pkeys: Add details of system call use to Documentation/
This spells out all of the pkey-related system calls that we have and provides some example code fragments to demonstrate how we expect them to be used. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-arch@vger.kernel.org Cc: Dave Hansen <dave@sr71.net> Cc: mgorman@techsingularity.net Cc: arnd@arndb.de Cc: linux-api@vger.kernel.org Cc: linux-mm@kvack.org Cc: luto@kernel.org Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/20160729163020.59350E33@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Родитель
a60f7b69d9
Коммит
c74fe39408
|
@ -18,6 +18,68 @@ even though there is theoretically space in the PAE PTEs. These
|
|||
permissions are enforced on data access only and have no effect on
|
||||
instruction fetches.
|
||||
|
||||
=========================== Syscalls ===========================
|
||||
|
||||
There are 2 system calls which directly interact with pkeys:
|
||||
|
||||
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
|
||||
int pkey_free(int pkey);
|
||||
int pkey_mprotect(unsigned long start, size_t len,
|
||||
unsigned long prot, int pkey);
|
||||
|
||||
Before a pkey can be used, it must first be allocated with
|
||||
pkey_alloc(). An application calls the WRPKRU instruction
|
||||
directly in order to change access permissions to memory covered
|
||||
with a key. In this example WRPKRU is wrapped by a C function
|
||||
called pkey_set().
|
||||
|
||||
int real_prot = PROT_READ|PROT_WRITE;
|
||||
pkey = pkey_alloc(0, PKEY_DENY_WRITE);
|
||||
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
||||
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
|
||||
... application runs here
|
||||
|
||||
Now, if the application needs to update the data at 'ptr', it can
|
||||
gain access, do the update, then remove its write access:
|
||||
|
||||
pkey_set(pkey, 0); // clear PKEY_DENY_WRITE
|
||||
*ptr = foo; // assign something
|
||||
pkey_set(pkey, PKEY_DENY_WRITE); // set PKEY_DENY_WRITE again
|
||||
|
||||
Now when it frees the memory, it will also free the pkey since it
|
||||
is no longer in use:
|
||||
|
||||
munmap(ptr, PAGE_SIZE);
|
||||
pkey_free(pkey);
|
||||
|
||||
=========================== Behavior ===========================
|
||||
|
||||
The kernel attempts to make protection keys consistent with the
|
||||
behavior of a plain mprotect(). For instance if you do this:
|
||||
|
||||
mprotect(ptr, size, PROT_NONE);
|
||||
something(ptr);
|
||||
|
||||
you can expect the same effects with protection keys when doing this:
|
||||
|
||||
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
|
||||
pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
|
||||
something(ptr);
|
||||
|
||||
That should be true whether something() is a direct access to 'ptr'
|
||||
like:
|
||||
|
||||
*ptr = foo;
|
||||
|
||||
or when the kernel does the access on the application's behalf like
|
||||
with a read():
|
||||
|
||||
read(fd, ptr, 1);
|
||||
|
||||
The kernel will send a SIGSEGV in both cases, but si_code will be set
|
||||
to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
|
||||
the plain mprotect() permissions are violated.
|
||||
|
||||
=========================== Config Option ===========================
|
||||
|
||||
This config option adds approximately 1.5kb of text. and 50 bytes of
|
||||
|
|
Загрузка…
Ссылка в новой задаче