Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net

Three sets of overlapping changes, two in the packet scheduler
and one in the meson-gxl PHY driver.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2017-12-16 22:11:55 -05:00
Родитель 28dc4c8f45 f3b5ad89de
Коммит c30abd5e40
446 изменённых файлов: 2947 добавлений и 3468 удалений

Просмотреть файл

@ -75,3 +75,4 @@ stable kernels.
| Qualcomm Tech. | Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |

Просмотреть файл

@ -898,6 +898,13 @@ controller implements weight and absolute bandwidth limit models for
normal scheduling policy and absolute bandwidth allocation model for
realtime scheduling policy.
WARNING: cgroup2 doesn't yet support control of realtime processes and
the cpu controller can only be enabled when all RT processes are in
the root cgroup. Be aware that system management software may already
have placed RT processes into nonroot cgroups during the system boot
process, and these processes may need to be moved to the root cgroup
before the cpu controller can be enabled.
CPU Interface Files
~~~~~~~~~~~~~~~~~~~

Просмотреть файл

@ -95,6 +95,7 @@ usb: usb@47400000 {
reg = <0x47401300 0x100>;
reg-names = "phy";
ti,ctrl_mod = <&ctrl_mod>;
#phy-cells = <0>;
};
usb0: usb@47401000 {
@ -141,6 +142,7 @@ usb: usb@47400000 {
reg = <0x47401b00 0x100>;
reg-names = "phy";
ti,ctrl_mod = <&ctrl_mod>;
#phy-cells = <0>;
};
usb1: usb@47401800 {

Просмотреть файл

@ -156,6 +156,40 @@ handle it in two different ways:
root of the overlay. Finally the directory is moved to the new
location.
There are several ways to tune the "redirect_dir" feature.
Kernel config options:
- OVERLAY_FS_REDIRECT_DIR:
If this is enabled, then redirect_dir is turned on by default.
- OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW:
If this is enabled, then redirects are always followed by default. Enabling
this results in a less secure configuration. Enable this option only when
worried about backward compatibility with kernels that have the redirect_dir
feature and follow redirects even if turned off.
Module options (can also be changed through /sys/module/overlay/parameters/*):
- "redirect_dir=BOOL":
See OVERLAY_FS_REDIRECT_DIR kernel config option above.
- "redirect_always_follow=BOOL":
See OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW kernel config option above.
- "redirect_max=NUM":
The maximum number of bytes in an absolute redirect (default is 256).
Mount options:
- "redirect_dir=on":
Redirects are enabled.
- "redirect_dir=follow":
Redirects are not created, but followed.
- "redirect_dir=off":
Redirects are not created and only followed if "redirect_always_follow"
feature is enabled in the kernel/module config.
- "redirect_dir=nofollow":
Redirects are not created and not followed (equivalent to "redirect_dir=off"
if "redirect_always_follow" feature is not enabled).
Non-directories
---------------

Просмотреть файл

@ -1,874 +0,0 @@
Crossrelease
============
Started by Byungchul Park <byungchul.park@lge.com>
Contents:
(*) Background
- What causes deadlock
- How lockdep works
(*) Limitation
- Limit lockdep
- Pros from the limitation
- Cons from the limitation
- Relax the limitation
(*) Crossrelease
- Introduce crossrelease
- Introduce commit
(*) Implementation
- Data structures
- How crossrelease works
(*) Optimizations
- Avoid duplication
- Lockless for hot paths
(*) APPENDIX A: What lockdep does to work aggresively
(*) APPENDIX B: How to avoid adding false dependencies
==========
Background
==========
What causes deadlock
--------------------
A deadlock occurs when a context is waiting for an event to happen,
which is impossible because another (or the) context who can trigger the
event is also waiting for another (or the) event to happen, which is
also impossible due to the same reason.
For example:
A context going to trigger event C is waiting for event A to happen.
A context going to trigger event A is waiting for event B to happen.
A context going to trigger event B is waiting for event C to happen.
A deadlock occurs when these three wait operations run at the same time,
because event C cannot be triggered if event A does not happen, which in
turn cannot be triggered if event B does not happen, which in turn
cannot be triggered if event C does not happen. After all, no event can
be triggered since any of them never meets its condition to wake up.
A dependency might exist between two waiters and a deadlock might happen
due to an incorrect releationship between dependencies. Thus, we must
define what a dependency is first. A dependency exists between them if:
1. There are two waiters waiting for each event at a given time.
2. The only way to wake up each waiter is to trigger its event.
3. Whether one can be woken up depends on whether the other can.
Each wait in the example creates its dependency like:
Event C depends on event A.
Event A depends on event B.
Event B depends on event C.
NOTE: Precisely speaking, a dependency is one between whether a
waiter for an event can be woken up and whether another waiter for
another event can be woken up. However from now on, we will describe
a dependency as if it's one between an event and another event for
simplicity.
And they form circular dependencies like:
-> C -> A -> B -
/ \
\ /
----------------
where 'A -> B' means that event A depends on event B.
Such circular dependencies lead to a deadlock since no waiter can meet
its condition to wake up as described.
CONCLUSION
Circular dependencies cause a deadlock.
How lockdep works
-----------------
Lockdep tries to detect a deadlock by checking dependencies created by
lock operations, acquire and release. Waiting for a lock corresponds to
waiting for an event, and releasing a lock corresponds to triggering an
event in the previous section.
In short, lockdep does:
1. Detect a new dependency.
2. Add the dependency into a global graph.
3. Check if that makes dependencies circular.
4. Report a deadlock or its possibility if so.
For example, consider a graph built by lockdep that looks like:
A -> B -
\
-> E
/
C -> D -
where A, B,..., E are different lock classes.
Lockdep will add a dependency into the graph on detection of a new
dependency. For example, it will add a dependency 'E -> C' when a new
dependency between lock E and lock C is detected. Then the graph will be:
A -> B -
\
-> E -
/ \
-> C -> D - \
/ /
\ /
------------------
where A, B,..., E are different lock classes.
This graph contains a subgraph which demonstrates circular dependencies:
-> E -
/ \
-> C -> D - \
/ /
\ /
------------------
where C, D and E are different lock classes.
This is the condition under which a deadlock might occur. Lockdep
reports it on detection after adding a new dependency. This is the way
how lockdep works.
CONCLUSION
Lockdep detects a deadlock or its possibility by checking if circular
dependencies were created after adding each new dependency.
==========
Limitation
==========
Limit lockdep
-------------
Limiting lockdep to work on only typical locks e.g. spin locks and
mutexes, which are released within the acquire context, the
implementation becomes simple but its capacity for detection becomes
limited. Let's check pros and cons in next section.
Pros from the limitation
------------------------
Given the limitation, when acquiring a lock, locks in a held_locks
cannot be released if the context cannot acquire it so has to wait to
acquire it, which means all waiters for the locks in the held_locks are
stuck. It's an exact case to create dependencies between each lock in
the held_locks and the lock to acquire.
For example:
CONTEXT X
---------
acquire A
acquire B /* Add a dependency 'A -> B' */
release B
release A
where A and B are different lock classes.
When acquiring lock A, the held_locks of CONTEXT X is empty thus no
dependency is added. But when acquiring lock B, lockdep detects and adds
a new dependency 'A -> B' between lock A in the held_locks and lock B.
They can be simply added whenever acquiring each lock.
And data required by lockdep exists in a local structure, held_locks
embedded in task_struct. Forcing to access the data within the context,
lockdep can avoid racy problems without explicit locks while handling
the local data.
Lastly, lockdep only needs to keep locks currently being held, to build
a dependency graph. However, relaxing the limitation, it needs to keep
even locks already released, because a decision whether they created
dependencies might be long-deferred.
To sum up, we can expect several advantages from the limitation:
1. Lockdep can easily identify a dependency when acquiring a lock.
2. Races are avoidable while accessing local locks in a held_locks.
3. Lockdep only needs to keep locks currently being held.
CONCLUSION
Given the limitation, the implementation becomes simple and efficient.
Cons from the limitation
------------------------
Given the limitation, lockdep is applicable only to typical locks. For
example, page locks for page access or completions for synchronization
cannot work with lockdep.
Can we detect deadlocks below, under the limitation?
Example 1:
CONTEXT X CONTEXT Y CONTEXT Z
--------- --------- ----------
mutex_lock A
lock_page B
lock_page B
mutex_lock A /* DEADLOCK */
unlock_page B held by X
unlock_page B
mutex_unlock A
mutex_unlock A
where A and B are different lock classes.
No, we cannot.
Example 2:
CONTEXT X CONTEXT Y
--------- ---------
mutex_lock A
mutex_lock A
wait_for_complete B /* DEADLOCK */
complete B
mutex_unlock A
mutex_unlock A
where A is a lock class and B is a completion variable.
No, we cannot.
CONCLUSION
Given the limitation, lockdep cannot detect a deadlock or its
possibility caused by page locks or completions.
Relax the limitation
--------------------
Under the limitation, things to create dependencies are limited to
typical locks. However, synchronization primitives like page locks and
completions, which are allowed to be released in any context, also
create dependencies and can cause a deadlock. So lockdep should track
these locks to do a better job. We have to relax the limitation for
these locks to work with lockdep.
Detecting dependencies is very important for lockdep to work because
adding a dependency means adding an opportunity to check whether it
causes a deadlock. The more lockdep adds dependencies, the more it
thoroughly works. Thus Lockdep has to do its best to detect and add as
many true dependencies into a graph as possible.
For example, considering only typical locks, lockdep builds a graph like:
A -> B -
\
-> E
/
C -> D -
where A, B,..., E are different lock classes.
On the other hand, under the relaxation, additional dependencies might
be created and added. Assuming additional 'FX -> C' and 'E -> GX' are
added thanks to the relaxation, the graph will be:
A -> B -
\
-> E -> GX
/
FX -> C -> D -
where A, B,..., E, FX and GX are different lock classes, and a suffix
'X' is added on non-typical locks.
The latter graph gives us more chances to check circular dependencies
than the former. However, it might suffer performance degradation since
relaxing the limitation, with which design and implementation of lockdep
can be efficient, might introduce inefficiency inevitably. So lockdep
should provide two options, strong detection and efficient detection.
Choosing efficient detection:
Lockdep works with only locks restricted to be released within the
acquire context. However, lockdep works efficiently.
Choosing strong detection:
Lockdep works with all synchronization primitives. However, lockdep
suffers performance degradation.
CONCLUSION
Relaxing the limitation, lockdep can add additional dependencies giving
additional opportunities to check circular dependencies.
============
Crossrelease
============
Introduce crossrelease
----------------------
In order to allow lockdep to handle additional dependencies by what
might be released in any context, namely 'crosslock', we have to be able
to identify those created by crosslocks. The proposed 'crossrelease'
feature provoides a way to do that.
Crossrelease feature has to do:
1. Identify dependencies created by crosslocks.
2. Add the dependencies into a dependency graph.
That's all. Once a meaningful dependency is added into graph, then
lockdep would work with the graph as it did. The most important thing
crossrelease feature has to do is to correctly identify and add true
dependencies into the global graph.
A dependency e.g. 'A -> B' can be identified only in the A's release
context because a decision required to identify the dependency can be
made only in the release context. That is to decide whether A can be
released so that a waiter for A can be woken up. It cannot be made in
other than the A's release context.
It's no matter for typical locks because each acquire context is same as
its release context, thus lockdep can decide whether a lock can be
released in the acquire context. However for crosslocks, lockdep cannot
make the decision in the acquire context but has to wait until the
release context is identified.
Therefore, deadlocks by crosslocks cannot be detected just when it
happens, because those cannot be identified until the crosslocks are
released. However, deadlock possibilities can be detected and it's very
worth. See 'APPENDIX A' section to check why.
CONCLUSION
Using crossrelease feature, lockdep can work with what might be released
in any context, namely crosslock.
Introduce commit
----------------
Since crossrelease defers the work adding true dependencies of
crosslocks until they are actually released, crossrelease has to queue
all acquisitions which might create dependencies with the crosslocks.
Then it identifies dependencies using the queued data in batches at a
proper time. We call it 'commit'.
There are four types of dependencies:
1. TT type: 'typical lock A -> typical lock B'
Just when acquiring B, lockdep can see it's in the A's release
context. So the dependency between A and B can be identified
immediately. Commit is unnecessary.
2. TC type: 'typical lock A -> crosslock BX'
Just when acquiring BX, lockdep can see it's in the A's release
context. So the dependency between A and BX can be identified
immediately. Commit is unnecessary, too.
3. CT type: 'crosslock AX -> typical lock B'
When acquiring B, lockdep cannot identify the dependency because
there's no way to know if it's in the AX's release context. It has
to wait until the decision can be made. Commit is necessary.
4. CC type: 'crosslock AX -> crosslock BX'
When acquiring BX, lockdep cannot identify the dependency because
there's no way to know if it's in the AX's release context. It has
to wait until the decision can be made. Commit is necessary.
But, handling CC type is not implemented yet. It's a future work.
Lockdep can work without commit for typical locks, but commit step is
necessary once crosslocks are involved. Introducing commit, lockdep
performs three steps. What lockdep does in each step is:
1. Acquisition: For typical locks, lockdep does what it originally did
and queues the lock so that CT type dependencies can be checked using
it at the commit step. For crosslocks, it saves data which will be
used at the commit step and increases a reference count for it.
2. Commit: No action is reauired for typical locks. For crosslocks,
lockdep adds CT type dependencies using the data saved at the
acquisition step.
3. Release: No changes are required for typical locks. When a crosslock
is released, it decreases a reference count for it.
CONCLUSION
Crossrelease introduces commit step to handle dependencies of crosslocks
in batches at a proper time.
==============
Implementation
==============
Data structures
---------------
Crossrelease introduces two main data structures.
1. hist_lock
This is an array embedded in task_struct, for keeping lock history so
that dependencies can be added using them at the commit step. Since
it's local data, it can be accessed locklessly in the owner context.
The array is filled at the acquisition step and consumed at the
commit step. And it's managed in circular manner.
2. cross_lock
One per lockdep_map exists. This is for keeping data of crosslocks
and used at the commit step.
How crossrelease works
----------------------
It's the key of how crossrelease works, to defer necessary works to an
appropriate point in time and perform in at once at the commit step.
Let's take a look with examples step by step, starting from how lockdep
works without crossrelease for typical locks.
acquire A /* Push A onto held_locks */
acquire B /* Push B onto held_locks and add 'A -> B' */
acquire C /* Push C onto held_locks and add 'B -> C' */
release C /* Pop C from held_locks */
release B /* Pop B from held_locks */
release A /* Pop A from held_locks */
where A, B and C are different lock classes.
NOTE: This document assumes that readers already understand how
lockdep works without crossrelease thus omits details. But there's
one thing to note. Lockdep pretends to pop a lock from held_locks
when releasing it. But it's subtly different from the original pop
operation because lockdep allows other than the top to be poped.
In this case, lockdep adds 'the top of held_locks -> the lock to acquire'
dependency every time acquiring a lock.
After adding 'A -> B', a dependency graph will be:
A -> B
where A and B are different lock classes.
And after adding 'B -> C', the graph will be:
A -> B -> C
where A, B and C are different lock classes.
Let's performs commit step even for typical locks to add dependencies.
Of course, commit step is not necessary for them, however, it would work
well because this is a more general way.
acquire A
/*
* Queue A into hist_locks
*
* In hist_locks: A
* In graph: Empty
*/
acquire B
/*
* Queue B into hist_locks
*
* In hist_locks: A, B
* In graph: Empty
*/
acquire C
/*
* Queue C into hist_locks
*
* In hist_locks: A, B, C
* In graph: Empty
*/
commit C
/*
* Add 'C -> ?'
* Answer the following to decide '?'
* What has been queued since acquire C: Nothing
*
* In hist_locks: A, B, C
* In graph: Empty
*/
release C
commit B
/*
* Add 'B -> ?'
* Answer the following to decide '?'
* What has been queued since acquire B: C
*
* In hist_locks: A, B, C
* In graph: 'B -> C'
*/
release B
commit A
/*
* Add 'A -> ?'
* Answer the following to decide '?'
* What has been queued since acquire A: B, C
*
* In hist_locks: A, B, C
* In graph: 'B -> C', 'A -> B', 'A -> C'
*/
release A
where A, B and C are different lock classes.
In this case, dependencies are added at the commit step as described.
After commits for A, B and C, the graph will be:
A -> B -> C
where A, B and C are different lock classes.
NOTE: A dependency 'A -> C' is optimized out.
We can see the former graph built without commit step is same as the
latter graph built using commit steps. Of course the former way leads to
earlier finish for building the graph, which means we can detect a
deadlock or its possibility sooner. So the former way would be prefered
when possible. But we cannot avoid using the latter way for crosslocks.
Let's look at how commit steps work for crosslocks. In this case, the
commit step is performed only on crosslock AX as real. And it assumes
that the AX release context is different from the AX acquire context.
BX RELEASE CONTEXT BX ACQUIRE CONTEXT
------------------ ------------------
acquire A
/*
* Push A onto held_locks
* Queue A into hist_locks
*
* In held_locks: A
* In hist_locks: A
* In graph: Empty
*/
acquire BX
/*
* Add 'the top of held_locks -> BX'
*
* In held_locks: A
* In hist_locks: A
* In graph: 'A -> BX'
*/
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It must be guaranteed that the following operations are seen after
acquiring BX globally. It can be done by things like barrier.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
acquire C
/*
* Push C onto held_locks
* Queue C into hist_locks
*
* In held_locks: C
* In hist_locks: C
* In graph: 'A -> BX'
*/
release C
/*
* Pop C from held_locks
*
* In held_locks: Empty
* In hist_locks: C
* In graph: 'A -> BX'
*/
acquire D
/*
* Push D onto held_locks
* Queue D into hist_locks
* Add 'the top of held_locks -> D'
*
* In held_locks: A, D
* In hist_locks: A, D
* In graph: 'A -> BX', 'A -> D'
*/
acquire E
/*
* Push E onto held_locks
* Queue E into hist_locks
*
* In held_locks: E
* In hist_locks: C, E
* In graph: 'A -> BX', 'A -> D'
*/
release E
/*
* Pop E from held_locks
*
* In held_locks: Empty
* In hist_locks: D, E
* In graph: 'A -> BX', 'A -> D'
*/
release D
/*
* Pop D from held_locks
*
* In held_locks: A
* In hist_locks: A, D
* In graph: 'A -> BX', 'A -> D'
*/
commit BX
/*
* Add 'BX -> ?'
* What has been queued since acquire BX: C, E
*
* In held_locks: Empty
* In hist_locks: D, E
* In graph: 'A -> BX', 'A -> D',
* 'BX -> C', 'BX -> E'
*/
release BX
/*
* In held_locks: Empty
* In hist_locks: D, E
* In graph: 'A -> BX', 'A -> D',
* 'BX -> C', 'BX -> E'
*/
release A
/*
* Pop A from held_locks
*
* In held_locks: Empty
* In hist_locks: A, D
* In graph: 'A -> BX', 'A -> D',
* 'BX -> C', 'BX -> E'
*/
where A, BX, C,..., E are different lock classes, and a suffix 'X' is
added on crosslocks.
Crossrelease considers all acquisitions after acqiuring BX are
candidates which might create dependencies with BX. True dependencies
will be determined when identifying the release context of BX. Meanwhile,
all typical locks are queued so that they can be used at the commit step.
And then two dependencies 'BX -> C' and 'BX -> E' are added at the
commit step when identifying the release context.
The final graph will be, with crossrelease:
-> C
/
-> BX -
/ \
A - -> E
\
-> D
where A, BX, C,..., E are different lock classes, and a suffix 'X' is
added on crosslocks.
However, the final graph will be, without crossrelease:
A -> D
where A and D are different lock classes.
The former graph has three more dependencies, 'A -> BX', 'BX -> C' and
'BX -> E' giving additional opportunities to check if they cause
deadlocks. This way lockdep can detect a deadlock or its possibility
caused by crosslocks.
CONCLUSION
We checked how crossrelease works with several examples.
=============
Optimizations
=============
Avoid duplication
-----------------
Crossrelease feature uses a cache like what lockdep already uses for
dependency chains, but this time it's for caching CT type dependencies.
Once that dependency is cached, the same will never be added again.
Lockless for hot paths
----------------------
To keep all locks for later use at the commit step, crossrelease adopts
a local array embedded in task_struct, which makes access to the data
lockless by forcing it to happen only within the owner context. It's
like how lockdep handles held_locks. Lockless implmentation is important
since typical locks are very frequently acquired and released.
=================================================
APPENDIX A: What lockdep does to work aggresively
=================================================
A deadlock actually occurs when all wait operations creating circular
dependencies run at the same time. Even though they don't, a potential
deadlock exists if the problematic dependencies exist. Thus it's
meaningful to detect not only an actual deadlock but also its potential
possibility. The latter is rather valuable. When a deadlock occurs
actually, we can identify what happens in the system by some means or
other even without lockdep. However, there's no way to detect possiblity
without lockdep unless the whole code is parsed in head. It's terrible.
Lockdep does the both, and crossrelease only focuses on the latter.
Whether or not a deadlock actually occurs depends on several factors.
For example, what order contexts are switched in is a factor. Assuming
circular dependencies exist, a deadlock would occur when contexts are
switched so that all wait operations creating the dependencies run
simultaneously. Thus to detect a deadlock possibility even in the case
that it has not occured yet, lockdep should consider all possible
combinations of dependencies, trying to:
1. Use a global dependency graph.
Lockdep combines all dependencies into one global graph and uses them,
regardless of which context generates them or what order contexts are
switched in. Aggregated dependencies are only considered so they are
prone to be circular if a problem exists.
2. Check dependencies between classes instead of instances.
What actually causes a deadlock are instances of lock. However,
lockdep checks dependencies between classes instead of instances.
This way lockdep can detect a deadlock which has not happened but
might happen in future by others but the same class.
3. Assume all acquisitions lead to waiting.
Although locks might be acquired without waiting which is essential
to create dependencies, lockdep assumes all acquisitions lead to
waiting since it might be true some time or another.
CONCLUSION
Lockdep detects not only an actual deadlock but also its possibility,
and the latter is more valuable.
==================================================
APPENDIX B: How to avoid adding false dependencies
==================================================
Remind what a dependency is. A dependency exists if:
1. There are two waiters waiting for each event at a given time.
2. The only way to wake up each waiter is to trigger its event.
3. Whether one can be woken up depends on whether the other can.
For example:
acquire A
acquire B /* A dependency 'A -> B' exists */
release B
release A
where A and B are different lock classes.
A depedency 'A -> B' exists since:
1. A waiter for A and a waiter for B might exist when acquiring B.
2. Only way to wake up each is to release what it waits for.
3. Whether the waiter for A can be woken up depends on whether the
other can. IOW, TASK X cannot release A if it fails to acquire B.
For another example:
TASK X TASK Y
------ ------
acquire AX
acquire B /* A dependency 'AX -> B' exists */
release B
release AX held by Y
where AX and B are different lock classes, and a suffix 'X' is added
on crosslocks.
Even in this case involving crosslocks, the same rule can be applied. A
depedency 'AX -> B' exists since:
1. A waiter for AX and a waiter for B might exist when acquiring B.
2. Only way to wake up each is to release what it waits for.
3. Whether the waiter for AX can be woken up depends on whether the
other can. IOW, TASK X cannot release AX if it fails to acquire B.
Let's take a look at more complicated example:
TASK X TASK Y
------ ------
acquire B
release B
fork Y
acquire AX
acquire C /* A dependency 'AX -> C' exists */
release C
release AX held by Y
where AX, B and C are different lock classes, and a suffix 'X' is
added on crosslocks.
Does a dependency 'AX -> B' exist? Nope.
Two waiters are essential to create a dependency. However, waiters for
AX and B to create 'AX -> B' cannot exist at the same time in this
example. Thus the dependency 'AX -> B' cannot be created.
It would be ideal if the full set of true ones can be considered. But
we can ensure nothing but what actually happened. Relying on what
actually happens at runtime, we can anyway add only true ones, though
they might be a subset of true ones. It's similar to how lockdep works
for typical locks. There might be more true dependencies than what
lockdep has detected in runtime. Lockdep has no choice but to rely on
what actually happens. Crossrelease also relies on it.
CONCLUSION
Relying on what actually happens, lockdep can avoid adding false
dependencies.

Просмотреть файл

@ -2901,14 +2901,19 @@ userspace buffer and its length:
struct kvm_s390_irq_state {
__u64 buf;
__u32 flags;
__u32 flags; /* will stay unused for compatibility reasons */
__u32 len;
__u32 reserved[4];
__u32 reserved[4]; /* will stay unused for compatibility reasons */
};
Userspace passes in the above struct and for each pending interrupt a
struct kvm_s390_irq is copied to the provided buffer.
The structure contains a flags and a reserved field for future extensions. As
the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
reserved, these fields can not be used in the future without breaking
compatibility.
If -ENOBUFS is returned the buffer provided was too small and userspace
may retry with a bigger buffer.
@ -2932,10 +2937,14 @@ containing a struct kvm_s390_irq_state:
struct kvm_s390_irq_state {
__u64 buf;
__u32 flags; /* will stay unused for compatibility reasons */
__u32 len;
__u32 pad;
__u32 reserved[4]; /* will stay unused for compatibility reasons */
};
The restrictions for flags and reserved apply as well.
(see KVM_S390_GET_IRQ_STATE)
The userspace memory referenced by buf contains a struct kvm_s390_irq
for each interrupt to be injected into the guest.
If one of the interrupts could not be injected for some reason the

Просмотреть файл

@ -98,5 +98,25 @@ request is made for a page in an old zpool, it is uncompressed using its
original compressor. Once all pages are removed from an old zpool, the zpool
and its compressor are freed.
Some of the pages in zswap are same-value filled pages (i.e. contents of the
page have same value or repetitive pattern). These pages include zero-filled
pages and they are handled differently. During store operation, a page is
checked if it is a same-value filled page before compressing it. If true, the
compressed length of the page is set to zero and the pattern or same-filled
value is stored.
Same-value filled pages identification feature is enabled by default and can be
disabled at boot time by setting the "same_filled_pages_enabled" attribute to 0,
e.g. zswap.same_filled_pages_enabled=0. It can also be enabled and disabled at
runtime using the sysfs "same_filled_pages_enabled" attribute, e.g.
echo 1 > /sys/module/zswap/parameters/same_filled_pages_enabled
When zswap same-filled page identification is disabled at runtime, it will stop
checking for the same-value filled pages during store operation. However, the
existing pages which are marked as same-value filled pages remain stored
unchanged in zswap until they are either loaded or invalidated.
A debugfs interface is provided for various statistic about pool size, number
of pages stored, and various counters for the reasons pages are rejected.
of pages stored, same-value filled pages and various counters for the reasons
pages are rejected.

Просмотреть файл

@ -2047,7 +2047,7 @@ F: arch/arm/boot/dts/uniphier*
F: arch/arm/include/asm/hardware/cache-uniphier.h
F: arch/arm/mach-uniphier/
F: arch/arm/mm/cache-uniphier.c
F: arch/arm64/boot/dts/socionext/
F: arch/arm64/boot/dts/socionext/uniphier*
F: drivers/bus/uniphier-system-bus.c
F: drivers/clk/uniphier/
F: drivers/gpio/gpio-uniphier.c
@ -5435,7 +5435,7 @@ F: drivers/media/tuners/fc2580*
FCOE SUBSYSTEM (libfc, libfcoe, fcoe)
M: Johannes Thumshirn <jth@kernel.org>
L: fcoe-devel@open-fcoe.org
L: linux-scsi@vger.kernel.org
W: www.Open-FCoE.org
S: Supported
F: drivers/scsi/libfc/
@ -13133,6 +13133,7 @@ F: drivers/dma/dw/
SYNOPSYS DESIGNWARE ENTERPRISE ETHERNET DRIVER
M: Jie Deng <jiedeng@synopsys.com>
M: Jose Abreu <Jose.Abreu@synopsys.com>
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/synopsys/

Просмотреть файл

@ -2,7 +2,7 @@
VERSION = 4
PATCHLEVEL = 15
SUBLEVEL = 0
EXTRAVERSION = -rc2
EXTRAVERSION = -rc3
NAME = Fearless Coyote
# *DOCUMENTATION*

Просмотреть файл

@ -630,6 +630,7 @@
reg-names = "phy";
status = "disabled";
ti,ctrl_mod = <&usb_ctrl_mod>;
#phy-cells = <0>;
};
usb0: usb@47401000 {
@ -678,6 +679,7 @@
reg-names = "phy";
status = "disabled";
ti,ctrl_mod = <&usb_ctrl_mod>;
#phy-cells = <0>;
};
usb1: usb@47401800 {

Просмотреть файл

@ -927,7 +927,8 @@
reg = <0x48038000 0x2000>,
<0x46000000 0x400000>;
reg-names = "mpu", "dat";
interrupts = <80>, <81>;
interrupts = <GIC_SPI 80 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 81 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "tx", "rx";
status = "disabled";
dmas = <&edma 8 2>,
@ -941,7 +942,8 @@
reg = <0x4803C000 0x2000>,
<0x46400000 0x400000>;
reg-names = "mpu", "dat";
interrupts = <82>, <83>;
interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 83 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "tx", "rx";
status = "disabled";
dmas = <&edma 10 2>,

Просмотреть файл

@ -301,8 +301,8 @@
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&spi0_pins>;
dmas = <&edma 16
&edma 17>;
dmas = <&edma 16 0
&edma 17 0>;
dma-names = "tx0", "rx0";
flash: w25q64cvzpig@0 {

Просмотреть файл

@ -236,6 +236,7 @@
usb3_phy: usb3_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_xhci0_vbus>;
#phy-cells = <0>;
};
reg_xhci0_vbus: xhci0-vbus {

Просмотреть файл

@ -66,6 +66,7 @@
usb3_1_phy: usb3_1-phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&usb3_1_vbus>;
#phy-cells = <0>;
};
usb3_1_vbus: usb3_1-vbus {

Просмотреть файл

@ -191,11 +191,13 @@
usb3_0_phy: usb3_0_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_usb3_0_vbus>;
#phy-cells = <0>;
};
usb3_1_phy: usb3_1_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_usb3_1_vbus>;
#phy-cells = <0>;
};
reg_usb3_0_vbus: usb3-vbus0 {

Просмотреть файл

@ -276,11 +276,13 @@
usb2_1_phy: usb2_1_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_usb2_1_vbus>;
#phy-cells = <0>;
};
usb3_phy: usb3_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_usb3_vbus>;
#phy-cells = <0>;
};
reg_usb3_vbus: usb3-vbus {

Просмотреть файл

@ -85,7 +85,7 @@
timer@20200 {
compatible = "arm,cortex-a9-global-timer";
reg = <0x20200 0x100>;
interrupts = <GIC_PPI 11 IRQ_TYPE_LEVEL_HIGH>;
interrupts = <GIC_PPI 11 IRQ_TYPE_EDGE_RISING>;
clocks = <&periph_clk>;
};
@ -93,7 +93,7 @@
compatible = "arm,cortex-a9-twd-timer";
reg = <0x20600 0x20>;
interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(2) |
IRQ_TYPE_LEVEL_HIGH)>;
IRQ_TYPE_EDGE_RISING)>;
clocks = <&periph_clk>;
};

Просмотреть файл

@ -639,5 +639,6 @@
usbphy: phy {
compatible = "usb-nop-xceiv";
#phy-cells = <0>;
};
};

Просмотреть файл

@ -141,10 +141,6 @@
status = "okay";
};
&sata {
status = "okay";
};
&qspi {
bspi-sel = <0>;
flash: m25p80@0 {

Просмотреть файл

@ -177,10 +177,6 @@
status = "okay";
};
&sata {
status = "okay";
};
&srab {
compatible = "brcm,bcm58625-srab", "brcm,nsp-srab";
status = "okay";

Просмотреть файл

@ -75,6 +75,7 @@
reg = <0x47401300 0x100>;
reg-names = "phy";
ti,ctrl_mod = <&usb_ctrl_mod>;
#phy-cells = <0>;
};
usb0: usb@47401000 {
@ -385,6 +386,7 @@
reg = <0x1b00 0x100>;
reg-names = "phy";
ti,ctrl_mod = <&usb_ctrl_mod>;
#phy-cells = <0>;
};
};

Просмотреть файл

@ -433,15 +433,6 @@
clock-names = "ipg", "per";
};
srtc: srtc@53fa4000 {
compatible = "fsl,imx53-rtc", "fsl,imx25-rtc";
reg = <0x53fa4000 0x4000>;
interrupts = <24>;
interrupt-parent = <&tzic>;
clocks = <&clks IMX5_CLK_SRTC_GATE>;
clock-names = "ipg";
};
iomuxc: iomuxc@53fa8000 {
compatible = "fsl,imx53-iomuxc";
reg = <0x53fa8000 0x4000>;

Просмотреть файл

@ -72,7 +72,8 @@
};
&gpmc {
ranges = <1 0 0x08000000 0x1000000>; /* CS1: 16MB for LAN9221 */
ranges = <0 0 0x30000000 0x1000000 /* CS0: 16MB for NAND */
1 0 0x2c000000 0x1000000>; /* CS1: 16MB for LAN9221 */
ethernet@gpmc {
pinctrl-names = "default";

Просмотреть файл

@ -33,11 +33,12 @@
hsusb2_phy: hsusb2_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio1 4 GPIO_ACTIVE_LOW>; /* gpio_4 */
#phy-cells = <0>;
};
};
&gpmc {
ranges = <0 0 0x00000000 0x1000000>; /* CS0: 16MB for NAND */
ranges = <0 0 0x30000000 0x1000000>; /* CS0: 16MB for NAND */
nand@0,0 {
compatible = "ti,omap2-nand";
@ -121,7 +122,7 @@
&mmc3 {
interrupts-extended = <&intc 94 &omap3_pmx_core2 0x46>;
pinctrl-0 = <&mmc3_pins>;
pinctrl-0 = <&mmc3_pins &wl127x_gpio>;
pinctrl-names = "default";
vmmc-supply = <&wl12xx_vmmc>;
non-removable;
@ -132,8 +133,8 @@
wlcore: wlcore@2 {
compatible = "ti,wl1273";
reg = <2>;
interrupt-parent = <&gpio5>;
interrupts = <24 IRQ_TYPE_LEVEL_HIGH>; /* gpio 152 */
interrupt-parent = <&gpio1>;
interrupts = <2 IRQ_TYPE_LEVEL_HIGH>; /* gpio 2 */
ref-clock-frequency = <26000000>;
};
};
@ -157,8 +158,6 @@
OMAP3_CORE1_IOPAD(0x2166, PIN_INPUT_PULLUP | MUX_MODE3) /* sdmmc2_dat5.sdmmc3_dat1 */
OMAP3_CORE1_IOPAD(0x2168, PIN_INPUT_PULLUP | MUX_MODE3) /* sdmmc2_dat6.sdmmc3_dat2 */
OMAP3_CORE1_IOPAD(0x216a, PIN_INPUT_PULLUP | MUX_MODE3) /* sdmmc2_dat6.sdmmc3_dat3 */
OMAP3_CORE1_IOPAD(0x2184, PIN_INPUT_PULLUP | MUX_MODE4) /* mcbsp4_clkx.gpio_152 */
OMAP3_CORE1_IOPAD(0x2a0c, PIN_OUTPUT | MUX_MODE4) /* sys_boot1.gpio_3 */
OMAP3_CORE1_IOPAD(0x21d0, PIN_INPUT_PULLUP | MUX_MODE3) /* mcspi1_cs1.sdmmc3_cmd */
OMAP3_CORE1_IOPAD(0x21d2, PIN_INPUT_PULLUP | MUX_MODE3) /* mcspi1_cs2.sdmmc_clk */
>;
@ -228,6 +227,12 @@
OMAP3_WKUP_IOPAD(0x2a0e, PIN_OUTPUT | MUX_MODE4) /* sys_boot2.gpio_4 */
>;
};
wl127x_gpio: pinmux_wl127x_gpio_pin {
pinctrl-single,pins = <
OMAP3_WKUP_IOPAD(0x2a0c, PIN_INPUT | MUX_MODE4) /* sys_boot0.gpio_2 */
OMAP3_WKUP_IOPAD(0x2a0c, PIN_OUTPUT | MUX_MODE4) /* sys_boot1.gpio_3 */
>;
};
};
&omap3_pmx_core2 {

Просмотреть файл

@ -85,15 +85,6 @@
reg = <0x7c00 0x200>;
};
gpio_intc: interrupt-controller@9880 {
compatible = "amlogic,meson-gpio-intc";
reg = <0xc1109880 0x10>;
interrupt-controller;
#interrupt-cells = <2>;
amlogic,channel-interrupts = <64 65 66 67 68 69 70 71>;
status = "disabled";
};
hwrng: rng@8100 {
compatible = "amlogic,meson-rng";
reg = <0x8100 0x8>;
@ -191,6 +182,15 @@
status = "disabled";
};
gpio_intc: interrupt-controller@9880 {
compatible = "amlogic,meson-gpio-intc";
reg = <0x9880 0x10>;
interrupt-controller;
#interrupt-cells = <2>;
amlogic,channel-interrupts = <64 65 66 67 68 69 70 71>;
status = "disabled";
};
wdt: watchdog@9900 {
compatible = "amlogic,meson6-wdt";
reg = <0x9900 0x8>;

Просмотреть файл

@ -56,6 +56,7 @@
usb_phy: usb_phy {
compatible = "usb-nop-xceiv";
#phy-cells = <0>;
};
vbus_reg: vbus_reg {

Просмотреть файл

@ -90,6 +90,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio5 19 GPIO_ACTIVE_LOW>; /* gpio_147 */
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
tfp410: encoder0 {

Просмотреть файл

@ -64,6 +64,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio5 19 GPIO_ACTIVE_LOW>; /* gpio_147 */
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
sound {

Просмотреть файл

@ -43,12 +43,14 @@
hsusb1_phy: hsusb1_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&hsusb1_power>;
#phy-cells = <0>;
};
/* HS USB Host PHY on PORT 2 */
hsusb2_phy: hsusb2_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
ads7846reg: ads7846-reg {

Просмотреть файл

@ -29,6 +29,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio1 21 GPIO_ACTIVE_LOW>; /* gpio_21 */
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
leds {

Просмотреть файл

@ -120,6 +120,7 @@
hsusb2_phy: hsusb2_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio6 14 GPIO_ACTIVE_LOW>;
#phy-cells = <0>;
};
tv0: connector {

Просмотреть файл

@ -58,6 +58,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio1 24 GPIO_ACTIVE_LOW>; /* gpio_24 */
vcc-supply = <&hsusb1_power>;
#phy-cells = <0>;
};
tfp410: encoder {

Просмотреть файл

@ -37,6 +37,7 @@
hsusb2_phy: hsusb2_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio2 22 GPIO_ACTIVE_LOW>; /* gpio_54 */
#phy-cells = <0>;
};
};

Просмотреть файл

@ -51,6 +51,7 @@
hsusb1_phy: hsusb1_phy {
compatible = "usb-nop-xceiv";
vcc-supply = <&reg_vcc3>;
#phy-cells = <0>;
};
};

Просмотреть файл

@ -51,6 +51,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio6 23 GPIO_ACTIVE_LOW>; /* gpio_183 */
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
/* Regulator to trigger the nPoweron signal of the Wifi module */

Просмотреть файл

@ -205,6 +205,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio1 16 GPIO_ACTIVE_LOW>; /* GPIO_16 */
vcc-supply = <&vaux2>;
#phy-cells = <0>;
};
/* HS USB Host VBUS supply

Просмотреть файл

@ -46,6 +46,7 @@
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio6 2 GPIO_ACTIVE_LOW>; /* gpio_162 */
vcc-supply = <&hsusb2_power>;
#phy-cells = <0>;
};
sound {

Просмотреть файл

@ -715,6 +715,7 @@
compatible = "ti,ohci-omap3";
reg = <0x48064400 0x400>;
interrupts = <76>;
remote-wakeup-connected;
};
usbhsehci: ehci@48064800 {

Просмотреть файл

@ -73,6 +73,7 @@
/* HS USB Host PHY on PORT 1 */
hsusb1_phy: hsusb1_phy {
compatible = "usb-nop-xceiv";
#phy-cells = <0>;
};
/* LCD regulator from sw5 source */

Просмотреть файл

@ -43,6 +43,7 @@
hsusb1_phy: hsusb1_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio2 30 GPIO_ACTIVE_LOW>; /* gpio_62 */
#phy-cells = <0>;
pinctrl-names = "default";
pinctrl-0 = <&hsusb1phy_pins>;

Просмотреть файл

@ -89,6 +89,7 @@
hsusb1_phy: hsusb1_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio2 30 GPIO_ACTIVE_LOW>; /* gpio_62 */
#phy-cells = <0>;
vcc-supply = <&hsusb1_power>;
clocks = <&auxclk3_ck>;
clock-names = "main_clk";

Просмотреть файл

@ -44,6 +44,7 @@
reset-gpios = <&gpio6 17 GPIO_ACTIVE_LOW>; /* gpio 177 */
vcc-supply = <&vbat>;
#phy-cells = <0>;
clocks = <&auxclk3_ck>;
clock-names = "main_clk";

Просмотреть файл

@ -398,7 +398,7 @@
elm: elm@48078000 {
compatible = "ti,am3352-elm";
reg = <0x48078000 0x2000>;
interrupts = <4>;
interrupts = <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>;
ti,hwmods = "elm";
status = "disabled";
};
@ -1081,14 +1081,13 @@
usbhsohci: ohci@4a064800 {
compatible = "ti,ohci-omap3";
reg = <0x4a064800 0x400>;
interrupt-parent = <&gic>;
interrupts = <GIC_SPI 76 IRQ_TYPE_LEVEL_HIGH>;
remote-wakeup-connected;
};
usbhsehci: ehci@4a064c00 {
compatible = "ti,ehci-omap";
reg = <0x4a064c00 0x400>;
interrupt-parent = <&gic>;
interrupts = <GIC_SPI 77 IRQ_TYPE_LEVEL_HIGH>;
};
};

Просмотреть файл

@ -73,12 +73,14 @@
clocks = <&auxclk1_ck>;
clock-names = "main_clk";
clock-frequency = <19200000>;
#phy-cells = <0>;
};
/* HS USB Host PHY on PORT 3 */
hsusb3_phy: hsusb3_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio3 15 GPIO_ACTIVE_LOW>; /* gpio3_79 ETH_NRESET */
#phy-cells = <0>;
};
tpd12s015: encoder {

Просмотреть файл

@ -63,12 +63,14 @@
hsusb2_phy: hsusb2_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio3 12 GPIO_ACTIVE_LOW>; /* gpio3_76 HUB_RESET */
#phy-cells = <0>;
};
/* HS USB Host PHY on PORT 3 */
hsusb3_phy: hsusb3_phy {
compatible = "usb-nop-xceiv";
reset-gpios = <&gpio3 19 GPIO_ACTIVE_LOW>; /* gpio3_83 ETH_RESET */
#phy-cells = <0>;
};
leds {

Просмотреть файл

@ -940,6 +940,7 @@
compatible = "ti,ohci-omap3";
reg = <0x4a064800 0x400>;
interrupts = <GIC_SPI 76 IRQ_TYPE_LEVEL_HIGH>;
remote-wakeup-connected;
};
usbhsehci: ehci@4a064c00 {

Просмотреть файл

@ -1201,6 +1201,7 @@
clock-names = "extal", "usb_extal";
#clock-cells = <2>;
#power-domain-cells = <0>;
#reset-cells = <1>;
};
prr: chipid@ff000044 {

Просмотреть файл

@ -829,6 +829,7 @@
clock-names = "extal";
#clock-cells = <2>;
#power-domain-cells = <0>;
#reset-cells = <1>;
};
};

Просмотреть файл

@ -1088,6 +1088,7 @@
clock-names = "extal", "usb_extal";
#clock-cells = <2>;
#power-domain-cells = <0>;
#reset-cells = <1>;
};
rst: reset-controller@e6160000 {

Просмотреть файл

@ -1099,6 +1099,7 @@
clock-names = "extal", "usb_extal";
#clock-cells = <2>;
#power-domain-cells = <0>;
#reset-cells = <1>;
};
rst: reset-controller@e6160000 {

Просмотреть файл

@ -121,7 +121,7 @@
switch0port10: port@10 {
reg = <10>;
label = "dsa";
phy-mode = "xgmii";
phy-mode = "xaui";
link = <&switch1port10>;
};
};
@ -208,7 +208,7 @@
switch1port10: port@10 {
reg = <10>;
label = "dsa";
phy-mode = "xgmii";
phy-mode = "xaui";
link = <&switch0port10>;
};
};
@ -359,7 +359,7 @@
};
&i2c1 {
at24mac602@0 {
at24mac602@50 {
compatible = "atmel,24c02";
reg = <0x50>;
read-only;

Просмотреть файл

@ -161,8 +161,7 @@
#else
#define VTTBR_X (5 - KVM_T0SZ)
#endif
#define VTTBR_BADDR_SHIFT (VTTBR_X - 1)
#define VTTBR_BADDR_MASK (((_AC(1, ULL) << (40 - VTTBR_X)) - 1) << VTTBR_BADDR_SHIFT)
#define VTTBR_BADDR_MASK (((_AC(1, ULL) << (40 - VTTBR_X)) - 1) << VTTBR_X)
#define VTTBR_VMID_SHIFT _AC(48, ULL)
#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)

Просмотреть файл

@ -285,6 +285,11 @@ static inline void kvm_arm_init_debug(void) {}
static inline void kvm_arm_setup_debug(struct kvm_vcpu *vcpu) {}
static inline void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) {}
static inline void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu) {}
static inline bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
return false;
}
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);

Просмотреть файл

@ -102,7 +102,7 @@ static void __init meson_smp_prepare_cpus(const char *scu_compatible,
scu_base = of_iomap(node, 0);
if (!scu_base) {
pr_err("Couln't map SCU registers\n");
pr_err("Couldn't map SCU registers\n");
return;
}

Просмотреть файл

@ -68,14 +68,17 @@ void __init omap2_set_globals_cm(void __iomem *cm, void __iomem *cm2)
int cm_split_idlest_reg(struct clk_omap_reg *idlest_reg, s16 *prcm_inst,
u8 *idlest_reg_id)
{
int ret;
if (!cm_ll_data->split_idlest_reg) {
WARN_ONCE(1, "cm: %s: no low-level function defined\n",
__func__);
return -EINVAL;
}
return cm_ll_data->split_idlest_reg(idlest_reg, prcm_inst,
ret = cm_ll_data->split_idlest_reg(idlest_reg, prcm_inst,
idlest_reg_id);
*prcm_inst -= cm_base.offset;
return ret;
}
/**
@ -337,6 +340,7 @@ int __init omap2_cm_base_init(void)
if (mem) {
mem->pa = res.start + data->offset;
mem->va = data->mem + data->offset;
mem->offset = data->offset;
}
data->np = np;

Просмотреть файл

@ -73,6 +73,27 @@ phys_addr_t omap_secure_ram_mempool_base(void)
return omap_secure_memblock_base;
}
#if defined(CONFIG_ARCH_OMAP3) && defined(CONFIG_PM)
u32 omap3_save_secure_ram(void __iomem *addr, int size)
{
u32 ret;
u32 param[5];
if (size != OMAP3_SAVE_SECURE_RAM_SZ)
return OMAP3_SAVE_SECURE_RAM_SZ;
param[0] = 4; /* Number of arguments */
param[1] = __pa(addr); /* Physical address for saving */
param[2] = 0;
param[3] = 1;
param[4] = 1;
ret = save_secure_ram_context(__pa(param));
return ret;
}
#endif
/**
* rx51_secure_dispatcher: Routine to dispatch secure PPA API calls
* @idx: The PPA API index

Просмотреть файл

@ -31,6 +31,8 @@
/* Maximum Secure memory storage size */
#define OMAP_SECURE_RAM_STORAGE (88 * SZ_1K)
#define OMAP3_SAVE_SECURE_RAM_SZ 0x803F
/* Secure low power HAL API index */
#define OMAP4_HAL_SAVESECURERAM_INDEX 0x1a
#define OMAP4_HAL_SAVEHW_INDEX 0x1b
@ -65,6 +67,8 @@ extern u32 omap_smc2(u32 id, u32 falg, u32 pargs);
extern u32 omap_smc3(u32 id, u32 process, u32 flag, u32 pargs);
extern phys_addr_t omap_secure_ram_mempool_base(void);
extern int omap_secure_ram_reserve_memblock(void);
extern u32 save_secure_ram_context(u32 args_pa);
extern u32 omap3_save_secure_ram(void __iomem *save_regs, int size);
extern u32 rx51_secure_dispatcher(u32 idx, u32 process, u32 flag, u32 nargs,
u32 arg1, u32 arg2, u32 arg3, u32 arg4);

Просмотреть файл

@ -391,10 +391,8 @@ omap_device_copy_resources(struct omap_hwmod *oh,
const char *name;
int error, irq = 0;
if (!oh || !oh->od || !oh->od->pdev) {
error = -EINVAL;
goto error;
}
if (!oh || !oh->od || !oh->od->pdev)
return -EINVAL;
np = oh->od->pdev->dev.of_node;
if (!np) {
@ -516,8 +514,10 @@ struct platform_device __init *omap_device_build(const char *pdev_name,
goto odbs_exit1;
od = omap_device_alloc(pdev, &oh, 1);
if (IS_ERR(od))
if (IS_ERR(od)) {
ret = PTR_ERR(od);
goto odbs_exit1;
}
ret = platform_device_add_data(pdev, pdata, pdata_len);
if (ret)

Просмотреть файл

@ -1646,6 +1646,7 @@ static struct omap_hwmod omap3xxx_mmc3_hwmod = {
.main_clk = "mmchs3_fck",
.prcm = {
.omap2 = {
.module_offs = CORE_MOD,
.prcm_reg_id = 1,
.module_bit = OMAP3430_EN_MMC3_SHIFT,
.idlest_reg_id = 1,

Просмотреть файл

@ -81,10 +81,6 @@ extern unsigned int omap3_do_wfi_sz;
/* ... and its pointer from SRAM after copy */
extern void (*omap3_do_wfi_sram)(void);
/* save_secure_ram_context function pointer and size, for copy to SRAM */
extern int save_secure_ram_context(u32 *addr);
extern unsigned int save_secure_ram_context_sz;
extern void omap3_save_scratchpad_contents(void);
#define PM_RTA_ERRATUM_i608 (1 << 0)

Просмотреть файл

@ -48,6 +48,7 @@
#include "prm3xxx.h"
#include "pm.h"
#include "sdrc.h"
#include "omap-secure.h"
#include "sram.h"
#include "control.h"
#include "vc.h"
@ -66,7 +67,6 @@ struct power_state {
static LIST_HEAD(pwrst_list);
static int (*_omap_save_secure_sram)(u32 *addr);
void (*omap3_do_wfi_sram)(void);
static struct powerdomain *mpu_pwrdm, *neon_pwrdm;
@ -121,8 +121,8 @@ static void omap3_save_secure_ram_context(void)
* will hang the system.
*/
pwrdm_set_next_pwrst(mpu_pwrdm, PWRDM_POWER_ON);
ret = _omap_save_secure_sram((u32 *)(unsigned long)
__pa(omap3_secure_ram_storage));
ret = omap3_save_secure_ram(omap3_secure_ram_storage,
OMAP3_SAVE_SECURE_RAM_SZ);
pwrdm_set_next_pwrst(mpu_pwrdm, mpu_next_state);
/* Following is for error tracking, it should not happen */
if (ret) {
@ -434,15 +434,10 @@ static int __init pwrdms_setup(struct powerdomain *pwrdm, void *unused)
*
* The minimum set of functions is pushed to SRAM for execution:
* - omap3_do_wfi for erratum i581 WA,
* - save_secure_ram_context for security extensions.
*/
void omap_push_sram_idle(void)
{
omap3_do_wfi_sram = omap_sram_push(omap3_do_wfi, omap3_do_wfi_sz);
if (omap_type() != OMAP2_DEVICE_TYPE_GP)
_omap_save_secure_sram = omap_sram_push(save_secure_ram_context,
save_secure_ram_context_sz);
}
static void __init pm_errata_configure(void)
@ -553,7 +548,7 @@ int __init omap3_pm_init(void)
clkdm_add_wkdep(neon_clkdm, mpu_clkdm);
if (omap_type() != OMAP2_DEVICE_TYPE_GP) {
omap3_secure_ram_storage =
kmalloc(0x803F, GFP_KERNEL);
kmalloc(OMAP3_SAVE_SECURE_RAM_SZ, GFP_KERNEL);
if (!omap3_secure_ram_storage)
pr_err("Memory allocation failed when allocating for secure sram context\n");

Просмотреть файл

@ -528,6 +528,7 @@ struct omap_prcm_irq_setup {
struct omap_domain_base {
u32 pa;
void __iomem *va;
s16 offset;
};
/**

Просмотреть файл

@ -176,17 +176,6 @@ static int am33xx_pwrdm_read_pwrst(struct powerdomain *pwrdm)
return v;
}
static int am33xx_pwrdm_read_prev_pwrst(struct powerdomain *pwrdm)
{
u32 v;
v = am33xx_prm_read_reg(pwrdm->prcm_offs, pwrdm->pwrstst_offs);
v &= AM33XX_LASTPOWERSTATEENTERED_MASK;
v >>= AM33XX_LASTPOWERSTATEENTERED_SHIFT;
return v;
}
static int am33xx_pwrdm_set_lowpwrstchange(struct powerdomain *pwrdm)
{
am33xx_prm_rmw_reg_bits(AM33XX_LOWPOWERSTATECHANGE_MASK,
@ -357,7 +346,6 @@ struct pwrdm_ops am33xx_pwrdm_operations = {
.pwrdm_set_next_pwrst = am33xx_pwrdm_set_next_pwrst,
.pwrdm_read_next_pwrst = am33xx_pwrdm_read_next_pwrst,
.pwrdm_read_pwrst = am33xx_pwrdm_read_pwrst,
.pwrdm_read_prev_pwrst = am33xx_pwrdm_read_prev_pwrst,
.pwrdm_set_logic_retst = am33xx_pwrdm_set_logic_retst,
.pwrdm_read_logic_pwrst = am33xx_pwrdm_read_logic_pwrst,
.pwrdm_read_logic_retst = am33xx_pwrdm_read_logic_retst,

Просмотреть файл

@ -93,20 +93,13 @@ ENTRY(enable_omap3630_toggle_l2_on_restore)
ENDPROC(enable_omap3630_toggle_l2_on_restore)
/*
* Function to call rom code to save secure ram context. This gets
* relocated to SRAM, so it can be all in .data section. Otherwise
* we need to initialize api_params separately.
* Function to call rom code to save secure ram context.
*
* r0 = physical address of the parameters
*/
.data
.align 3
ENTRY(save_secure_ram_context)
stmfd sp!, {r4 - r11, lr} @ save registers on stack
adr r3, api_params @ r3 points to parameters
str r0, [r3,#0x4] @ r0 has sdram address
ldr r12, high_mask
and r3, r3, r12
ldr r12, sram_phy_addr_mask
orr r3, r3, r12
mov r3, r0 @ physical address of parameters
mov r0, #25 @ set service ID for PPA
mov r12, r0 @ copy secure service ID in r12
mov r1, #0 @ set task id for ROM code in r1
@ -120,18 +113,7 @@ ENTRY(save_secure_ram_context)
nop
nop
ldmfd sp!, {r4 - r11, pc}
.align
sram_phy_addr_mask:
.word SRAM_BASE_P
high_mask:
.word 0xffff
api_params:
.word 0x4, 0x0, 0x0, 0x1, 0x1
ENDPROC(save_secure_ram_context)
ENTRY(save_secure_ram_context_sz)
.word . - save_secure_ram_context
.text
/*
* ======================

Просмотреть файл

@ -557,7 +557,6 @@ config QCOM_QDF2400_ERRATUM_0065
If unsure, say Y.
config SOCIONEXT_SYNQUACER_PREITS
bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
default y
@ -576,6 +575,17 @@ config HISILICON_ERRATUM_161600802
a 128kB offset to be applied to the target address in this commands.
If unsure, say Y.
config QCOM_FALKOR_ERRATUM_E1041
bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
default y
help
Falkor CPU may speculatively fetch instructions from an improper
memory location when MMU translation is changed from SCTLR_ELn[M]=1
to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
If unsure, say Y.
endmenu

Просмотреть файл

@ -12,6 +12,7 @@ subdir-y += cavium
subdir-y += exynos
subdir-y += freescale
subdir-y += hisilicon
subdir-y += lg
subdir-y += marvell
subdir-y += mediatek
subdir-y += nvidia
@ -22,5 +23,4 @@ subdir-y += rockchip
subdir-y += socionext
subdir-y += sprd
subdir-y += xilinx
subdir-y += lg
subdir-y += zte

Просмотреть файл

@ -753,12 +753,12 @@
&uart_B {
clocks = <&xtal>, <&clkc CLKID_UART1>, <&xtal>;
clock-names = "xtal", "core", "baud";
clock-names = "xtal", "pclk", "baud";
};
&uart_C {
clocks = <&xtal>, <&clkc CLKID_UART2>, <&xtal>;
clock-names = "xtal", "core", "baud";
clock-names = "xtal", "pclk", "baud";
};
&vpu {

Просмотреть файл

@ -688,7 +688,7 @@
&uart_A {
clocks = <&xtal>, <&clkc CLKID_UART0>, <&xtal>;
clock-names = "xtal", "core", "baud";
clock-names = "xtal", "pclk", "baud";
};
&uart_AO {
@ -703,12 +703,12 @@
&uart_B {
clocks = <&xtal>, <&clkc CLKID_UART1>, <&xtal>;
clock-names = "xtal", "core", "baud";
clock-names = "xtal", "pclk", "baud";
};
&uart_C {
clocks = <&xtal>, <&clkc CLKID_UART2>, <&xtal>;
clock-names = "xtal", "core", "baud";
clock-names = "xtal", "pclk", "baud";
};
&vpu {

Просмотреть файл

@ -40,7 +40,6 @@
};
&ethsc {
interrupt-parent = <&gpio>;
interrupts = <0 8>;
};

Просмотреть файл

@ -40,7 +40,6 @@
};
&ethsc {
interrupt-parent = <&gpio>;
interrupts = <0 8>;
};

Просмотреть файл

@ -38,8 +38,7 @@
};
&ethsc {
interrupt-parent = <&gpio>;
interrupts = <0 8>;
interrupts = <4 8>;
};
&serial0 {

Просмотреть файл

@ -512,4 +512,14 @@ alternative_else_nop_endif
#endif
.endm
/**
* Errata workaround prior to disable MMU. Insert an ISB immediately prior
* to executing the MSR that will change SCTLR_ELn[M] from a value of 1 to 0.
*/
.macro pre_disable_mmu_workaround
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_E1041
isb
#endif
.endm
#endif /* __ASM_ASSEMBLER_H */

Просмотреть файл

@ -60,6 +60,9 @@ enum ftr_type {
#define FTR_VISIBLE true /* Feature visible to the user space */
#define FTR_HIDDEN false /* Feature is hidden from the user */
#define FTR_VISIBLE_IF_IS_ENABLED(config) \
(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
struct arm64_ftr_bits {
bool sign; /* Value is signed ? */
bool visible;

Просмотреть файл

@ -91,6 +91,7 @@
#define BRCM_CPU_PART_VULCAN 0x516
#define QCOM_CPU_PART_FALKOR_V1 0x800
#define QCOM_CPU_PART_FALKOR 0xC00
#define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53)
#define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57)
@ -99,6 +100,7 @@
#define MIDR_THUNDERX_81XX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX_81XX)
#define MIDR_THUNDERX_83XX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX_83XX)
#define MIDR_QCOM_FALKOR_V1 MIDR_CPU_MODEL(ARM_CPU_IMP_QCOM, QCOM_CPU_PART_FALKOR_V1)
#define MIDR_QCOM_FALKOR MIDR_CPU_MODEL(ARM_CPU_IMP_QCOM, QCOM_CPU_PART_FALKOR)
#ifndef __ASSEMBLY__

Просмотреть файл

@ -170,8 +170,7 @@
#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN_FLAGS)
#define VTTBR_X (VTTBR_X_TGRAN_MAGIC - VTCR_EL2_T0SZ_IPA)
#define VTTBR_BADDR_SHIFT (VTTBR_X - 1)
#define VTTBR_BADDR_MASK (((UL(1) << (PHYS_MASK_SHIFT - VTTBR_X)) - 1) << VTTBR_BADDR_SHIFT)
#define VTTBR_BADDR_MASK (((UL(1) << (PHYS_MASK_SHIFT - VTTBR_X)) - 1) << VTTBR_X)
#define VTTBR_VMID_SHIFT (UL(48))
#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)

Просмотреть файл

@ -370,6 +370,7 @@ void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run);
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,

Просмотреть файл

@ -42,6 +42,8 @@
#include <asm/cmpxchg.h>
#include <asm/fixmap.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
@ -149,12 +151,20 @@ static inline pte_t pte_mkwrite(pte_t pte)
static inline pte_t pte_mkclean(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
if (pte_write(pte))
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
@ -207,9 +217,6 @@ static inline void set_pte(pte_t *ptep, pte_t pte)
}
}
struct mm_struct;
struct vm_area_struct;
extern void __sync_icache_dcache(pte_t pteval, unsigned long addr);
/*
@ -238,7 +245,8 @@ static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
* hardware updates of the pte (ptep_set_access_flags safely changes
* valid ptes without going through an invalid entry).
*/
if (pte_valid(*ptep) && pte_valid(pte)) {
if (IS_ENABLED(CONFIG_DEBUG_VM) && pte_valid(*ptep) && pte_valid(pte) &&
(mm == current->active_mm || atomic_read(&mm->mm_users) > 1)) {
VM_WARN_ONCE(!pte_young(pte),
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(*ptep), pte_val(pte));
@ -641,28 +649,23 @@ static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* ptep_set_wrprotect - mark read-only while preserving the hardware update of
* the Access Flag.
* ptep_set_wrprotect - mark read-only while trasferring potential hardware
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
*/
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte, pte;
/*
* ptep_set_wrprotect() is only called on CoW mappings which are
* private (!VM_SHARED) with the pte either read-only (!PTE_WRITE &&
* PTE_RDONLY) or writable and software-dirty (PTE_WRITE &&
* !PTE_RDONLY && PTE_DIRTY); see is_cow_mapping() and
* protection_map[]. There is no race with the hardware update of the
* dirty state: clearing of PTE_RDONLY when PTE_WRITE (a.k.a. PTE_DBM)
* is set.
*/
VM_WARN_ONCE(pte_write(*ptep) && !pte_dirty(*ptep),
"%s: potential race with hardware DBM", __func__);
pte = READ_ONCE(*ptep);
do {
old_pte = pte;
/*
* If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
* clear), set the PTE_DIRTY bit.
*/
if (pte_hw_dirty(pte))
pte = pte_mkdirty(pte);
pte = pte_wrprotect(pte);
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
pte_val(old_pte), pte_val(pte));

Просмотреть файл

@ -37,6 +37,7 @@ ENTRY(__cpu_soft_restart)
mrs x12, sctlr_el1
ldr x13, =SCTLR_ELx_FLAGS
bic x12, x12, x13
pre_disable_mmu_workaround
msr sctlr_el1, x12
isb

Просмотреть файл

@ -145,7 +145,8 @@ static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
};
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),

Просмотреть файл

@ -96,6 +96,7 @@ ENTRY(entry)
mrs x0, sctlr_el2
bic x0, x0, #1 << 0 // clear SCTLR.M
bic x0, x0, #1 << 2 // clear SCTLR.C
pre_disable_mmu_workaround
msr sctlr_el2, x0
isb
b 2f
@ -103,6 +104,7 @@ ENTRY(entry)
mrs x0, sctlr_el1
bic x0, x0, #1 << 0 // clear SCTLR.M
bic x0, x0, #1 << 2 // clear SCTLR.C
pre_disable_mmu_workaround
msr sctlr_el1, x0
isb
2:

Просмотреть файл

@ -1043,7 +1043,7 @@ void fpsimd_update_current_state(struct fpsimd_state *state)
local_bh_disable();
current->thread.fpsimd_state = *state;
current->thread.fpsimd_state.user_fpsimd = state->user_fpsimd;
if (system_supports_sve() && test_thread_flag(TIF_SVE))
fpsimd_to_sve(current);

Просмотреть файл

@ -750,6 +750,7 @@ __primary_switch:
* to take into account by discarding the current kernel mapping and
* creating a new one.
*/
pre_disable_mmu_workaround
msr sctlr_el1, x20 // disable the MMU
isb
bl __create_page_tables // recreate kernel mapping

Просмотреть файл

@ -28,6 +28,7 @@
#include <linux/perf_event.h>
#include <linux/ptrace.h>
#include <linux/smp.h>
#include <linux/uaccess.h>
#include <asm/compat.h>
#include <asm/current.h>
@ -36,7 +37,6 @@
#include <asm/traps.h>
#include <asm/cputype.h>
#include <asm/system_misc.h>
#include <asm/uaccess.h>
/* Breakpoint currently in use for each BRP. */
static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);

Просмотреть файл

@ -45,6 +45,7 @@ ENTRY(arm64_relocate_new_kernel)
mrs x0, sctlr_el2
ldr x1, =SCTLR_ELx_FLAGS
bic x0, x0, x1
pre_disable_mmu_workaround
msr sctlr_el2, x0
isb
1:

Просмотреть файл

@ -221,3 +221,24 @@ void kvm_arm_clear_debug(struct kvm_vcpu *vcpu)
}
}
}
/*
* After successfully emulating an instruction, we might want to
* return to user space with a KVM_EXIT_DEBUG. We can only do this
* once the emulation is complete, though, so for userspace emulations
* we have to wait until we have re-entered KVM before calling this
* helper.
*
* Return true (and set exit_reason) to return to userspace or false
* if no further action is required.
*/
bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
run->exit_reason = KVM_EXIT_DEBUG;
run->debug.arch.hsr = ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT;
return true;
}
return false;
}

Просмотреть файл

@ -28,6 +28,7 @@
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_psci.h>
#include <asm/debug-monitors.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
@ -186,6 +187,40 @@ static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
return arm_exit_handlers[hsr_ec];
}
/*
* We may be single-stepping an emulated instruction. If the emulation
* has been completed in the kernel, we can return to userspace with a
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
* emulation first.
*/
static int handle_trap_exceptions(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int handled;
/*
* See ARM ARM B1.14.1: "Hyp traps on instructions
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
handled = 1;
} else {
exit_handle_fn exit_handler;
exit_handler = kvm_get_exit_handler(vcpu);
handled = exit_handler(vcpu, run);
}
/*
* kvm_arm_handle_step_debug() sets the exit_reason on the kvm_run
* structure if we need to return to userspace.
*/
if (handled > 0 && kvm_arm_handle_step_debug(vcpu, run))
handled = 0;
return handled;
}
/*
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to userspace.
@ -193,8 +228,6 @@ static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index)
{
exit_handle_fn exit_handler;
if (ARM_SERROR_PENDING(exception_index)) {
u8 hsr_ec = ESR_ELx_EC(kvm_vcpu_get_hsr(vcpu));
@ -220,20 +253,14 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
return 1;
case ARM_EXCEPTION_EL1_SERROR:
kvm_inject_vabt(vcpu);
return 1;
case ARM_EXCEPTION_TRAP:
/*
* See ARM ARM B1.14.1: "Hyp traps on instructions
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
/* We may still need to return for single-step */
if (!(*vcpu_cpsr(vcpu) & DBG_SPSR_SS)
&& kvm_arm_handle_step_debug(vcpu, run))
return 0;
else
return 1;
}
exit_handler = kvm_get_exit_handler(vcpu);
return exit_handler(vcpu, run);
case ARM_EXCEPTION_TRAP:
return handle_trap_exceptions(vcpu, run);
case ARM_EXCEPTION_HYP_GONE:
/*
* EL2 has been reset to the hyp-stub. This happens when a guest

Просмотреть файл

@ -151,6 +151,7 @@ reset:
mrs x5, sctlr_el2
ldr x6, =SCTLR_ELx_FLAGS
bic x5, x5, x6 // Clear SCTL_M and etc
pre_disable_mmu_workaround
msr sctlr_el2, x5
isb

Просмотреть файл

@ -22,6 +22,7 @@
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
static bool __hyp_text __fpsimd_enabled_nvhe(void)
{
@ -269,7 +270,11 @@ static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
return true;
}
static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
/* Skip an instruction which has been emulated. Returns true if
* execution can continue or false if we need to exit hyp mode because
* single-step was in effect.
*/
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
{
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
@ -282,6 +287,14 @@ static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
}
write_sysreg_el2(*vcpu_pc(vcpu), elr);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
vcpu->arch.fault.esr_el2 =
(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
return false;
} else {
return true;
}
}
int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
@ -342,13 +355,21 @@ again:
int ret = __vgic_v2_perform_cpuif_access(vcpu);
if (ret == 1) {
__skip_instr(vcpu);
goto again;
if (__skip_instr(vcpu))
goto again;
else
exit_code = ARM_EXCEPTION_TRAP;
}
if (ret == -1) {
/* Promote an illegal access to an SError */
__skip_instr(vcpu);
/* Promote an illegal access to an
* SError. If we would be returning
* due to single-step clear the SS
* bit so handle_exit knows what to
* do after dealing with the error.
*/
if (!__skip_instr(vcpu))
*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
exit_code = ARM_EXCEPTION_EL1_SERROR;
}
@ -363,8 +384,10 @@ again:
int ret = __vgic_v3_perform_cpuif_access(vcpu);
if (ret == 1) {
__skip_instr(vcpu);
goto again;
if (__skip_instr(vcpu))
goto again;
else
exit_code = ARM_EXCEPTION_TRAP;
}
/* 0 falls through to be handled out of EL2 */

Просмотреть файл

@ -389,7 +389,7 @@ void ptdump_check_wx(void)
.check_wx = true,
};
walk_pgd(&st, &init_mm, 0);
walk_pgd(&st, &init_mm, VA_START);
note_page(&st, 0, 0, 0);
if (st.wx_pages || st.uxn_pages)
pr_warn("Checked W+X mappings: FAILED, %lu W+X pages found, %lu non-UXN pages found\n",

Просмотреть файл

@ -574,7 +574,6 @@ static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
struct siginfo info;
const struct fault_info *inf;
int ret = 0;
inf = esr_to_fault_info(esr);
pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
@ -589,7 +588,7 @@ static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
if (interrupts_enabled(regs))
nmi_enter();
ret = ghes_notify_sea();
ghes_notify_sea();
if (interrupts_enabled(regs))
nmi_exit();
@ -604,7 +603,7 @@ static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
info.si_addr = (void __user *)addr;
arm64_notify_die("", regs, &info, esr);
return ret;
return 0;
}
static const struct fault_info fault_info[] = {

Просмотреть файл

@ -476,6 +476,8 @@ void __init arm64_memblock_init(void)
reserve_elfcorehdr();
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
dma_contiguous_reserve(arm64_dma_phys_limit);
memblock_allow_resize();
@ -502,7 +504,6 @@ void __init bootmem_init(void)
sparse_init();
zone_sizes_init(min, max);
high_memory = __va((max << PAGE_SHIFT) - 1) + 1;
memblock_dump_all();
}

Просмотреть файл

@ -38,6 +38,25 @@
#define smp_rmb() RISCV_FENCE(r,r)
#define smp_wmb() RISCV_FENCE(w,w)
/*
* This is a very specific barrier: it's currently only used in two places in
* the kernel, both in the scheduler. See include/linux/spinlock.h for the two
* orderings it guarantees, but the "critical section is RCsc" guarantee
* mandates a barrier on RISC-V. The sequence looks like:
*
* lr.aq lock
* sc lock <= LOCKED
* smp_mb__after_spinlock()
* // critical section
* lr lock
* sc.rl lock <= UNLOCKED
*
* The AQ/RL pair provides a RCpc critical section, but there's not really any
* way we can take advantage of that here because the ordering is only enforced
* on that one lock. Thus, we're just doing a full fence.
*/
#define smp_mb__after_spinlock() RISCV_FENCE(rw,rw)
#include <asm-generic/barrier.h>
#endif /* __ASSEMBLY__ */

Просмотреть файл

@ -38,10 +38,6 @@
#include <asm/tlbflush.h>
#include <asm/thread_info.h>
#ifdef CONFIG_HVC_RISCV_SBI
#include <asm/hvc_riscv_sbi.h>
#endif
#ifdef CONFIG_DUMMY_CONSOLE
struct screen_info screen_info = {
.orig_video_lines = 30,
@ -212,13 +208,6 @@ static void __init setup_bootmem(void)
void __init setup_arch(char **cmdline_p)
{
#if defined(CONFIG_HVC_RISCV_SBI)
if (likely(early_console == NULL)) {
early_console = &riscv_sbi_early_console_dev;
register_console(early_console);
}
#endif
#ifdef CONFIG_CMDLINE_BOOL
#ifdef CONFIG_CMDLINE_OVERRIDE
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);

Просмотреть файл

@ -70,7 +70,7 @@ SYSCALL_DEFINE3(riscv_flush_icache, uintptr_t, start, uintptr_t, end,
bool local = (flags & SYS_RISCV_FLUSH_ICACHE_LOCAL) != 0;
/* Check the reserved flags. */
if (unlikely(flags & !SYS_RISCV_FLUSH_ICACHE_ALL))
if (unlikely(flags & ~SYS_RISCV_FLUSH_ICACHE_ALL))
return -EINVAL;
flush_icache_mm(mm, local);

Просмотреть файл

@ -1264,12 +1264,6 @@ static inline pud_t pud_mkwrite(pud_t pud)
return pud;
}
#define pud_write pud_write
static inline int pud_write(pud_t pud)
{
return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
}
static inline pud_t pud_mkclean(pud_t pud)
{
if (pud_large(pud)) {

Просмотреть файл

@ -263,6 +263,7 @@ COMPAT_SYSCALL_DEFINE2(s390_setgroups16, int, gidsetsize, u16 __user *, grouplis
return retval;
}
groups_sort(group_info);
retval = set_current_groups(group_info);
put_group_info(group_info);

Просмотреть файл

@ -1,10 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
# Makefile for kernel virtual machines on s390
#
# Copyright IBM Corp. 2008
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License (version 2 only)
# as published by the Free Software Foundation.
KVM := ../../../virt/kvm
common-objs = $(KVM)/kvm_main.o $(KVM)/eventfd.o $(KVM)/async_pf.o $(KVM)/irqchip.o $(KVM)/vfio.o

Просмотреть файл

@ -1,12 +1,9 @@
// SPDX-License-Identifier: GPL-2.0
/*
* handling diagnose instructions
*
* Copyright IBM Corp. 2008, 2011
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
*/

Просмотреть файл

@ -1,12 +1,9 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* access guest memory
*
* Copyright IBM Corp. 2008, 2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
*/

Просмотреть файл

@ -1,12 +1,9 @@
// SPDX-License-Identifier: GPL-2.0
/*
* kvm guest debug support
*
* Copyright IBM Corp. 2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
*/
#include <linux/kvm_host.h>

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше