x86: merge common parts of uaccess.
Common parts of uaccess_32.h and uaccess_64.h are put in uaccess.h. Bits in uaccess_32.h and uaccess_64.h that come to this file are equal except for comments and whitespaces differences. Signed-off-by: Glauber Costa <gcosta@redhat.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Родитель
be9d06bfd4
Коммит
ca23386216
|
@ -1,5 +1,129 @@
|
|||
#ifndef _ASM_UACCES_H_
|
||||
#define _ASM_UACCES_H_
|
||||
/*
|
||||
* User space memory access functions
|
||||
*/
|
||||
#include <linux/errno.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/thread_info.h>
|
||||
#include <linux/prefetch.h>
|
||||
#include <linux/string.h>
|
||||
#include <asm/asm.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
#define VERIFY_READ 0
|
||||
#define VERIFY_WRITE 1
|
||||
|
||||
/*
|
||||
* The fs value determines whether argument validity checking should be
|
||||
* performed or not. If get_fs() == USER_DS, checking is performed, with
|
||||
* get_fs() == KERNEL_DS, checking is bypassed.
|
||||
*
|
||||
* For historical reasons, these macros are grossly misnamed.
|
||||
*/
|
||||
|
||||
#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
|
||||
|
||||
#define KERNEL_DS MAKE_MM_SEG(-1UL)
|
||||
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
|
||||
|
||||
#define get_ds() (KERNEL_DS)
|
||||
#define get_fs() (current_thread_info()->addr_limit)
|
||||
#define set_fs(x) (current_thread_info()->addr_limit = (x))
|
||||
|
||||
#define segment_eq(a, b) ((a).seg == (b).seg)
|
||||
|
||||
/*
|
||||
* Test whether a block of memory is a valid user space address.
|
||||
* Returns 0 if the range is valid, nonzero otherwise.
|
||||
*
|
||||
* This is equivalent to the following test:
|
||||
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg (u65 for x86_64)
|
||||
*
|
||||
* This needs 33-bit (65-bit for x86_64) arithmetic. We have a carry...
|
||||
*/
|
||||
|
||||
#define __range_not_ok(addr, size) \
|
||||
({ \
|
||||
unsigned long flag, roksum; \
|
||||
__chk_user_ptr(addr); \
|
||||
asm("add %3,%1 ; sbb %0,%0 ; cmp %1,%4 ; sbb $0,%0" \
|
||||
: "=&r" (flag), "=r" (roksum) \
|
||||
: "1" (addr), "g" ((long)(size)), \
|
||||
"rm" (current_thread_info()->addr_limit.seg)); \
|
||||
flag; \
|
||||
})
|
||||
|
||||
/**
|
||||
* access_ok: - Checks if a user space pointer is valid
|
||||
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
|
||||
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
|
||||
* to write to a block, it is always safe to read from it.
|
||||
* @addr: User space pointer to start of block to check
|
||||
* @size: Size of block to check
|
||||
*
|
||||
* Context: User context only. This function may sleep.
|
||||
*
|
||||
* Checks if a pointer to a block of memory in user space is valid.
|
||||
*
|
||||
* Returns true (nonzero) if the memory block may be valid, false (zero)
|
||||
* if it is definitely invalid.
|
||||
*
|
||||
* Note that, depending on architecture, this function probably just
|
||||
* checks that the pointer is in the user space range - after calling
|
||||
* this function, memory access functions may still return -EFAULT.
|
||||
*/
|
||||
#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))
|
||||
|
||||
/*
|
||||
* The exception table consists of pairs of addresses: the first is the
|
||||
* address of an instruction that is allowed to fault, and the second is
|
||||
* the address at which the program should continue. No registers are
|
||||
* modified, so it is entirely up to the continuation code to figure out
|
||||
* what to do.
|
||||
*
|
||||
* All the routines below use bits of fixup code that are out of line
|
||||
* with the main instruction path. This means when everything is well,
|
||||
* we don't even have to jump over them. Further, they do not intrude
|
||||
* on our cache or tlb entries.
|
||||
*/
|
||||
|
||||
struct exception_table_entry {
|
||||
unsigned long insn, fixup;
|
||||
};
|
||||
|
||||
extern int fixup_exception(struct pt_regs *regs);
|
||||
|
||||
/*
|
||||
* These are the main single-value transfer routines. They automatically
|
||||
* use the right size if we just have the right pointer type.
|
||||
*
|
||||
* This gets kind of ugly. We want to return _two_ values in "get_user()"
|
||||
* and yet we don't want to do any pointers, because that is too much
|
||||
* of a performance impact. Thus we have a few rather ugly macros here,
|
||||
* and hide all the ugliness from the user.
|
||||
*
|
||||
* The "__xxx" versions of the user access functions are versions that
|
||||
* do not verify the address space, that must have been done previously
|
||||
* with a separate "access_ok()" call (this is used when we do multiple
|
||||
* accesses to the same area of user memory).
|
||||
*/
|
||||
|
||||
extern int __get_user_1(void);
|
||||
extern int __get_user_2(void);
|
||||
extern int __get_user_4(void);
|
||||
extern int __get_user_8(void);
|
||||
extern int __get_user_bad(void);
|
||||
|
||||
#define __get_user_x(size, ret, x, ptr) \
|
||||
asm volatile("call __get_user_" #size \
|
||||
: "=a" (ret),"=d" (x) \
|
||||
: "0" (ptr)) \
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
# include "uaccess_32.h"
|
||||
#else
|
||||
# include "uaccess_64.h"
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -11,29 +11,6 @@
|
|||
#include <asm/asm.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
#define VERIFY_READ 0
|
||||
#define VERIFY_WRITE 1
|
||||
|
||||
/*
|
||||
* The fs value determines whether argument validity checking should be
|
||||
* performed or not. If get_fs() == USER_DS, checking is performed, with
|
||||
* get_fs() == KERNEL_DS, checking is bypassed.
|
||||
*
|
||||
* For historical reasons, these macros are grossly misnamed.
|
||||
*/
|
||||
|
||||
#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
|
||||
|
||||
|
||||
#define KERNEL_DS MAKE_MM_SEG(-1UL)
|
||||
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
|
||||
|
||||
#define get_ds() (KERNEL_DS)
|
||||
#define get_fs() (current_thread_info()->addr_limit)
|
||||
#define set_fs(x) (current_thread_info()->addr_limit = (x))
|
||||
|
||||
#define segment_eq(a, b) ((a).seg == (b).seg)
|
||||
|
||||
/*
|
||||
* movsl can be slow when source and dest are not both 8-byte aligned
|
||||
*/
|
||||
|
@ -47,91 +24,6 @@ extern struct movsl_mask {
|
|||
((unsigned long __force)(addr) < \
|
||||
(current_thread_info()->addr_limit.seg))
|
||||
|
||||
/*
|
||||
* Test whether a block of memory is a valid user space address.
|
||||
* Returns 0 if the range is valid, nonzero otherwise.
|
||||
*
|
||||
* This is equivalent to the following test:
|
||||
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg
|
||||
*
|
||||
* This needs 33-bit arithmetic. We have a carry...
|
||||
*/
|
||||
#define __range_not_ok(addr, size) \
|
||||
({ \
|
||||
unsigned long flag, roksum; \
|
||||
__chk_user_ptr(addr); \
|
||||
asm("add %3,%1 ; sbb %0,%0; cmp %1,%4; sbb $0,%0" \
|
||||
:"=&r" (flag), "=r" (roksum) \
|
||||
:"1" (addr), "g" ((long)(size)), \
|
||||
"rm" (current_thread_info()->addr_limit.seg)); \
|
||||
flag; \
|
||||
})
|
||||
|
||||
/**
|
||||
* access_ok: - Checks if a user space pointer is valid
|
||||
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
|
||||
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
|
||||
* to write to a block, it is always safe to read from it.
|
||||
* @addr: User space pointer to start of block to check
|
||||
* @size: Size of block to check
|
||||
*
|
||||
* Context: User context only. This function may sleep.
|
||||
*
|
||||
* Checks if a pointer to a block of memory in user space is valid.
|
||||
*
|
||||
* Returns true (nonzero) if the memory block may be valid, false (zero)
|
||||
* if it is definitely invalid.
|
||||
*
|
||||
* Note that, depending on architecture, this function probably just
|
||||
* checks that the pointer is in the user space range - after calling
|
||||
* this function, memory access functions may still return -EFAULT.
|
||||
*/
|
||||
#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))
|
||||
|
||||
/*
|
||||
* The exception table consists of pairs of addresses: the first is the
|
||||
* address of an instruction that is allowed to fault, and the second is
|
||||
* the address at which the program should continue. No registers are
|
||||
* modified, so it is entirely up to the continuation code to figure out
|
||||
* what to do.
|
||||
*
|
||||
* All the routines below use bits of fixup code that are out of line
|
||||
* with the main instruction path. This means when everything is well,
|
||||
* we don't even have to jump over them. Further, they do not intrude
|
||||
* on our cache or tlb entries.
|
||||
*/
|
||||
|
||||
struct exception_table_entry {
|
||||
unsigned long insn, fixup;
|
||||
};
|
||||
|
||||
extern int fixup_exception(struct pt_regs *regs);
|
||||
|
||||
/*
|
||||
* These are the main single-value transfer routines. They automatically
|
||||
* use the right size if we just have the right pointer type.
|
||||
*
|
||||
* This gets kind of ugly. We want to return _two_ values in "get_user()"
|
||||
* and yet we don't want to do any pointers, because that is too much
|
||||
* of a performance impact. Thus we have a few rather ugly macros here,
|
||||
* and hide all the ugliness from the user.
|
||||
*
|
||||
* The "__xxx" versions of the user access functions are versions that
|
||||
* do not verify the address space, that must have been done previously
|
||||
* with a separate "access_ok()" call (this is used when we do multiple
|
||||
* accesses to the same area of user memory).
|
||||
*/
|
||||
|
||||
extern void __get_user_1(void);
|
||||
extern void __get_user_2(void);
|
||||
extern void __get_user_4(void);
|
||||
|
||||
#define __get_user_x(size, ret, x, ptr) \
|
||||
asm volatile("call __get_user_" #size \
|
||||
:"=a" (ret),"=d" (x) \
|
||||
:"0" (ptr))
|
||||
|
||||
|
||||
/* Careful: we have to cast the result to the type of the pointer
|
||||
* for sign reasons */
|
||||
|
||||
|
@ -386,8 +278,6 @@ struct __large_struct { unsigned long buf[100]; };
|
|||
__gu_err; \
|
||||
})
|
||||
|
||||
extern long __get_user_bad(void);
|
||||
|
||||
#define __get_user_size(x, ptr, size, retval, errret) \
|
||||
do { \
|
||||
retval = 0; \
|
||||
|
|
|
@ -9,88 +9,11 @@
|
|||
#include <linux/prefetch.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
#define VERIFY_READ 0
|
||||
#define VERIFY_WRITE 1
|
||||
|
||||
/*
|
||||
* The fs value determines whether argument validity checking should be
|
||||
* performed or not. If get_fs() == USER_DS, checking is performed, with
|
||||
* get_fs() == KERNEL_DS, checking is bypassed.
|
||||
*
|
||||
* For historical reasons, these macros are grossly misnamed.
|
||||
*/
|
||||
|
||||
#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
|
||||
|
||||
#define KERNEL_DS MAKE_MM_SEG(-1UL)
|
||||
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
|
||||
|
||||
#define get_ds() (KERNEL_DS)
|
||||
#define get_fs() (current_thread_info()->addr_limit)
|
||||
#define set_fs(x) (current_thread_info()->addr_limit = (x))
|
||||
|
||||
#define segment_eq(a, b) ((a).seg == (b).seg)
|
||||
|
||||
#define __addr_ok(addr) (!((unsigned long)(addr) & \
|
||||
(current_thread_info()->addr_limit.seg)))
|
||||
|
||||
/*
|
||||
* Uhhuh, this needs 65-bit arithmetic. We have a carry..
|
||||
*/
|
||||
#define __range_not_ok(addr, size) \
|
||||
({ \
|
||||
unsigned long flag, roksum; \
|
||||
__chk_user_ptr(addr); \
|
||||
asm("add %3,%1 ; sbb %0,%0 ; cmp %1,%4 ; sbb $0,%0" \
|
||||
: "=&r" (flag), "=r" (roksum) \
|
||||
: "1" (addr), "g" ((long)(size)), \
|
||||
"rm" (current_thread_info()->addr_limit.seg)); \
|
||||
flag; \
|
||||
})
|
||||
|
||||
#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))
|
||||
|
||||
/*
|
||||
* The exception table consists of pairs of addresses: the first is the
|
||||
* address of an instruction that is allowed to fault, and the second is
|
||||
* the address at which the program should continue. No registers are
|
||||
* modified, so it is entirely up to the continuation code to figure out
|
||||
* what to do.
|
||||
*
|
||||
* All the routines below use bits of fixup code that are out of line
|
||||
* with the main instruction path. This means when everything is well,
|
||||
* we don't even have to jump over them. Further, they do not intrude
|
||||
* on our cache or tlb entries.
|
||||
*/
|
||||
|
||||
struct exception_table_entry {
|
||||
unsigned long insn, fixup;
|
||||
};
|
||||
|
||||
extern int fixup_exception(struct pt_regs *regs);
|
||||
|
||||
#define ARCH_HAS_SEARCH_EXTABLE
|
||||
|
||||
/*
|
||||
* These are the main single-value transfer routines. They automatically
|
||||
* use the right size if we just have the right pointer type.
|
||||
*
|
||||
* This gets kind of ugly. We want to return _two_ values in "get_user()"
|
||||
* and yet we don't want to do any pointers, because that is too much
|
||||
* of a performance impact. Thus we have a few rather ugly macros here,
|
||||
* and hide all the ugliness from the user.
|
||||
*
|
||||
* The "__xxx" versions of the user access functions are versions that
|
||||
* do not verify the address space, that must have been done previously
|
||||
* with a separate "access_ok()" call (this is used when we do multiple
|
||||
* accesses to the same area of user memory).
|
||||
*/
|
||||
|
||||
#define __get_user_x(size, ret, x, ptr) \
|
||||
asm volatile("call __get_user_" #size \
|
||||
: "=a" (ret),"=d" (x) \
|
||||
: "0" (ptr)) \
|
||||
|
||||
/* Careful: we have to cast the result to the type of the pointer
|
||||
* for sign reasons */
|
||||
|
||||
|
@ -226,12 +149,6 @@ struct __large_struct { unsigned long buf[100]; };
|
|||
__gu_err; \
|
||||
})
|
||||
|
||||
extern int __get_user_1(void);
|
||||
extern int __get_user_2(void);
|
||||
extern int __get_user_4(void);
|
||||
extern int __get_user_8(void);
|
||||
extern int __get_user_bad(void);
|
||||
|
||||
#define __get_user_size(x, ptr, size, retval) \
|
||||
do { \
|
||||
retval = 0; \
|
||||
|
|
Загрузка…
Ссылка в новой задаче