Marco reported:

Due to the implementation of how SIGTRAP are delivered if
perf_event_attr::sigtrap is set, we've noticed 3 issues:

  1. Missing SIGTRAP due to a race with event_sched_out() (more
     details below).

  2. Hardware PMU events being disabled due to returning 1 from
     perf_event_overflow(). The only way to re-enable the event is
     for user space to first "properly" disable the event and then
     re-enable it.

  3. The inability to automatically disable an event after a
     specified number of overflows via PERF_EVENT_IOC_REFRESH.

The worst of the 3 issues is problem (1), which occurs when a
pending_disable is "consumed" by a racing event_sched_out(), observed
as follows:

		CPU0			|	CPU1
	--------------------------------+---------------------------
	__perf_event_overflow()		|
	 perf_event_disable_inatomic()	|
	  pending_disable = CPU0	| ...
					| _perf_event_enable()
					|  event_function_call()
					|   task_function_call()
					|    /* sends IPI to CPU0 */
	<IPI>				| ...
	 __perf_event_enable()		+---------------------------
	  ctx_resched()
	   task_ctx_sched_out()
	    ctx_sched_out()
	     group_sched_out()
	      event_sched_out()
	       pending_disable = -1
	</IPI>
	<IRQ-work>
	 perf_pending_event()
	  perf_pending_event_disable()
	   /* Fails to send SIGTRAP because no pending_disable! */
	</IRQ-work>

In the above case, not only is that particular SIGTRAP missed, but also
all future SIGTRAPs because 'event_limit' is not reset back to 1.

To fix, rework pending delivery of SIGTRAP via IRQ-work by introduction
of a separate 'pending_sigtrap', no longer using 'event_limit' and
'pending_disable' for its delivery.

Additionally; and different to Marco's proposed patch:

 - recognise that pending_disable effectively duplicates oncpu for
   the case where it is set. As such, change the irq_work handler to
   use ->oncpu to target the event and use pending_* as boolean toggles.

 - observe that SIGTRAP targets the ctx->task, so the context switch
   optimization that carries contexts between tasks is invalid. If
   the irq_work were delayed enough to hit after a context switch the
   SIGTRAP would be delivered to the wrong task.

 - observe that if the event gets scheduled out
   (rotation/migration/context-switch/...) the irq-work would be
   insufficient to deliver the SIGTRAP when the event gets scheduled
   back in (the irq-work might still be pending on the old CPU).

   Therefore have event_sched_out() convert the pending sigtrap into a
   task_work which will deliver the signal at return_to_user.

Fixes: 97ba62b278 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Debugged-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Marco Elver <elver@google.com>
Debugged-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
This commit is contained in:
Peter Zijlstra 2022-10-06 15:00:39 +02:00
Родитель 9abf2313ad
Коммит ca6c21327c
3 изменённых файлов: 129 добавлений и 43 удалений

Просмотреть файл

@ -756,11 +756,14 @@ struct perf_event {
struct fasync_struct *fasync;
/* delayed work for NMIs and such */
int pending_wakeup;
int pending_kill;
int pending_disable;
unsigned int pending_wakeup;
unsigned int pending_kill;
unsigned int pending_disable;
unsigned int pending_sigtrap;
unsigned long pending_addr; /* SIGTRAP */
struct irq_work pending;
struct irq_work pending_irq;
struct callback_head pending_task;
unsigned int pending_work;
atomic_t event_limit;
@ -877,6 +880,14 @@ struct perf_event_context {
#endif
void *task_ctx_data; /* pmu specific data */
struct rcu_head rcu_head;
/*
* Sum (event->pending_sigtrap + event->pending_work)
*
* The SIGTRAP is targeted at ctx->task, as such it won't do changing
* that until the signal is delivered.
*/
local_t nr_pending;
};
/*

Просмотреть файл

@ -54,6 +54,7 @@
#include <linux/highmem.h>
#include <linux/pgtable.h>
#include <linux/buildid.h>
#include <linux/task_work.h>
#include "internal.h"
@ -2276,11 +2277,26 @@ event_sched_out(struct perf_event *event,
event->pmu->del(event, 0);
event->oncpu = -1;
if (READ_ONCE(event->pending_disable) >= 0) {
WRITE_ONCE(event->pending_disable, -1);
if (event->pending_disable) {
event->pending_disable = 0;
perf_cgroup_event_disable(event, ctx);
state = PERF_EVENT_STATE_OFF;
}
if (event->pending_sigtrap) {
bool dec = true;
event->pending_sigtrap = 0;
if (state != PERF_EVENT_STATE_OFF &&
!event->pending_work) {
event->pending_work = 1;
dec = false;
task_work_add(current, &event->pending_task, TWA_RESUME);
}
if (dec)
local_dec(&event->ctx->nr_pending);
}
perf_event_set_state(event, state);
if (!is_software_event(event))
@ -2432,7 +2448,7 @@ static void __perf_event_disable(struct perf_event *event,
* hold the top-level event's child_mutex, so any descendant that
* goes to exit will block in perf_event_exit_event().
*
* When called from perf_pending_event it's OK because event->ctx
* When called from perf_pending_irq it's OK because event->ctx
* is the current context on this CPU and preemption is disabled,
* hence we can't get into perf_event_task_sched_out for this context.
*/
@ -2471,9 +2487,8 @@ EXPORT_SYMBOL_GPL(perf_event_disable);
void perf_event_disable_inatomic(struct perf_event *event)
{
WRITE_ONCE(event->pending_disable, smp_processor_id());
/* can fail, see perf_pending_event_disable() */
irq_work_queue(&event->pending);
event->pending_disable = 1;
irq_work_queue(&event->pending_irq);
}
#define MAX_INTERRUPTS (~0ULL)
@ -3428,11 +3443,23 @@ static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
if (context_equiv(ctx, next_ctx)) {
perf_pmu_disable(pmu);
/* PMIs are disabled; ctx->nr_pending is stable. */
if (local_read(&ctx->nr_pending) ||
local_read(&next_ctx->nr_pending)) {
/*
* Must not swap out ctx when there's pending
* events that rely on the ctx->task relation.
*/
raw_spin_unlock(&next_ctx->lock);
rcu_read_unlock();
goto inside_switch;
}
WRITE_ONCE(ctx->task, next);
WRITE_ONCE(next_ctx->task, task);
perf_pmu_disable(pmu);
if (cpuctx->sched_cb_usage && pmu->sched_task)
pmu->sched_task(ctx, false);
@ -3473,6 +3500,7 @@ unlock:
raw_spin_lock(&ctx->lock);
perf_pmu_disable(pmu);
inside_switch:
if (cpuctx->sched_cb_usage && pmu->sched_task)
pmu->sched_task(ctx, false);
task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
@ -4939,7 +4967,7 @@ static void perf_addr_filters_splice(struct perf_event *event,
static void _free_event(struct perf_event *event)
{
irq_work_sync(&event->pending);
irq_work_sync(&event->pending_irq);
unaccount_event(event);
@ -6439,7 +6467,8 @@ static void perf_sigtrap(struct perf_event *event)
return;
/*
* perf_pending_event() can race with the task exiting.
* Both perf_pending_task() and perf_pending_irq() can race with the
* task exiting.
*/
if (current->flags & PF_EXITING)
return;
@ -6448,23 +6477,33 @@ static void perf_sigtrap(struct perf_event *event)
event->attr.type, event->attr.sig_data);
}
static void perf_pending_event_disable(struct perf_event *event)
/*
* Deliver the pending work in-event-context or follow the context.
*/
static void __perf_pending_irq(struct perf_event *event)
{
int cpu = READ_ONCE(event->pending_disable);
int cpu = READ_ONCE(event->oncpu);
/*
* If the event isn't running; we done. event_sched_out() will have
* taken care of things.
*/
if (cpu < 0)
return;
/*
* Yay, we hit home and are in the context of the event.
*/
if (cpu == smp_processor_id()) {
WRITE_ONCE(event->pending_disable, -1);
if (event->attr.sigtrap) {
if (event->pending_sigtrap) {
event->pending_sigtrap = 0;
perf_sigtrap(event);
atomic_set_release(&event->event_limit, 1); /* rearm event */
return;
local_dec(&event->ctx->nr_pending);
}
if (event->pending_disable) {
event->pending_disable = 0;
perf_event_disable_local(event);
}
return;
}
@ -6484,35 +6523,62 @@ static void perf_pending_event_disable(struct perf_event *event)
* irq_work_queue(); // FAILS
*
* irq_work_run()
* perf_pending_event()
* perf_pending_irq()
*
* But the event runs on CPU-B and wants disabling there.
*/
irq_work_queue_on(&event->pending, cpu);
irq_work_queue_on(&event->pending_irq, cpu);
}
static void perf_pending_event(struct irq_work *entry)
static void perf_pending_irq(struct irq_work *entry)
{
struct perf_event *event = container_of(entry, struct perf_event, pending);
struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
int rctx;
rctx = perf_swevent_get_recursion_context();
/*
* If we 'fail' here, that's OK, it means recursion is already disabled
* and we won't recurse 'further'.
*/
rctx = perf_swevent_get_recursion_context();
perf_pending_event_disable(event);
/*
* The wakeup isn't bound to the context of the event -- it can happen
* irrespective of where the event is.
*/
if (event->pending_wakeup) {
event->pending_wakeup = 0;
perf_event_wakeup(event);
}
__perf_pending_irq(event);
if (rctx >= 0)
perf_swevent_put_recursion_context(rctx);
}
static void perf_pending_task(struct callback_head *head)
{
struct perf_event *event = container_of(head, struct perf_event, pending_task);
int rctx;
/*
* If we 'fail' here, that's OK, it means recursion is already disabled
* and we won't recurse 'further'.
*/
preempt_disable_notrace();
rctx = perf_swevent_get_recursion_context();
if (event->pending_work) {
event->pending_work = 0;
perf_sigtrap(event);
local_dec(&event->ctx->nr_pending);
}
if (rctx >= 0)
perf_swevent_put_recursion_context(rctx);
preempt_enable_notrace();
}
#ifdef CONFIG_GUEST_PERF_EVENTS
struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
@ -9236,16 +9302,28 @@ static int __perf_event_overflow(struct perf_event *event,
if (events && atomic_dec_and_test(&event->event_limit)) {
ret = 1;
event->pending_kill = POLL_HUP;
event->pending_addr = data->addr;
perf_event_disable_inatomic(event);
}
if (event->attr.sigtrap) {
/*
* Should not be able to return to user space without processing
* pending_sigtrap (kernel events can overflow multiple times).
*/
WARN_ON_ONCE(event->pending_sigtrap && event->attr.exclude_kernel);
if (!event->pending_sigtrap) {
event->pending_sigtrap = 1;
local_inc(&event->ctx->nr_pending);
}
event->pending_addr = data->addr;
irq_work_queue(&event->pending_irq);
}
READ_ONCE(event->overflow_handler)(event, data, regs);
if (*perf_event_fasync(event) && event->pending_kill) {
event->pending_wakeup = 1;
irq_work_queue(&event->pending);
irq_work_queue(&event->pending_irq);
}
return ret;
@ -11570,8 +11648,8 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
init_waitqueue_head(&event->waitq);
event->pending_disable = -1;
init_irq_work(&event->pending, perf_pending_event);
init_irq_work(&event->pending_irq, perf_pending_irq);
init_task_work(&event->pending_task, perf_pending_task);
mutex_init(&event->mmap_mutex);
raw_spin_lock_init(&event->addr_filters.lock);
@ -11593,9 +11671,6 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
if (parent_event)
event->event_caps = parent_event->event_caps;
if (event->attr.sigtrap)
atomic_set(&event->event_limit, 1);
if (task) {
event->attach_state = PERF_ATTACH_TASK;
/*

Просмотреть файл

@ -22,7 +22,7 @@ static void perf_output_wakeup(struct perf_output_handle *handle)
atomic_set(&handle->rb->poll, EPOLLIN);
handle->event->pending_wakeup = 1;
irq_work_queue(&handle->event->pending);
irq_work_queue(&handle->event->pending_irq);
}
/*