net: dsa: Use mnemonics rather than register numbers

Rather than refer to registers by number, define mnemonics. Also
define mnemonics for the commonly used bits within the registers.

Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Andrew Lunn 2015-04-02 04:06:39 +02:00 коммит произвёл David S. Miller
Родитель e413e7e1f7
Коммит cca8b13375
6 изменённых файлов: 335 добавлений и 178 удалений

Просмотреть файл

@ -25,27 +25,27 @@ static char *mv88e6123_61_65_probe(struct device *host_dev, int sw_addr)
if (bus == NULL)
return NULL;
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (ret >= 0) {
if (ret == ID_6123_A1)
if (ret == PORT_SWITCH_ID_6123_A1)
return "Marvell 88E6123 (A1)";
if (ret == ID_6123_A2)
if (ret == PORT_SWITCH_ID_6123_A2)
return "Marvell 88E6123 (A2)";
if ((ret & 0xfff0) == ID_6123)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6123)
return "Marvell 88E6123";
if (ret == ID_6161_A1)
if (ret == PORT_SWITCH_ID_6161_A1)
return "Marvell 88E6161 (A1)";
if (ret == ID_6161_A2)
if (ret == PORT_SWITCH_ID_6161_A2)
return "Marvell 88E6161 (A2)";
if ((ret & 0xfff0) == ID_6161)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6161)
return "Marvell 88E6161";
if (ret == ID_6165_A1)
if (ret == PORT_SWITCH_ID_6165_A1)
return "Marvell 88E6165 (A1)";
if (ret == ID_6165_A2)
if (ret == PORT_SWITCH_ID_6165_A2)
return "Marvell 88e6165 (A2)";
if ((ret & 0xfff0) == ID_6165)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6165)
return "Marvell 88E6165";
}
@ -247,11 +247,11 @@ static int mv88e6123_61_65_setup(struct dsa_switch *ds)
return ret;
switch (ps->id) {
case ID_6123:
case PORT_SWITCH_ID_6123:
ps->num_ports = 3;
break;
case ID_6161:
case ID_6165:
case PORT_SWITCH_ID_6161:
case PORT_SWITCH_ID_6165:
ps->num_ports = 6;
break;
default:

Просмотреть файл

@ -25,17 +25,17 @@ static char *mv88e6131_probe(struct device *host_dev, int sw_addr)
if (bus == NULL)
return NULL;
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (ret >= 0) {
int ret_masked = ret & 0xfff0;
if (ret_masked == ID_6085)
if (ret_masked == PORT_SWITCH_ID_6085)
return "Marvell 88E6085";
if (ret_masked == ID_6095)
if (ret_masked == PORT_SWITCH_ID_6095)
return "Marvell 88E6095/88E6095F";
if (ret == ID_6131_B2)
if (ret == PORT_SWITCH_ID_6131_B2)
return "Marvell 88E6131 (B2)";
if (ret_masked == ID_6131)
if (ret_masked == PORT_SWITCH_ID_6131)
return "Marvell 88E6131";
}
@ -135,7 +135,7 @@ static int mv88e6131_setup_port(struct dsa_switch *ds, int p)
* (100 Mb/s on 6085) full duplex.
*/
if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
if (ps->id == ID_6085)
if (ps->id == PORT_SWITCH_ID_6085)
REG_WRITE(addr, 0x01, 0x003d); /* 100 Mb/s */
else
REG_WRITE(addr, 0x01, 0x003e); /* 1000 Mb/s */
@ -162,7 +162,7 @@ static int mv88e6131_setup_port(struct dsa_switch *ds, int p)
/* On 6085, unknown multicast forward is controlled
* here rather than in Port Control 2 register.
*/
if (ps->id == ID_6085)
if (ps->id == PORT_SWITCH_ID_6085)
val |= 0x0008;
}
if (ds->dsa_port_mask & (1 << p))
@ -181,7 +181,7 @@ static int mv88e6131_setup_port(struct dsa_switch *ds, int p)
* If this is the upstream port for this switch, enable
* forwarding of unknown multicast addresses.
*/
if (ps->id == ID_6085)
if (ps->id == PORT_SWITCH_ID_6085)
/* on 6085, bits 3:0 are reserved, bit 6 control ARP
* mirroring, and multicast forward is handled in
* Port Control register.
@ -233,14 +233,14 @@ static int mv88e6131_setup(struct dsa_switch *ds)
mv88e6xxx_ppu_state_init(ds);
switch (ps->id) {
case ID_6085:
case PORT_SWITCH_ID_6085:
ps->num_ports = 10;
break;
case ID_6095:
case PORT_SWITCH_ID_6095:
ps->num_ports = 11;
break;
case ID_6131:
case ID_6131_B2:
case PORT_SWITCH_ID_6131:
case PORT_SWITCH_ID_6131_B2:
ps->num_ports = 8;
break;
default:

Просмотреть файл

@ -25,11 +25,11 @@ static char *mv88e6171_probe(struct device *host_dev, int sw_addr)
if (bus == NULL)
return NULL;
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (ret >= 0) {
if ((ret & 0xfff0) == ID_6171)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6171)
return "Marvell 88E6171";
if ((ret & 0xfff0) == ID_6172)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6172)
return "Marvell 88E6172";
}
@ -263,7 +263,7 @@ static int mv88e6171_get_eee(struct dsa_switch *ds, int port,
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (ps->id == ID_6172)
if (ps->id == PORT_SWITCH_ID_6172)
return mv88e6xxx_get_eee(ds, port, e);
return -EOPNOTSUPP;
@ -274,7 +274,7 @@ static int mv88e6171_set_eee(struct dsa_switch *ds, int port,
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (ps->id == ID_6172)
if (ps->id == PORT_SWITCH_ID_6172)
return mv88e6xxx_set_eee(ds, port, phydev, e);
return -EOPNOTSUPP;

Просмотреть файл

@ -30,15 +30,15 @@ static char *mv88e6352_probe(struct device *host_dev, int sw_addr)
if (bus == NULL)
return NULL;
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (ret >= 0) {
if ((ret & 0xfff0) == 0x1760)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6176)
return "Marvell 88E6176";
if (ret == 0x3521)
if (ret == PORT_SWITCH_ID_6352_A0)
return "Marvell 88E6352 (A0)";
if (ret == 0x3522)
if (ret == PORT_SWITCH_ID_6352_A1)
return "Marvell 88E6352 (A1)";
if ((ret & 0xfff0) == 0x3520)
if ((ret & 0xfff0) == PORT_SWITCH_ID_6352)
return "Marvell 88E6352";
}

Просмотреть файл

@ -33,11 +33,11 @@ static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
int i;
for (i = 0; i < 16; i++) {
ret = mdiobus_read(bus, sw_addr, 0);
ret = mdiobus_read(bus, sw_addr, SMI_CMD);
if (ret < 0)
return ret;
if ((ret & 0x8000) == 0)
if ((ret & SMI_CMD_BUSY) == 0)
return 0;
}
@ -57,7 +57,8 @@ int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
return ret;
/* Transmit the read command. */
ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
ret = mdiobus_write(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_READ | (addr << 5) | reg);
if (ret < 0)
return ret;
@ -67,7 +68,7 @@ int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
return ret;
/* Read the data. */
ret = mdiobus_read(bus, sw_addr, 1);
ret = mdiobus_read(bus, sw_addr, SMI_DATA);
if (ret < 0)
return ret;
@ -119,12 +120,13 @@ int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
return ret;
/* Transmit the data to write. */
ret = mdiobus_write(bus, sw_addr, 1, val);
ret = mdiobus_write(bus, sw_addr, SMI_DATA, val);
if (ret < 0)
return ret;
/* Transmit the write command. */
ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
ret = mdiobus_write(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
if (ret < 0)
return ret;
@ -166,26 +168,26 @@ int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
/* Configure the IP ToS mapping registers. */
REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
/* Configure the IEEE 802.1p priority mapping register. */
REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
return 0;
}
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
return 0;
}
@ -199,12 +201,13 @@ int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
int j;
/* Write the MAC address byte. */
REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
/* Wait for the write to complete. */
for (j = 0; j < 16; j++) {
ret = REG_READ(REG_GLOBAL2, 0x0d);
if ((ret & 0x8000) == 0)
ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
break;
}
if (j == 16)
@ -237,14 +240,16 @@ static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
int ret;
unsigned long timeout;
ret = REG_READ(REG_GLOBAL, 0x04);
REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, 0x00);
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
usleep_range(1000, 2000);
if ((ret & 0xc000) != 0xc000)
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
@ -256,14 +261,15 @@ static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
int ret;
unsigned long timeout;
ret = REG_READ(REG_GLOBAL, 0x04);
REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, 0x00);
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
usleep_range(1000, 2000);
if ((ret & 0xc000) == 0xc000)
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
@ -384,11 +390,12 @@ void mv88e6xxx_poll_link(struct dsa_switch *ds)
link = 0;
if (dev->flags & IFF_UP) {
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
PORT_STATUS);
if (port_status < 0)
continue;
link = !!(port_status & 0x0800);
link = !!(port_status & PORT_STATUS_LINK);
}
if (!link) {
@ -399,22 +406,22 @@ void mv88e6xxx_poll_link(struct dsa_switch *ds)
continue;
}
switch (port_status & 0x0300) {
case 0x0000:
switch (port_status & PORT_STATUS_SPEED_MASK) {
case PORT_STATUS_SPEED_10:
speed = 10;
break;
case 0x0100:
case PORT_STATUS_SPEED_100:
speed = 100;
break;
case 0x0200:
case PORT_STATUS_SPEED_1000:
speed = 1000;
break;
default:
speed = -1;
break;
}
duplex = (port_status & 0x0400) ? 1 : 0;
fc = (port_status & 0x8000) ? 1 : 0;
duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
if (!netif_carrier_ok(dev)) {
netdev_info(dev,
@ -433,8 +440,8 @@ static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
int i;
for (i = 0; i < 10; i++) {
ret = REG_READ(REG_GLOBAL, 0x1d);
if ((ret & 0x8000) == 0)
ret = REG_READ(REG_GLOBAL, GLOBAL_STATS_OP);
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
return 0;
}
@ -446,7 +453,9 @@ static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
int ret;
/* Snapshot the hardware statistics counters for this port. */
REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_CAPTURE_PORT |
GLOBAL_STATS_OP_HIST_RX_TX | port);
/* Wait for the snapshotting to complete. */
ret = mv88e6xxx_stats_wait(ds);
@ -463,7 +472,9 @@ static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
*val = 0;
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_READ_CAPTURED |
GLOBAL_STATS_OP_HIST_RX_TX | stat);
if (ret < 0)
return;
@ -471,13 +482,13 @@ static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
if (ret < 0)
return;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
if (ret < 0)
return;
_val = ret << 16;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
if (ret < 0)
return;
@ -527,9 +538,11 @@ static bool have_sw_in_discards(struct dsa_switch *ds)
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case ID_6095: case ID_6161: case ID_6165:
case ID_6171: case ID_6172: case ID_6176:
case ID_6182: case ID_6185: case ID_6352:
case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
case PORT_SWITCH_ID_6352:
return true;
default:
return false;
@ -723,17 +736,20 @@ static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
int mv88e6xxx_phy_wait(struct dsa_switch *ds)
{
return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x18, 0x8000);
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_BUSY);
}
int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x0800);
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_LOAD);
}
int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x8000);
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_BUSY);
}
/* Must be called with SMI lock held */
@ -758,7 +774,8 @@ static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
return _mv88e6xxx_wait(ds, REG_GLOBAL, 0x0b, ATU_BUSY);
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
GLOBAL_ATU_OP_BUSY);
}
/* Must be called with phy mutex held */
@ -767,21 +784,23 @@ static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
{
int ret;
REG_WRITE(REG_GLOBAL2, 0x18, 0x9800 | (addr << 5) | regnum);
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum);
ret = mv88e6xxx_phy_wait(ds);
if (ret < 0)
return ret;
return REG_READ(REG_GLOBAL2, 0x19);
return REG_READ(REG_GLOBAL2, GLOBAL2_SMI_DATA);
}
/* Must be called with phy mutex held */
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
int regnum, u16 val)
{
REG_WRITE(REG_GLOBAL2, 0x19, val);
REG_WRITE(REG_GLOBAL2, 0x18, 0x9400 | (addr << 5) | regnum);
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum);
return mv88e6xxx_phy_wait(ds);
}
@ -800,11 +819,11 @@ int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
e->eee_enabled = !!(reg & 0x0200);
e->tx_lpi_enabled = !!(reg & 0x0100);
reg = mv88e6xxx_reg_read(ds, REG_PORT(port), 0);
reg = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
if (reg < 0)
goto out;
e->eee_active = !!(reg & 0x0040);
e->eee_active = !!(reg & PORT_STATUS_EEE);
reg = 0;
out:
@ -846,7 +865,7 @@ static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x0b, cmd);
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
if (ret < 0)
return ret;
@ -861,7 +880,7 @@ static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
if (ret < 0)
return ret;
return _mv88e6xxx_atu_cmd(ds, fid, ATU_CMD_FLUSH_NONSTATIC_FID);
return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
}
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
@ -872,23 +891,25 @@ static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
mutex_lock(&ps->smi_mutex);
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), 0x04);
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
if (reg < 0)
goto abort;
oldstate = reg & PSTATE_MASK;
oldstate = reg & PORT_CONTROL_STATE_MASK;
if (oldstate != state) {
/* Flush forwarding database if we're moving a port
* from Learning or Forwarding state to Disabled or
* Blocking or Listening state.
*/
if (oldstate >= PSTATE_LEARNING && state <= PSTATE_BLOCKING) {
if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
state <= PORT_CONTROL_STATE_BLOCKING) {
ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
if (ret)
goto abort;
}
reg = (reg & ~PSTATE_MASK) | state;
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x04, reg);
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
reg);
}
abort:
@ -909,7 +930,7 @@ static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
reg |= (ps->bridge_mask[fid] |
(1 << dsa_upstream_port(ds))) & ~(1 << port);
return _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x06, reg);
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
}
/* Must be called with smi lock held */
@ -1021,18 +1042,18 @@ int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
switch (state) {
case BR_STATE_DISABLED:
stp_state = PSTATE_DISABLED;
stp_state = PORT_CONTROL_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = PSTATE_BLOCKING;
stp_state = PORT_CONTROL_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
stp_state = PSTATE_LEARNING;
stp_state = PORT_CONTROL_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = PSTATE_FORWARDING;
stp_state = PORT_CONTROL_STATE_FORWARDING;
break;
}
@ -1054,8 +1075,9 @@ static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x0d + i,
(addr[i * 2] << 8) | addr[i * 2 + 1]);
ret = _mv88e6xxx_reg_write(
ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
(addr[i * 2] << 8) | addr[i * 2 + 1]);
if (ret < 0)
return ret;
}
@ -1068,7 +1090,8 @@ static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x0d + i);
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
GLOBAL_ATU_MAC_01 + i);
if (ret < 0)
return ret;
addr[i * 2] = ret >> 8;
@ -1093,12 +1116,12 @@ static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x0c,
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
(0x10 << port) | state);
if (ret)
return ret;
ret = _mv88e6xxx_atu_cmd(ds, fid, ATU_CMD_LOAD_FID);
ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
return ret;
}
@ -1107,7 +1130,8 @@ int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
int state = is_multicast_ether_addr(addr) ?
FDB_STATE_MC_STATIC : FDB_STATE_STATIC;
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
@ -1125,7 +1149,8 @@ int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
int ret;
mutex_lock(&ps->smi_mutex);
ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, FDB_STATE_UNUSED);
ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
GLOBAL_ATU_DATA_STATE_UNUSED);
mutex_unlock(&ps->smi_mutex);
return ret;
@ -1147,15 +1172,15 @@ static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
return ret;
do {
ret = _mv88e6xxx_atu_cmd(ds, fid, ATU_CMD_GETNEXT_FID);
ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x0c);
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
if (ret < 0)
return ret;
state = ret & FDB_STATE_MASK;
if (state == FDB_STATE_UNUSED)
state = ret & GLOBAL_ATU_DATA_STATE_MASK;
if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
return -ENOENT;
} while (!(((ret >> 4) & 0xff) & (1 << port)));
@ -1164,7 +1189,8 @@ static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
return ret;
*is_static = state == (is_multicast_ether_addr(addr) ?
FDB_STATE_MC_STATIC : FDB_STATE_STATIC);
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC);
return 0;
}
@ -1209,7 +1235,8 @@ int mv88e6xxx_setup_port_common(struct dsa_switch *ds, int port)
/* Port Control 1: disable trunking, disable sending
* learning messages to this port.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x05, 0x0000);
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
0x0000);
if (ret)
goto abort;
@ -1246,7 +1273,7 @@ int mv88e6xxx_setup_common(struct dsa_switch *ds)
mutex_init(&ps->stats_mutex);
mutex_init(&ps->phy_mutex);
ps->id = REG_READ(REG_PORT(0), 0x03) & 0xfff0;
ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;
@ -1265,8 +1292,8 @@ int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
/* Set all ports to the disabled state. */
for (i = 0; i < ps->num_ports; i++) {
ret = REG_READ(REG_PORT(i), 0x04);
REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc);
ret = REG_READ(REG_PORT(i), PORT_CONTROL);
REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
}
/* Wait for transmit queues to drain. */

Просмотреть файл

@ -11,69 +11,199 @@
#ifndef __MV88E6XXX_H
#define __MV88E6XXX_H
/* switch product IDs */
#define ID_6085 0x04a0
#define ID_6095 0x0950
#define ID_6123 0x1210
#define ID_6123_A1 0x1212
#define ID_6123_A2 0x1213
#define ID_6131 0x1060
#define ID_6131_B2 0x1066
#define ID_6152 0x1a40
#define ID_6155 0x1a50
#define ID_6161 0x1610
#define ID_6161_A1 0x1612
#define ID_6161_A2 0x1613
#define ID_6165 0x1650
#define ID_6165_A1 0x1652
#define ID_6165_A2 0x1653
#define ID_6171 0x1710
#define ID_6172 0x1720
#define ID_6176 0x1760
#define ID_6182 0x1a60
#define ID_6185 0x1a70
#define ID_6352 0x3520
#define ID_6352_A0 0x3521
#define ID_6352_A1 0x3522
/* Registers */
#define SMI_CMD 0x00
#define SMI_CMD_BUSY BIT(15)
#define SMI_CMD_CLAUSE_22 BIT(12)
#define SMI_CMD_OP_22_WRITE ((1 << 10) | SMI_CMD_BUSY | SMI_CMD_CLAUSE_22)
#define SMI_CMD_OP_22_READ ((2 << 10) | SMI_CMD_BUSY | SMI_CMD_CLAUSE_22)
#define SMI_CMD_OP_45_WRITE_ADDR ((0 << 10) | SMI_CMD_BUSY)
#define SMI_CMD_OP_45_WRITE_DATA ((1 << 10) | SMI_CMD_BUSY)
#define SMI_CMD_OP_45_READ_DATA ((2 << 10) | SMI_CMD_BUSY)
#define SMI_CMD_OP_45_READ_DATA_INC ((3 << 10) | SMI_CMD_BUSY)
#define SMI_DATA 0x01
#define REG_PORT(p) (0x10 + (p))
#define PORT_STATUS 0x00
#define PORT_STATUS_PAUSE_EN BIT(15)
#define PORT_STATUS_MY_PAUSE BIT(14)
#define PORT_STATUS_HD_FLOW BIT(13)
#define PORT_STATUS_PHY_DETECT BIT(12)
#define PORT_STATUS_LINK BIT(11)
#define PORT_STATUS_DUPLEX BIT(10)
#define PORT_STATUS_SPEED_MASK 0x0300
#define PORT_STATUS_SPEED_10 0x0000
#define PORT_STATUS_SPEED_100 0x0100
#define PORT_STATUS_SPEED_1000 0x0200
#define PORT_STATUS_EEE BIT(6) /* 6352 */
#define PORT_STATUS_AM_DIS BIT(6) /* 6165 */
#define PORT_STATUS_MGMII BIT(6) /* 6185 */
#define PORT_STATUS_TX_PAUSED BIT(5)
#define PORT_STATUS_FLOW_CTRL BIT(4)
#define PORT_PCS_CTRL 0x01
#define PORT_SWITCH_ID 0x03
#define PORT_SWITCH_ID_6085 0x04a0
#define PORT_SWITCH_ID_6095 0x0950
#define PORT_SWITCH_ID_6123 0x1210
#define PORT_SWITCH_ID_6123_A1 0x1212
#define PORT_SWITCH_ID_6123_A2 0x1213
#define PORT_SWITCH_ID_6131 0x1060
#define PORT_SWITCH_ID_6131_B2 0x1066
#define PORT_SWITCH_ID_6152 0x1a40
#define PORT_SWITCH_ID_6155 0x1a50
#define PORT_SWITCH_ID_6161 0x1610
#define PORT_SWITCH_ID_6161_A1 0x1612
#define PORT_SWITCH_ID_6161_A2 0x1613
#define PORT_SWITCH_ID_6165 0x1650
#define PORT_SWITCH_ID_6165_A1 0x1652
#define PORT_SWITCH_ID_6165_A2 0x1653
#define PORT_SWITCH_ID_6171 0x1710
#define PORT_SWITCH_ID_6172 0x1720
#define PORT_SWITCH_ID_6176 0x1760
#define PORT_SWITCH_ID_6182 0x1a60
#define PORT_SWITCH_ID_6185 0x1a70
#define PORT_SWITCH_ID_6352 0x3520
#define PORT_SWITCH_ID_6352_A0 0x3521
#define PORT_SWITCH_ID_6352_A1 0x3522
#define PORT_CONTROL 0x04
#define PORT_CONTROL_STATE_MASK 0x03
#define PORT_CONTROL_STATE_DISABLED 0x00
#define PORT_CONTROL_STATE_BLOCKING 0x01
#define PORT_CONTROL_STATE_LEARNING 0x02
#define PORT_CONTROL_STATE_FORWARDING 0x03
#define PORT_CONTROL_1 0x05
#define PORT_BASE_VLAN 0x06
#define PORT_DEFAULT_VLAN 0x07
#define PORT_CONTROL_2 0x08
#define PORT_RATE_CONTROL 0x09
#define PORT_RATE_CONTROL_2 0x0a
#define PORT_ASSOC_VECTOR 0x0b
#define PORT_IN_DISCARD_LO 0x10
#define PORT_IN_DISCARD_HI 0x11
#define PORT_IN_FILTERED 0x12
#define PORT_OUT_FILTERED 0x13
#define PORT_TAG_REGMAP_0123 0x19
#define PORT_TAG_REGMAP_4567 0x1a
#define REG_GLOBAL 0x1b
#define GLOBAL_STATUS 0x00
#define GLOBAL_STATUS_PPU_STATE BIT(15) /* 6351 and 6171 */
/* Two bits for 6165, 6185 etc */
#define GLOBAL_STATUS_PPU_MASK (0x3 << 14)
#define GLOBAL_STATUS_PPU_DISABLED_RST (0x0 << 14)
#define GLOBAL_STATUS_PPU_INITIALIZING (0x1 << 14)
#define GLOBAL_STATUS_PPU_DISABLED (0x2 << 14)
#define GLOBAL_STATUS_PPU_POLLING (0x3 << 14)
#define GLOBAL_MAC_01 0x01
#define GLOBAL_MAC_23 0x02
#define GLOBAL_MAC_45 0x03
#define GLOBAL_CONTROL 0x04
#define GLOBAL_CONTROL_SW_RESET BIT(15)
#define GLOBAL_CONTROL_PPU_ENABLE BIT(14)
#define GLOBAL_CONTROL_DISCARD_EXCESS BIT(13) /* 6352 */
#define GLOBAL_CONTROL_SCHED_PRIO BIT(11) /* 6152 */
#define GLOBAL_CONTROL_MAX_FRAME_1632 BIT(10) /* 6152 */
#define GLOBAL_CONTROL_RELOAD_EEPROM BIT(9) /* 6152 */
#define GLOBAL_CONTROL_DEVICE_EN BIT(7)
#define GLOBAL_CONTROL_STATS_DONE_EN BIT(6)
#define GLOBAL_CONTROL_VTU_PROBLEM_EN BIT(5)
#define GLOBAL_CONTROL_VTU_DONE_EN BIT(4)
#define GLOBAL_CONTROL_ATU_PROBLEM_EN BIT(3)
#define GLOBAL_CONTROL_ATU_DONE_EN BIT(2)
#define GLOBAL_CONTROL_TCAM_EN BIT(1)
#define GLOBAL_CONTROL_EEPROM_DONE_EN BIT(0)
#define GLOBAL_VTU_OP 0x05
#define GLOBAL_VTU_VID 0x06
#define GLOBAL_VTU_DATA_0_3 0x07
#define GLOBAL_VTU_DATA_4_7 0x08
#define GLOBAL_VTU_DATA_8_11 0x09
#define GLOBAL_ATU_CONTROL 0x0a
#define GLOBAL_ATU_OP 0x0b
#define GLOBAL_ATU_OP_BUSY BIT(15)
#define GLOBAL_ATU_OP_NOP (0 << 12)
#define GLOBAL_ATU_OP_FLUSH_ALL ((1 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_FLUSH_NON_STATIC ((2 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_LOAD_DB ((3 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_GET_NEXT_DB ((4 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_FLUSH_DB ((5 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB ((6 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_OP_GET_CLR_VIOLATION ((7 << 12) | GLOBAL_ATU_OP_BUSY)
#define GLOBAL_ATU_DATA 0x0c
#define GLOBAL_ATU_DATA_STATE_MASK 0x0f
#define GLOBAL_ATU_DATA_STATE_UNUSED 0x00
#define GLOBAL_ATU_DATA_STATE_UC_MGMT 0x0d
#define GLOBAL_ATU_DATA_STATE_UC_STATIC 0x0e
#define GLOBAL_ATU_DATA_STATE_UC_PRIO_OVER 0x0f
#define GLOBAL_ATU_DATA_STATE_MC_NONE_RATE 0x05
#define GLOBAL_ATU_DATA_STATE_MC_STATIC 0x07
#define GLOBAL_ATU_DATA_STATE_MC_MGMT 0x0e
#define GLOBAL_ATU_DATA_STATE_MC_PRIO_OVER 0x0f
#define GLOBAL_ATU_MAC_01 0x0d
#define GLOBAL_ATU_MAC_23 0x0e
#define GLOBAL_ATU_MAC_45 0x0f
#define GLOBAL_IP_PRI_0 0x10
#define GLOBAL_IP_PRI_1 0x11
#define GLOBAL_IP_PRI_2 0x12
#define GLOBAL_IP_PRI_3 0x13
#define GLOBAL_IP_PRI_4 0x14
#define GLOBAL_IP_PRI_5 0x15
#define GLOBAL_IP_PRI_6 0x16
#define GLOBAL_IP_PRI_7 0x17
#define GLOBAL_IEEE_PRI 0x18
#define GLOBAL_CORE_TAG_TYPE 0x19
#define GLOBAL_MONITOR_CONTROL 0x1a
#define GLOBAL_CONTROL_2 0x1c
#define GLOBAL_STATS_OP 0x1d
#define GLOBAL_STATS_OP_BUSY BIT(15)
#define GLOBAL_STATS_OP_NOP (0 << 12)
#define GLOBAL_STATS_OP_FLUSH_ALL ((1 << 12) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_FLUSH_PORT ((2 << 12) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_READ_CAPTURED ((4 << 12) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_CAPTURE_PORT ((5 << 12) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_HIST_RX ((1 << 10) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_HIST_TX ((2 << 10) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_OP_HIST_RX_TX ((3 << 10) | GLOBAL_STATS_OP_BUSY)
#define GLOBAL_STATS_COUNTER_32 0x1e
#define GLOBAL_STATS_COUNTER_01 0x1f
#define REG_GLOBAL2 0x1c
/* ATU commands */
#define ATU_BUSY 0x8000
#define ATU_CMD_LOAD_FID (ATU_BUSY | 0x3000)
#define ATU_CMD_GETNEXT_FID (ATU_BUSY | 0x4000)
#define ATU_CMD_FLUSH_NONSTATIC_FID (ATU_BUSY | 0x6000)
/* port states */
#define PSTATE_MASK 0x03
#define PSTATE_DISABLED 0x00
#define PSTATE_BLOCKING 0x01
#define PSTATE_LEARNING 0x02
#define PSTATE_FORWARDING 0x03
/* FDB states */
#define FDB_STATE_MASK 0x0f
#define FDB_STATE_UNUSED 0x00
#define FDB_STATE_MC_STATIC 0x07 /* static multicast */
#define FDB_STATE_STATIC 0x0e /* static unicast */
#define GLOBAL2_INT_SOURCE 0x00
#define GLOBAL2_INT_MASK 0x01
#define GLOBAL2_MGMT_EN_2X 0x02
#define GLOBAL2_MGMT_EN_0X 0x03
#define GLOBAL2_FLOW_CONTROL 0x04
#define GLOBAL2_SWITCH_MGMT 0x05
#define GLOBAL2_DEVICE_MAPPING 0x06
#define GLOBAL2_TRUNK_MASK 0x07
#define GLOBAL2_TRUNK_MAPPING 0x08
#define GLOBAL2_INGRESS_OP 0x09
#define GLOBAL2_INGRESS_DATA 0x0a
#define GLOBAL2_PVT_ADDR 0x0b
#define GLOBAL2_PVT_DATA 0x0c
#define GLOBAL2_SWITCH_MAC 0x0d
#define GLOBAL2_SWITCH_MAC_BUSY BIT(15)
#define GLOBAL2_ATU_STATS 0x0e
#define GLOBAL2_PRIO_OVERRIDE 0x0f
#define GLOBAL2_EEPROM_OP 0x14
#define GLOBAL2_EEPROM_OP_BUSY BIT(15)
#define GLOBAL2_EEPROM_OP_LOAD BIT(11)
#define GLOBAL2_EEPROM_DATA 0x15
#define GLOBAL2_PTP_AVB_OP 0x16
#define GLOBAL2_PTP_AVB_DATA 0x17
#define GLOBAL2_SMI_OP 0x18
#define GLOBAL2_SMI_OP_BUSY BIT(15)
#define GLOBAL2_SMI_OP_CLAUSE_22 BIT(12)
#define GLOBAL2_SMI_OP_22_WRITE ((1 << 10) | GLOBAL2_SMI_OP_BUSY | \
GLOBAL2_SMI_OP_CLAUSE_22)
#define GLOBAL2_SMI_OP_22_READ ((2 << 10) | GLOBAL2_SMI_OP_BUSY | \
GLOBAL2_SMI_OP_CLAUSE_22)
#define GLOBAL2_SMI_OP_45_WRITE_ADDR ((0 << 10) | GLOBAL2_SMI_OP_BUSY)
#define GLOBAL2_SMI_OP_45_WRITE_DATA ((1 << 10) | GLOBAL2_SMI_OP_BUSY)
#define GLOBAL2_SMI_OP_45_READ_DATA ((2 << 10) | GLOBAL2_SMI_OP_BUSY)
#define GLOBAL2_SMI_DATA 0x19
#define GLOBAL2_SCRATCH_MISC 0x1a
#define GLOBAL2_WDOG_CONTROL 0x1b
#define GLOBAL2_QOS_WEIGHT 0x1c
#define GLOBAL2_MISC 0x1d
struct mv88e6xxx_priv_state {
/* When using multi-chip addressing, this mutex protects