||||
nr_objs--;
|
||||
|
||||
return nr_objs;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -600,25 +633,9 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
|
|||
nr_objs = slab_size / buffer_size;
|
||||
|
||||
} else {
|
||||
/*
|
||||
* Ignore padding for the initial guess. The padding
|
||||
* is at most @align-1 bytes, and @buffer_size is at
|
||||
* least @align. In the worst case, this result will
|
||||
* be one greater than the number of objects that fit
|
||||
* into the memory allocation when taking the padding
|
||||
* into account.
|
||||
*/
|
||||
nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
|
||||
|
||||
/*
|
||||
* This calculated number will be either the right
|
||||
* amount, or one greater than what we want.
|
||||
*/
|
||||
if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
|
||||
> slab_size)
|
||||
nr_objs--;
|
||||
|
||||
mgmt_size = slab_mgmt_size(nr_objs, align);
|
||||
nr_objs = calculate_nr_objs(slab_size, buffer_size,
|
||||
sizeof(freelist_idx_t), align);
|
||||
mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
|
||||
}
|
||||
*num = nr_objs;
|
||||
*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
|
||||
|
@ -1067,7 +1084,7 @@ static int init_cache_node_node(int node)
|
|||
|
||||
list_for_each_entry(cachep, &slab_caches, list) {
|
||||
/*
|
||||
* Set up the size64 kmemlist for cpu before we can
|
||||
* Set up the kmem_cache_node for cpu before we can
|
||||
* begin anything. Make sure some other cpu on this
|
||||
* node has not already allocated this
|
||||
*/
|
||||
|
@ -1076,12 +1093,12 @@ static int init_cache_node_node(int node)
|
|||
if (!n)
|
||||
return -ENOMEM;
|
||||
kmem_cache_node_init(n);
|
||||
n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
|
||||
n->next_reap = jiffies + REAPTIMEOUT_NODE +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_NODE;
|
||||
|
||||
/*
|
||||
* The l3s don't come and go as CPUs come and
|
||||
* go. slab_mutex is sufficient
|
||||
* The kmem_cache_nodes don't come and go as CPUs
|
||||
* come and go. slab_mutex is sufficient
|
||||
* protection here.
|
||||
*/
|
||||
cachep->node[node] = n;
|
||||
|
@ -1406,8 +1423,8 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
|
|||
for_each_online_node(node) {
|
||||
cachep->node[node] = &init_kmem_cache_node[index + node];
|
||||
cachep->node[node]->next_reap = jiffies +
|
||||
REAPTIMEOUT_LIST3 +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
|
||||
REAPTIMEOUT_NODE +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_NODE;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2010,6 +2027,10 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
|
|||
if (!num)
|
||||
continue;
|
||||
|
||||
/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
|
||||
if (num > SLAB_OBJ_MAX_NUM)
|
||||
break;
|
||||
|
||||
if (flags & CFLGS_OFF_SLAB) {
|
||||
/*
|
||||
* Max number of objs-per-slab for caches which
|
||||
|
@ -2017,7 +2038,7 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
|
|||
* looping condition in cache_grow().
|
||||
*/
|
||||
offslab_limit = size;
|
||||
offslab_limit /= sizeof(unsigned int);
|
||||
offslab_limit /= sizeof(freelist_idx_t);
|
||||
|
||||
if (num > offslab_limit)
|
||||
break;
|
||||
|
@ -2103,8 +2124,8 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
|
|||
}
|
||||
}
|
||||
cachep->node[numa_mem_id()]->next_reap =
|
||||
jiffies + REAPTIMEOUT_LIST3 +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
|
||||
jiffies + REAPTIMEOUT_NODE +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_NODE;
|
||||
|
||||
cpu_cache_get(cachep)->avail = 0;
|
||||
cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
|
||||
|
@ -2243,7 +2264,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
|||
* it too early on. Always use on-slab management when
|
||||
* SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
|
||||
*/
|
||||
if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
|
||||
if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
|
||||
!(flags & SLAB_NOLEAKTRACE))
|
||||
/*
|
||||
* Size is large, assume best to place the slab management obj
|
||||
|
@ -2252,6 +2273,12 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
|||
flags |= CFLGS_OFF_SLAB;
|
||||
|
||||
size = ALIGN(size, cachep->align);
|
||||
/*
|
||||
* We should restrict the number of objects in a slab to implement
|
||||
* byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
|
||||
*/
|
||||
if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
|
||||
size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
|
||||
|
||||
left_over = calculate_slab_order(cachep, size, cachep->align, flags);
|
||||
|
||||
|
@ -2259,7 +2286,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
|||
return -E2BIG;
|
||||
|
||||
freelist_size =
|
||||
ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
|
||||
ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
|
||||
|
||||
/*
|
||||
* If the slab has been placed off-slab, and we have enough space then
|
||||
|
@ -2272,7 +2299,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
|||
|
||||
if (flags & CFLGS_OFF_SLAB) {
|
||||
/* really off slab. No need for manual alignment */
|
||||
freelist_size = cachep->num * sizeof(unsigned int);
|
||||
freelist_size = cachep->num * sizeof(freelist_idx_t);
|
||||
|
||||
#ifdef CONFIG_PAGE_POISONING
|
||||
/* If we're going to use the generic kernel_map_pages()
|
||||
|
@ -2300,10 +2327,10 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
|||
if (flags & CFLGS_OFF_SLAB) {
|
||||
cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
|
||||
/*
|
||||
* This is a possibility for one of the malloc_sizes caches.
|
||||
* This is a possibility for one of the kmalloc_{dma,}_caches.
|
||||
* But since we go off slab only for object size greater than
|
||||
* PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
|
||||
* this should not happen at all.
|
||||
* PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
|
||||
* in ascending order,this should not happen at all.
|
||||
* But leave a BUG_ON for some lucky dude.
|
||||
*/
|
||||
BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
|
||||
|
@ -2511,14 +2538,17 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)
|
|||
|
||||
/*
|
||||
* Get the memory for a slab management obj.
|
||||
* For a slab cache when the slab descriptor is off-slab, slab descriptors
|
||||
* always come from malloc_sizes caches. The slab descriptor cannot
|
||||
* come from the same cache which is getting created because,
|
||||
* when we are searching for an appropriate cache for these
|
||||
* descriptors in kmem_cache_create, we search through the malloc_sizes array.
|
||||
* If we are creating a malloc_sizes cache here it would not be visible to
|
||||
* kmem_find_general_cachep till the initialization is complete.
|
||||
* Hence we cannot have freelist_cache same as the original cache.
|
||||
*
|
||||
* For a slab cache when the slab descriptor is off-slab, the
|
||||
* slab descriptor can't come from the same cache which is being created,
|
||||
* Because if it is the case, that means we defer the creation of
|
||||
* the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
|
||||
* And we eventually call down to __kmem_cache_create(), which
|
||||
* in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
|
||||
* This is a "chicken-and-egg" problem.
|
||||
*
|
||||
* So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
|
||||
* which are all initialized during kmem_cache_init().
|
||||
*/
|
||||
static void *alloc_slabmgmt(struct kmem_cache *cachep,
|
||||
struct page *page, int colour_off,
|
||||
|
@ -2542,9 +2572,15 @@ static void *alloc_slabmgmt(struct kmem_cache *cachep,
|
|||
return freelist;
|
||||
}
|
||||
|
||||
static inline unsigned int *slab_freelist(struct page *page)
|
||||
static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx)
|
||||
{
|
||||
return (unsigned int *)(page->freelist);
|
||||
return ((freelist_idx_t *)page->freelist)[idx];
|
||||
}
|
||||
|
||||
static inline void set_free_obj(struct page *page,
|
||||
unsigned char idx, freelist_idx_t val)
|
||||
{
|
||||
((freelist_idx_t *)(page->freelist))[idx] = val;
|
||||
}
|
||||
|
||||
static void cache_init_objs(struct kmem_cache *cachep,
|
||||
|
@ -2589,7 +2625,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
|
|||
if (cachep->ctor)
|
||||
cachep->ctor(objp);
|
||||
#endif
|
||||
slab_freelist(page)[i] = i;
|
||||
set_free_obj(page, i, i);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2608,7 +2644,7 @@ static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
|
|||
{
|
||||
void *objp;
|
||||
|
||||
objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
|
||||
objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
|
||||
page->active++;
|
||||
#if DEBUG
|
||||
WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
|
||||
|
@ -2629,7 +2665,7 @@ static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
|
|||
|
||||
/* Verify double free bug */
|
||||
for (i = page->active; i < cachep->num; i++) {
|
||||
if (slab_freelist(page)[i] == objnr) {
|
||||
if (get_free_obj(page, i) == objnr) {
|
||||
printk(KERN_ERR "slab: double free detected in cache "
|
||||
"'%s', objp %p\n", cachep->name, objp);
|
||||
BUG();
|
||||
|
@ -2637,7 +2673,7 @@ static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
|
|||
}
|
||||
#endif
|
||||
page->active--;
|
||||
slab_freelist(page)[page->active] = objnr;
|
||||
set_free_obj(page, page->active, objnr);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2886,9 +2922,9 @@ retry:
|
|||
/* move slabp to correct slabp list: */
|
||||
list_del(&page->lru);
|
||||
if (page->active == cachep->num)
|
||||
list_add(&page->list, &n->slabs_full);
|
||||
list_add(&page->lru, &n->slabs_full);
|
||||
else
|
||||
list_add(&page->list, &n->slabs_partial);
|
||||
list_add(&page->lru, &n->slabs_partial);
|
||||
}
|
||||
|
||||
must_grow:
|
||||
|
@ -3245,11 +3281,11 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
|
|||
kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
|
||||
flags);
|
||||
|
||||
if (likely(ptr))
|
||||
if (likely(ptr)) {
|
||||
kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
|
||||
|
||||
if (unlikely((flags & __GFP_ZERO) && ptr))
|
||||
if (unlikely(flags & __GFP_ZERO))
|
||||
memset(ptr, 0, cachep->object_size);
|
||||
}
|
||||
|
||||
return ptr;
|
||||
}
|
||||
|
@ -3310,17 +3346,17 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
|
|||
flags);
|
||||
prefetchw(objp);
|
||||
|
||||
if (likely(objp))
|
||||
if (likely(objp)) {
|
||||
kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
|
||||
|
||||
if (unlikely((flags & __GFP_ZERO) && objp))
|
||||
if (unlikely(flags & __GFP_ZERO))
|
||||
memset(objp, 0, cachep->object_size);
|
||||
}
|
||||
|
||||
return objp;
|
||||
}
|
||||
|
||||
/*
|
||||
* Caller needs to acquire correct kmem_list's list_lock
|
||||
* Caller needs to acquire correct kmem_cache_node's list_lock
|
||||
*/
|
||||
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
|
||||
int node)
|
||||
|
@ -3574,11 +3610,6 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
|
|||
struct kmem_cache *cachep;
|
||||
void *ret;
|
||||
|
||||
/* If you want to save a few bytes .text space: replace
|
||||
* __ with kmem_.
|
||||
* Then kmalloc uses the uninlined functions instead of the inline
|
||||
* functions.
|
||||
*/
|
||||
cachep = kmalloc_slab(size, flags);
|
||||
if (unlikely(ZERO_OR_NULL_PTR(cachep)))
|
||||
return cachep;
|
||||
|
@ -3670,7 +3701,7 @@ EXPORT_SYMBOL(kfree);
|
|||
/*
|
||||
* This initializes kmem_cache_node or resizes various caches for all nodes.
|
||||
*/
|
||||
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
|
||||
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
|
||||
{
|
||||
int node;
|
||||
struct kmem_cache_node *n;
|
||||
|
@ -3726,8 +3757,8 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
|
|||
}
|
||||
|
||||
kmem_cache_node_init(n);
|
||||
n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
|
||||
n->next_reap = jiffies + REAPTIMEOUT_NODE +
|
||||
((unsigned long)cachep) % REAPTIMEOUT_NODE;
|
||||
n->shared = new_shared;
|
||||
n->alien = new_alien;
|
||||
n->free_limit = (1 + nr_cpus_node(node)) *
|
||||
|
@ -3813,7 +3844,7 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
|
|||
kfree(ccold);
|
||||
}
|
||||
kfree(new);
|
||||
return alloc_kmemlist(cachep, gfp);
|
||||
return alloc_kmem_cache_node(cachep, gfp);
|
||||
}
|
||||
|
||||
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
|
||||
|
@ -3982,7 +4013,7 @@ static void cache_reap(struct work_struct *w)
|
|||
if (time_after(n->next_reap, jiffies))
|
||||
goto next;
|
||||
|
||||
n->next_reap = jiffies + REAPTIMEOUT_LIST3;
|
||||
n->next_reap = jiffies + REAPTIMEOUT_NODE;
|
||||
|
||||
drain_array(searchp, n, n->shared, 0, node);
|
||||
|
||||
|
@ -4003,7 +4034,7 @@ next:
|
|||
next_reap_node();
|
||||
out:
|
||||
/* Set up the next iteration */
|
||||
schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
|
||||
schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SLABINFO
|
||||
|
@ -4210,7 +4241,7 @@ static void handle_slab(unsigned long *n, struct kmem_cache *c,
|
|||
|
||||
for (j = page->active; j < c->num; j++) {
|
||||
/* Skip freed item */
|
||||
if (slab_freelist(page)[j] == i) {
|
||||
if (get_free_obj(page, j) == i) {
|
||||
active = false;
|
||||
break;
|
||||
}
|
||||
|
|
10
mm/slob.c
10
mm/slob.c
|
@ -111,13 +111,13 @@ static inline int slob_page_free(struct page *sp)
|
|||
|
||||
static void set_slob_page_free(struct page *sp, struct list_head *list)
|
||||
{
|
||||
list_add(&sp->list, list);
|
||||
list_add(&sp->lru, list);
|
||||
__SetPageSlobFree(sp);
|
||||
}
|
||||
|
||||
static inline void clear_slob_page_free(struct page *sp)
|
||||
{
|
||||
list_del(&sp->list);
|
||||
list_del(&sp->lru);
|
||||
__ClearPageSlobFree(sp);
|
||||
}
|
||||
|
||||
|
@ -282,7 +282,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
|
|||
|
||||
spin_lock_irqsave(&slob_lock, flags);
|
||||
/* Iterate through each partially free page, try to find room */
|
||||
list_for_each_entry(sp, slob_list, list) {
|
||||
list_for_each_entry(sp, slob_list, lru) {
|
||||
#ifdef CONFIG_NUMA
|
||||
/*
|
||||
* If there's a node specification, search for a partial
|
||||
|
@ -296,7 +296,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
|
|||
continue;
|
||||
|
||||
/* Attempt to alloc */
|
||||
prev = sp->list.prev;
|
||||
prev = sp->lru.prev;
|
||||
b = slob_page_alloc(sp, size, align);
|
||||
if (!b)
|
||||
continue;
|
||||
|
@ -322,7 +322,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
|
|||
spin_lock_irqsave(&slob_lock, flags);
|
||||
sp->units = SLOB_UNITS(PAGE_SIZE);
|
||||
sp->freelist = b;
|
||||
INIT_LIST_HEAD(&sp->list);
|
||||
INIT_LIST_HEAD(&sp->lru);
|
||||
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
|
||||
set_slob_page_free(sp, slob_list);
|
||||
b = slob_page_alloc(sp, size, align);
|
||||
|
|
|
@ -1352,11 +1352,12 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
|
|||
page = alloc_slab_page(alloc_gfp, node, oo);
|
||||
if (unlikely(!page)) {
|
||||
oo = s->min;
|
||||
alloc_gfp = flags;
|
||||
/*
|
||||
* Allocation may have failed due to fragmentation.
|
||||
* Try a lower order alloc if possible
|
||||
*/
|
||||
page = alloc_slab_page(flags, node, oo);
|
||||
page = alloc_slab_page(alloc_gfp, node, oo);
|
||||
|
||||
if (page)
|
||||
stat(s, ORDER_FALLBACK);
|
||||
|
@ -1366,7 +1367,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
|
|||
&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
|
||||
int pages = 1 << oo_order(oo);
|
||||
|
||||
kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
|
||||
kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
|
||||
|
||||
/*
|
||||
* Objects from caches that have a constructor don't get
|
||||
|
|
Загрузка…
Ссылка в новой задаче