mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting similar data, one for file backed pages and the other for anon memory. To this end, this lock can also be a rwsem. In addition, there are some important opportunities to share the lock when there are no tree modifications. This conversion is straightforward. For now, all users take the write lock. [sfr@canb.auug.org.au: update fremap.c] Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Родитель
83cde9e8ba
Коммит
c8c06efa8b
|
@ -472,12 +472,12 @@ static struct inode *hugetlbfs_get_root(struct super_block *sb,
|
|||
}
|
||||
|
||||
/*
|
||||
* Hugetlbfs is not reclaimable; therefore its i_mmap_mutex will never
|
||||
* Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
|
||||
* be taken from reclaim -- unlike regular filesystems. This needs an
|
||||
* annotation because huge_pmd_share() does an allocation under
|
||||
* i_mmap_mutex.
|
||||
* i_mmap_rwsem.
|
||||
*/
|
||||
static struct lock_class_key hugetlbfs_i_mmap_mutex_key;
|
||||
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
|
||||
|
||||
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
|
||||
struct inode *dir,
|
||||
|
@ -495,8 +495,8 @@ static struct inode *hugetlbfs_get_inode(struct super_block *sb,
|
|||
struct hugetlbfs_inode_info *info;
|
||||
inode->i_ino = get_next_ino();
|
||||
inode_init_owner(inode, dir, mode);
|
||||
lockdep_set_class(&inode->i_mapping->i_mmap_mutex,
|
||||
&hugetlbfs_i_mmap_mutex_key);
|
||||
lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
|
||||
&hugetlbfs_i_mmap_rwsem_key);
|
||||
inode->i_mapping->a_ops = &hugetlbfs_aops;
|
||||
inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
|
||||
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
||||
|
|
|
@ -346,7 +346,7 @@ void address_space_init_once(struct address_space *mapping)
|
|||
memset(mapping, 0, sizeof(*mapping));
|
||||
INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
|
||||
spin_lock_init(&mapping->tree_lock);
|
||||
mutex_init(&mapping->i_mmap_mutex);
|
||||
init_rwsem(&mapping->i_mmap_rwsem);
|
||||
INIT_LIST_HEAD(&mapping->private_list);
|
||||
spin_lock_init(&mapping->private_lock);
|
||||
mapping->i_mmap = RB_ROOT;
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include <linux/pid.h>
|
||||
#include <linux/bug.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/capability.h>
|
||||
#include <linux/semaphore.h>
|
||||
#include <linux/fiemap.h>
|
||||
|
@ -401,7 +402,7 @@ struct address_space {
|
|||
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
|
||||
struct rb_root i_mmap; /* tree of private and shared mappings */
|
||||
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
|
||||
struct mutex i_mmap_mutex; /* protect tree, count, list */
|
||||
struct rw_semaphore i_mmap_rwsem; /* protect tree, count, list */
|
||||
/* Protected by tree_lock together with the radix tree */
|
||||
unsigned long nrpages; /* number of total pages */
|
||||
unsigned long nrshadows; /* number of shadow entries */
|
||||
|
@ -469,12 +470,12 @@ int mapping_tagged(struct address_space *mapping, int tag);
|
|||
|
||||
static inline void i_mmap_lock_write(struct address_space *mapping)
|
||||
{
|
||||
mutex_lock(&mapping->i_mmap_mutex);
|
||||
down_write(&mapping->i_mmap_rwsem);
|
||||
}
|
||||
|
||||
static inline void i_mmap_unlock_write(struct address_space *mapping)
|
||||
{
|
||||
mutex_unlock(&mapping->i_mmap_mutex);
|
||||
up_write(&mapping->i_mmap_rwsem);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -154,7 +154,7 @@ struct mmu_notifier_ops {
|
|||
* Therefore notifier chains can only be traversed when either
|
||||
*
|
||||
* 1. mmap_sem is held.
|
||||
* 2. One of the reverse map locks is held (i_mmap_mutex or anon_vma->rwsem).
|
||||
* 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
|
||||
* 3. No other concurrent thread can access the list (release)
|
||||
*/
|
||||
struct mmu_notifier {
|
||||
|
|
|
@ -731,7 +731,7 @@ build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
|
|||
|
||||
if (!prev && !more) {
|
||||
/*
|
||||
* Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
|
||||
* Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
|
||||
* reclaim. This is optimistic, no harm done if it fails.
|
||||
*/
|
||||
prev = kmalloc(sizeof(struct map_info),
|
||||
|
|
10
mm/filemap.c
10
mm/filemap.c
|
@ -62,16 +62,16 @@
|
|||
/*
|
||||
* Lock ordering:
|
||||
*
|
||||
* ->i_mmap_mutex (truncate_pagecache)
|
||||
* ->i_mmap_rwsem (truncate_pagecache)
|
||||
* ->private_lock (__free_pte->__set_page_dirty_buffers)
|
||||
* ->swap_lock (exclusive_swap_page, others)
|
||||
* ->mapping->tree_lock
|
||||
*
|
||||
* ->i_mutex
|
||||
* ->i_mmap_mutex (truncate->unmap_mapping_range)
|
||||
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
|
||||
*
|
||||
* ->mmap_sem
|
||||
* ->i_mmap_mutex
|
||||
* ->i_mmap_rwsem
|
||||
* ->page_table_lock or pte_lock (various, mainly in memory.c)
|
||||
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
|
||||
*
|
||||
|
@ -85,7 +85,7 @@
|
|||
* sb_lock (fs/fs-writeback.c)
|
||||
* ->mapping->tree_lock (__sync_single_inode)
|
||||
*
|
||||
* ->i_mmap_mutex
|
||||
* ->i_mmap_rwsem
|
||||
* ->anon_vma.lock (vma_adjust)
|
||||
*
|
||||
* ->anon_vma.lock
|
||||
|
@ -105,7 +105,7 @@
|
|||
* ->inode->i_lock (zap_pte_range->set_page_dirty)
|
||||
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
|
||||
*
|
||||
* ->i_mmap_mutex
|
||||
* ->i_mmap_rwsem
|
||||
* ->tasklist_lock (memory_failure, collect_procs_ao)
|
||||
*/
|
||||
|
||||
|
|
10
mm/hugetlb.c
10
mm/hugetlb.c
|
@ -2726,9 +2726,9 @@ void __unmap_hugepage_range_final(struct mmu_gather *tlb,
|
|||
* on its way out. We're lucky that the flag has such an appropriate
|
||||
* name, and can in fact be safely cleared here. We could clear it
|
||||
* before the __unmap_hugepage_range above, but all that's necessary
|
||||
* is to clear it before releasing the i_mmap_mutex. This works
|
||||
* is to clear it before releasing the i_mmap_rwsem. This works
|
||||
* because in the context this is called, the VMA is about to be
|
||||
* destroyed and the i_mmap_mutex is held.
|
||||
* destroyed and the i_mmap_rwsem is held.
|
||||
*/
|
||||
vma->vm_flags &= ~VM_MAYSHARE;
|
||||
}
|
||||
|
@ -3370,9 +3370,9 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
|
|||
spin_unlock(ptl);
|
||||
}
|
||||
/*
|
||||
* Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
|
||||
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
|
||||
* may have cleared our pud entry and done put_page on the page table:
|
||||
* once we release i_mmap_mutex, another task can do the final put_page
|
||||
* once we release i_mmap_rwsem, another task can do the final put_page
|
||||
* and that page table be reused and filled with junk.
|
||||
*/
|
||||
flush_tlb_range(vma, start, end);
|
||||
|
@ -3525,7 +3525,7 @@ static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
|
|||
* and returns the corresponding pte. While this is not necessary for the
|
||||
* !shared pmd case because we can allocate the pmd later as well, it makes the
|
||||
* code much cleaner. pmd allocation is essential for the shared case because
|
||||
* pud has to be populated inside the same i_mmap_mutex section - otherwise
|
||||
* pud has to be populated inside the same i_mmap_rwsem section - otherwise
|
||||
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
|
||||
* bad pmd for sharing.
|
||||
*/
|
||||
|
|
|
@ -232,7 +232,7 @@ error:
|
|||
}
|
||||
|
||||
/*
|
||||
* Requires inode->i_mapping->i_mmap_mutex
|
||||
* Requires inode->i_mapping->i_mmap_rwsem
|
||||
*/
|
||||
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
|
||||
struct file *file, struct address_space *mapping)
|
||||
|
@ -2791,7 +2791,7 @@ void exit_mmap(struct mm_struct *mm)
|
|||
|
||||
/* Insert vm structure into process list sorted by address
|
||||
* and into the inode's i_mmap tree. If vm_file is non-NULL
|
||||
* then i_mmap_mutex is taken here.
|
||||
* then i_mmap_rwsem is taken here.
|
||||
*/
|
||||
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
|
||||
{
|
||||
|
@ -3086,7 +3086,7 @@ static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
|
|||
*/
|
||||
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
|
||||
BUG();
|
||||
mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
|
||||
down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3113,7 +3113,7 @@ static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
|
|||
* vma in this mm is backed by the same anon_vma or address_space.
|
||||
*
|
||||
* We can take all the locks in random order because the VM code
|
||||
* taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
|
||||
* taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
|
||||
* takes more than one of them in a row. Secondly we're protected
|
||||
* against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
|
||||
*
|
||||
|
|
|
@ -99,7 +99,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|||
spinlock_t *old_ptl, *new_ptl;
|
||||
|
||||
/*
|
||||
* When need_rmap_locks is true, we take the i_mmap_mutex and anon_vma
|
||||
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
|
||||
* locks to ensure that rmap will always observe either the old or the
|
||||
* new ptes. This is the easiest way to avoid races with
|
||||
* truncate_pagecache(), page migration, etc...
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
* inode->i_mutex (while writing or truncating, not reading or faulting)
|
||||
* mm->mmap_sem
|
||||
* page->flags PG_locked (lock_page)
|
||||
* mapping->i_mmap_mutex
|
||||
* mapping->i_mmap_rwsem
|
||||
* anon_vma->rwsem
|
||||
* mm->page_table_lock or pte_lock
|
||||
* zone->lru_lock (in mark_page_accessed, isolate_lru_page)
|
||||
|
@ -1260,7 +1260,7 @@ out_mlock:
|
|||
/*
|
||||
* We need mmap_sem locking, Otherwise VM_LOCKED check makes
|
||||
* unstable result and race. Plus, We can't wait here because
|
||||
* we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
|
||||
* we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
|
||||
* if trylock failed, the page remain in evictable lru and later
|
||||
* vmscan could retry to move the page to unevictable lru if the
|
||||
* page is actually mlocked.
|
||||
|
@ -1684,7 +1684,7 @@ static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
|
|||
* The page lock not only makes sure that page->mapping cannot
|
||||
* suddenly be NULLified by truncation, it makes sure that the
|
||||
* structure at mapping cannot be freed and reused yet,
|
||||
* so we can safely take mapping->i_mmap_mutex.
|
||||
* so we can safely take mapping->i_mmap_rwsem.
|
||||
*/
|
||||
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче