Documentation/local_ops.txt: convert to ReST markup
... and move to core-api folder. Signed-off-by: Silvio Fricke <silvio.fricke@gmail.com> Reviewed-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Родитель
c3cbf1a704
Коммит
c232694ec1
|
@ -8,6 +8,7 @@ Kernel and driver related documentation.
|
|||
:maxdepth: 1
|
||||
|
||||
assoc_array
|
||||
local_ops
|
||||
workqueue
|
||||
|
||||
.. only:: subproject
|
||||
|
|
|
@ -0,0 +1,206 @@
|
|||
|
||||
.. _local_ops:
|
||||
|
||||
=================================================
|
||||
Semantics and Behavior of Local Atomic Operations
|
||||
=================================================
|
||||
|
||||
:Author: Mathieu Desnoyers
|
||||
|
||||
|
||||
This document explains the purpose of the local atomic operations, how
|
||||
to implement them for any given architecture and shows how they can be used
|
||||
properly. It also stresses on the precautions that must be taken when reading
|
||||
those local variables across CPUs when the order of memory writes matters.
|
||||
|
||||
.. note::
|
||||
|
||||
Note that ``local_t`` based operations are not recommended for general
|
||||
kernel use. Please use the ``this_cpu`` operations instead unless there is
|
||||
really a special purpose. Most uses of ``local_t`` in the kernel have been
|
||||
replaced by ``this_cpu`` operations. ``this_cpu`` operations combine the
|
||||
relocation with the ``local_t`` like semantics in a single instruction and
|
||||
yield more compact and faster executing code.
|
||||
|
||||
|
||||
Purpose of local atomic operations
|
||||
==================================
|
||||
|
||||
Local atomic operations are meant to provide fast and highly reentrant per CPU
|
||||
counters. They minimize the performance cost of standard atomic operations by
|
||||
removing the LOCK prefix and memory barriers normally required to synchronize
|
||||
across CPUs.
|
||||
|
||||
Having fast per CPU atomic counters is interesting in many cases: it does not
|
||||
require disabling interrupts to protect from interrupt handlers and it permits
|
||||
coherent counters in NMI handlers. It is especially useful for tracing purposes
|
||||
and for various performance monitoring counters.
|
||||
|
||||
Local atomic operations only guarantee variable modification atomicity wrt the
|
||||
CPU which owns the data. Therefore, care must taken to make sure that only one
|
||||
CPU writes to the ``local_t`` data. This is done by using per cpu data and
|
||||
making sure that we modify it from within a preemption safe context. It is
|
||||
however permitted to read ``local_t`` data from any CPU: it will then appear to
|
||||
be written out of order wrt other memory writes by the owner CPU.
|
||||
|
||||
|
||||
Implementation for a given architecture
|
||||
=======================================
|
||||
|
||||
It can be done by slightly modifying the standard atomic operations: only
|
||||
their UP variant must be kept. It typically means removing LOCK prefix (on
|
||||
i386 and x86_64) and any SMP synchronization barrier. If the architecture does
|
||||
not have a different behavior between SMP and UP, including
|
||||
``asm-generic/local.h`` in your architecture's ``local.h`` is sufficient.
|
||||
|
||||
The ``local_t`` type is defined as an opaque ``signed long`` by embedding an
|
||||
``atomic_long_t`` inside a structure. This is made so a cast from this type to
|
||||
a ``long`` fails. The definition looks like::
|
||||
|
||||
typedef struct { atomic_long_t a; } local_t;
|
||||
|
||||
|
||||
Rules to follow when using local atomic operations
|
||||
==================================================
|
||||
|
||||
* Variables touched by local ops must be per cpu variables.
|
||||
* *Only* the CPU owner of these variables must write to them.
|
||||
* This CPU can use local ops from any context (process, irq, softirq, nmi, ...)
|
||||
to update its ``local_t`` variables.
|
||||
* Preemption (or interrupts) must be disabled when using local ops in
|
||||
process context to make sure the process won't be migrated to a
|
||||
different CPU between getting the per-cpu variable and doing the
|
||||
actual local op.
|
||||
* When using local ops in interrupt context, no special care must be
|
||||
taken on a mainline kernel, since they will run on the local CPU with
|
||||
preemption already disabled. I suggest, however, to explicitly
|
||||
disable preemption anyway to make sure it will still work correctly on
|
||||
-rt kernels.
|
||||
* Reading the local cpu variable will provide the current copy of the
|
||||
variable.
|
||||
* Reads of these variables can be done from any CPU, because updates to
|
||||
"``long``", aligned, variables are always atomic. Since no memory
|
||||
synchronization is done by the writer CPU, an outdated copy of the
|
||||
variable can be read when reading some *other* cpu's variables.
|
||||
|
||||
|
||||
How to use local atomic operations
|
||||
==================================
|
||||
|
||||
::
|
||||
|
||||
#include <linux/percpu.h>
|
||||
#include <asm/local.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
|
||||
Counting
|
||||
========
|
||||
|
||||
Counting is done on all the bits of a signed long.
|
||||
|
||||
In preemptible context, use ``get_cpu_var()`` and ``put_cpu_var()`` around
|
||||
local atomic operations: it makes sure that preemption is disabled around write
|
||||
access to the per cpu variable. For instance::
|
||||
|
||||
local_inc(&get_cpu_var(counters));
|
||||
put_cpu_var(counters);
|
||||
|
||||
If you are already in a preemption-safe context, you can use
|
||||
``this_cpu_ptr()`` instead::
|
||||
|
||||
local_inc(this_cpu_ptr(&counters));
|
||||
|
||||
|
||||
|
||||
Reading the counters
|
||||
====================
|
||||
|
||||
Those local counters can be read from foreign CPUs to sum the count. Note that
|
||||
the data seen by local_read across CPUs must be considered to be out of order
|
||||
relatively to other memory writes happening on the CPU that owns the data::
|
||||
|
||||
long sum = 0;
|
||||
for_each_online_cpu(cpu)
|
||||
sum += local_read(&per_cpu(counters, cpu));
|
||||
|
||||
If you want to use a remote local_read to synchronize access to a resource
|
||||
between CPUs, explicit ``smp_wmb()`` and ``smp_rmb()`` memory barriers must be used
|
||||
respectively on the writer and the reader CPUs. It would be the case if you use
|
||||
the ``local_t`` variable as a counter of bytes written in a buffer: there should
|
||||
be a ``smp_wmb()`` between the buffer write and the counter increment and also a
|
||||
``smp_rmb()`` between the counter read and the buffer read.
|
||||
|
||||
|
||||
Here is a sample module which implements a basic per cpu counter using
|
||||
``local.h``::
|
||||
|
||||
/* test-local.c
|
||||
*
|
||||
* Sample module for local.h usage.
|
||||
*/
|
||||
|
||||
|
||||
#include <asm/local.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/timer.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
static struct timer_list test_timer;
|
||||
|
||||
/* IPI called on each CPU. */
|
||||
static void test_each(void *info)
|
||||
{
|
||||
/* Increment the counter from a non preemptible context */
|
||||
printk("Increment on cpu %d\n", smp_processor_id());
|
||||
local_inc(this_cpu_ptr(&counters));
|
||||
|
||||
/* This is what incrementing the variable would look like within a
|
||||
* preemptible context (it disables preemption) :
|
||||
*
|
||||
* local_inc(&get_cpu_var(counters));
|
||||
* put_cpu_var(counters);
|
||||
*/
|
||||
}
|
||||
|
||||
static void do_test_timer(unsigned long data)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
/* Increment the counters */
|
||||
on_each_cpu(test_each, NULL, 1);
|
||||
/* Read all the counters */
|
||||
printk("Counters read from CPU %d\n", smp_processor_id());
|
||||
for_each_online_cpu(cpu) {
|
||||
printk("Read : CPU %d, count %ld\n", cpu,
|
||||
local_read(&per_cpu(counters, cpu)));
|
||||
}
|
||||
del_timer(&test_timer);
|
||||
test_timer.expires = jiffies + 1000;
|
||||
add_timer(&test_timer);
|
||||
}
|
||||
|
||||
static int __init test_init(void)
|
||||
{
|
||||
/* initialize the timer that will increment the counter */
|
||||
init_timer(&test_timer);
|
||||
test_timer.function = do_test_timer;
|
||||
test_timer.expires = jiffies + 1;
|
||||
add_timer(&test_timer);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit test_exit(void)
|
||||
{
|
||||
del_timer_sync(&test_timer);
|
||||
}
|
||||
|
||||
module_init(test_init);
|
||||
module_exit(test_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Mathieu Desnoyers");
|
||||
MODULE_DESCRIPTION("Local Atomic Ops");
|
|
@ -1,191 +0,0 @@
|
|||
Semantics and Behavior of Local Atomic Operations
|
||||
|
||||
Mathieu Desnoyers
|
||||
|
||||
|
||||
This document explains the purpose of the local atomic operations, how
|
||||
to implement them for any given architecture and shows how they can be used
|
||||
properly. It also stresses on the precautions that must be taken when reading
|
||||
those local variables across CPUs when the order of memory writes matters.
|
||||
|
||||
Note that local_t based operations are not recommended for general kernel use.
|
||||
Please use the this_cpu operations instead unless there is really a special purpose.
|
||||
Most uses of local_t in the kernel have been replaced by this_cpu operations.
|
||||
this_cpu operations combine the relocation with the local_t like semantics in
|
||||
a single instruction and yield more compact and faster executing code.
|
||||
|
||||
|
||||
* Purpose of local atomic operations
|
||||
|
||||
Local atomic operations are meant to provide fast and highly reentrant per CPU
|
||||
counters. They minimize the performance cost of standard atomic operations by
|
||||
removing the LOCK prefix and memory barriers normally required to synchronize
|
||||
across CPUs.
|
||||
|
||||
Having fast per CPU atomic counters is interesting in many cases : it does not
|
||||
require disabling interrupts to protect from interrupt handlers and it permits
|
||||
coherent counters in NMI handlers. It is especially useful for tracing purposes
|
||||
and for various performance monitoring counters.
|
||||
|
||||
Local atomic operations only guarantee variable modification atomicity wrt the
|
||||
CPU which owns the data. Therefore, care must taken to make sure that only one
|
||||
CPU writes to the local_t data. This is done by using per cpu data and making
|
||||
sure that we modify it from within a preemption safe context. It is however
|
||||
permitted to read local_t data from any CPU : it will then appear to be written
|
||||
out of order wrt other memory writes by the owner CPU.
|
||||
|
||||
|
||||
* Implementation for a given architecture
|
||||
|
||||
It can be done by slightly modifying the standard atomic operations : only
|
||||
their UP variant must be kept. It typically means removing LOCK prefix (on
|
||||
i386 and x86_64) and any SMP synchronization barrier. If the architecture does
|
||||
not have a different behavior between SMP and UP, including asm-generic/local.h
|
||||
in your architecture's local.h is sufficient.
|
||||
|
||||
The local_t type is defined as an opaque signed long by embedding an
|
||||
atomic_long_t inside a structure. This is made so a cast from this type to a
|
||||
long fails. The definition looks like :
|
||||
|
||||
typedef struct { atomic_long_t a; } local_t;
|
||||
|
||||
|
||||
* Rules to follow when using local atomic operations
|
||||
|
||||
- Variables touched by local ops must be per cpu variables.
|
||||
- _Only_ the CPU owner of these variables must write to them.
|
||||
- This CPU can use local ops from any context (process, irq, softirq, nmi, ...)
|
||||
to update its local_t variables.
|
||||
- Preemption (or interrupts) must be disabled when using local ops in
|
||||
process context to make sure the process won't be migrated to a
|
||||
different CPU between getting the per-cpu variable and doing the
|
||||
actual local op.
|
||||
- When using local ops in interrupt context, no special care must be
|
||||
taken on a mainline kernel, since they will run on the local CPU with
|
||||
preemption already disabled. I suggest, however, to explicitly
|
||||
disable preemption anyway to make sure it will still work correctly on
|
||||
-rt kernels.
|
||||
- Reading the local cpu variable will provide the current copy of the
|
||||
variable.
|
||||
- Reads of these variables can be done from any CPU, because updates to
|
||||
"long", aligned, variables are always atomic. Since no memory
|
||||
synchronization is done by the writer CPU, an outdated copy of the
|
||||
variable can be read when reading some _other_ cpu's variables.
|
||||
|
||||
|
||||
* How to use local atomic operations
|
||||
|
||||
#include <linux/percpu.h>
|
||||
#include <asm/local.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
|
||||
* Counting
|
||||
|
||||
Counting is done on all the bits of a signed long.
|
||||
|
||||
In preemptible context, use get_cpu_var() and put_cpu_var() around local atomic
|
||||
operations : it makes sure that preemption is disabled around write access to
|
||||
the per cpu variable. For instance :
|
||||
|
||||
local_inc(&get_cpu_var(counters));
|
||||
put_cpu_var(counters);
|
||||
|
||||
If you are already in a preemption-safe context, you can use
|
||||
this_cpu_ptr() instead.
|
||||
|
||||
local_inc(this_cpu_ptr(&counters));
|
||||
|
||||
|
||||
|
||||
* Reading the counters
|
||||
|
||||
Those local counters can be read from foreign CPUs to sum the count. Note that
|
||||
the data seen by local_read across CPUs must be considered to be out of order
|
||||
relatively to other memory writes happening on the CPU that owns the data.
|
||||
|
||||
long sum = 0;
|
||||
for_each_online_cpu(cpu)
|
||||
sum += local_read(&per_cpu(counters, cpu));
|
||||
|
||||
If you want to use a remote local_read to synchronize access to a resource
|
||||
between CPUs, explicit smp_wmb() and smp_rmb() memory barriers must be used
|
||||
respectively on the writer and the reader CPUs. It would be the case if you use
|
||||
the local_t variable as a counter of bytes written in a buffer : there should
|
||||
be a smp_wmb() between the buffer write and the counter increment and also a
|
||||
smp_rmb() between the counter read and the buffer read.
|
||||
|
||||
|
||||
Here is a sample module which implements a basic per cpu counter using local.h.
|
||||
|
||||
--- BEGIN ---
|
||||
/* test-local.c
|
||||
*
|
||||
* Sample module for local.h usage.
|
||||
*/
|
||||
|
||||
|
||||
#include <asm/local.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/timer.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
static struct timer_list test_timer;
|
||||
|
||||
/* IPI called on each CPU. */
|
||||
static void test_each(void *info)
|
||||
{
|
||||
/* Increment the counter from a non preemptible context */
|
||||
printk("Increment on cpu %d\n", smp_processor_id());
|
||||
local_inc(this_cpu_ptr(&counters));
|
||||
|
||||
/* This is what incrementing the variable would look like within a
|
||||
* preemptible context (it disables preemption) :
|
||||
*
|
||||
* local_inc(&get_cpu_var(counters));
|
||||
* put_cpu_var(counters);
|
||||
*/
|
||||
}
|
||||
|
||||
static void do_test_timer(unsigned long data)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
/* Increment the counters */
|
||||
on_each_cpu(test_each, NULL, 1);
|
||||
/* Read all the counters */
|
||||
printk("Counters read from CPU %d\n", smp_processor_id());
|
||||
for_each_online_cpu(cpu) {
|
||||
printk("Read : CPU %d, count %ld\n", cpu,
|
||||
local_read(&per_cpu(counters, cpu)));
|
||||
}
|
||||
del_timer(&test_timer);
|
||||
test_timer.expires = jiffies + 1000;
|
||||
add_timer(&test_timer);
|
||||
}
|
||||
|
||||
static int __init test_init(void)
|
||||
{
|
||||
/* initialize the timer that will increment the counter */
|
||||
init_timer(&test_timer);
|
||||
test_timer.function = do_test_timer;
|
||||
test_timer.expires = jiffies + 1;
|
||||
add_timer(&test_timer);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit test_exit(void)
|
||||
{
|
||||
del_timer_sync(&test_timer);
|
||||
}
|
||||
|
||||
module_init(test_init);
|
||||
module_exit(test_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Mathieu Desnoyers");
|
||||
MODULE_DESCRIPTION("Local Atomic Ops");
|
||||
--- END ---
|
Загрузка…
Ссылка в новой задаче