futex_requeue_pi optimization
This patch provides the futex_requeue_pi functionality, which allows some threads waiting on a normal futex to be requeued on the wait-queue of a PI-futex. This provides an optimization, already used for (normal) futexes, to be used with the PI-futexes. This optimization is currently used by the glibc in pthread_broadcast, when using "normal" mutexes. With futex_requeue_pi, it can be used with PRIO_INHERIT mutexes too. Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Родитель
c19384b5b2
Коммит
d0aa7a70bf
|
@ -17,6 +17,7 @@ union ktime;
|
|||
#define FUTEX_LOCK_PI 6
|
||||
#define FUTEX_UNLOCK_PI 7
|
||||
#define FUTEX_TRYLOCK_PI 8
|
||||
#define FUTEX_CMP_REQUEUE_PI 9
|
||||
|
||||
/*
|
||||
* Support for robust futexes: the kernel cleans up held futexes at
|
||||
|
@ -84,10 +85,15 @@ struct robust_list_head {
|
|||
*/
|
||||
#define FUTEX_OWNER_DIED 0x40000000
|
||||
|
||||
/*
|
||||
* Some processes have been requeued on this PI-futex
|
||||
*/
|
||||
#define FUTEX_WAITER_REQUEUED 0x20000000
|
||||
|
||||
/*
|
||||
* The rest of the robust-futex field is for the TID:
|
||||
*/
|
||||
#define FUTEX_TID_MASK 0x3fffffff
|
||||
#define FUTEX_TID_MASK 0x0fffffff
|
||||
|
||||
/*
|
||||
* This limit protects against a deliberately circular list.
|
||||
|
@ -111,6 +117,7 @@ handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi);
|
|||
* We set bit 0 to indicate if it's an inode-based key.
|
||||
*/
|
||||
union futex_key {
|
||||
u32 __user *uaddr;
|
||||
struct {
|
||||
unsigned long pgoff;
|
||||
struct inode *inode;
|
||||
|
|
541
kernel/futex.c
541
kernel/futex.c
|
@ -53,6 +53,12 @@
|
|||
|
||||
#include "rtmutex_common.h"
|
||||
|
||||
#ifdef CONFIG_DEBUG_RT_MUTEXES
|
||||
# include "rtmutex-debug.h"
|
||||
#else
|
||||
# include "rtmutex.h"
|
||||
#endif
|
||||
|
||||
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
|
||||
|
||||
/*
|
||||
|
@ -102,6 +108,12 @@ struct futex_q {
|
|||
/* Optional priority inheritance state: */
|
||||
struct futex_pi_state *pi_state;
|
||||
struct task_struct *task;
|
||||
|
||||
/*
|
||||
* This waiter is used in case of requeue from a
|
||||
* normal futex to a PI-futex
|
||||
*/
|
||||
struct rt_mutex_waiter waiter;
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -180,6 +192,9 @@ int get_futex_key(u32 __user *uaddr, union futex_key *key)
|
|||
if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
|
||||
return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
|
||||
|
||||
/* Save the user address in the ley */
|
||||
key->uaddr = uaddr;
|
||||
|
||||
/*
|
||||
* Private mappings are handled in a simple way.
|
||||
*
|
||||
|
@ -439,7 +454,8 @@ void exit_pi_state_list(struct task_struct *curr)
|
|||
}
|
||||
|
||||
static int
|
||||
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
|
||||
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
|
||||
union futex_key *key, struct futex_pi_state **ps)
|
||||
{
|
||||
struct futex_pi_state *pi_state = NULL;
|
||||
struct futex_q *this, *next;
|
||||
|
@ -450,7 +466,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
|
|||
head = &hb->chain;
|
||||
|
||||
plist_for_each_entry_safe(this, next, head, list) {
|
||||
if (match_futex(&this->key, &me->key)) {
|
||||
if (match_futex(&this->key, key)) {
|
||||
/*
|
||||
* Another waiter already exists - bump up
|
||||
* the refcount and return its pi_state:
|
||||
|
@ -465,7 +481,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
|
|||
WARN_ON(!atomic_read(&pi_state->refcount));
|
||||
|
||||
atomic_inc(&pi_state->refcount);
|
||||
me->pi_state = pi_state;
|
||||
*ps = pi_state;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -492,7 +508,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
|
|||
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
|
||||
|
||||
/* Store the key for possible exit cleanups: */
|
||||
pi_state->key = me->key;
|
||||
pi_state->key = *key;
|
||||
|
||||
spin_lock_irq(&p->pi_lock);
|
||||
WARN_ON(!list_empty(&pi_state->list));
|
||||
|
@ -502,7 +518,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
|
|||
|
||||
put_task_struct(p);
|
||||
|
||||
me->pi_state = pi_state;
|
||||
*ps = pi_state;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -562,6 +578,8 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
|
|||
*/
|
||||
if (!(uval & FUTEX_OWNER_DIED)) {
|
||||
newval = FUTEX_WAITERS | new_owner->pid;
|
||||
/* Keep the FUTEX_WAITER_REQUEUED flag if it was set */
|
||||
newval |= (uval & FUTEX_WAITER_REQUEUED);
|
||||
|
||||
pagefault_disable();
|
||||
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
|
||||
|
@ -665,6 +683,254 @@ out:
|
|||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called from futex_requeue_pi.
|
||||
* Set FUTEX_WAITERS and FUTEX_WAITER_REQUEUED flags on the
|
||||
* PI-futex value; search its associated pi_state if an owner exist
|
||||
* or create a new one without owner.
|
||||
*/
|
||||
static inline int
|
||||
lookup_pi_state_for_requeue(u32 __user *uaddr, struct futex_hash_bucket *hb,
|
||||
union futex_key *key,
|
||||
struct futex_pi_state **pi_state)
|
||||
{
|
||||
u32 curval, uval, newval;
|
||||
|
||||
retry:
|
||||
/*
|
||||
* We can't handle a fault cleanly because we can't
|
||||
* release the locks here. Simply return the fault.
|
||||
*/
|
||||
if (get_futex_value_locked(&curval, uaddr))
|
||||
return -EFAULT;
|
||||
|
||||
/* set the flags FUTEX_WAITERS and FUTEX_WAITER_REQUEUED */
|
||||
if ((curval & (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED))
|
||||
!= (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED)) {
|
||||
/*
|
||||
* No waiters yet, we prepare the futex to have some waiters.
|
||||
*/
|
||||
|
||||
uval = curval;
|
||||
newval = uval | FUTEX_WAITERS | FUTEX_WAITER_REQUEUED;
|
||||
|
||||
pagefault_disable();
|
||||
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
|
||||
pagefault_enable();
|
||||
|
||||
if (unlikely(curval == -EFAULT))
|
||||
return -EFAULT;
|
||||
if (unlikely(curval != uval))
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (!(curval & FUTEX_TID_MASK)
|
||||
|| lookup_pi_state(curval, hb, key, pi_state)) {
|
||||
/* the futex has no owner (yet) or the lookup failed:
|
||||
allocate one pi_state without owner */
|
||||
|
||||
*pi_state = alloc_pi_state();
|
||||
|
||||
/* Already stores the key: */
|
||||
(*pi_state)->key = *key;
|
||||
|
||||
/* init the mutex without owner */
|
||||
__rt_mutex_init(&(*pi_state)->pi_mutex, NULL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Keep the first nr_wake waiter from futex1, wake up one,
|
||||
* and requeue the next nr_requeue waiters following hashed on
|
||||
* one physical page to another physical page (PI-futex uaddr2)
|
||||
*/
|
||||
static int futex_requeue_pi(u32 __user *uaddr1, u32 __user *uaddr2,
|
||||
int nr_wake, int nr_requeue, u32 *cmpval)
|
||||
{
|
||||
union futex_key key1, key2;
|
||||
struct futex_hash_bucket *hb1, *hb2;
|
||||
struct plist_head *head1;
|
||||
struct futex_q *this, *next;
|
||||
struct futex_pi_state *pi_state2 = NULL;
|
||||
struct rt_mutex_waiter *waiter, *top_waiter = NULL;
|
||||
struct rt_mutex *lock2 = NULL;
|
||||
int ret, drop_count = 0;
|
||||
|
||||
if (refill_pi_state_cache())
|
||||
return -ENOMEM;
|
||||
|
||||
retry:
|
||||
/*
|
||||
* First take all the futex related locks:
|
||||
*/
|
||||
down_read(¤t->mm->mmap_sem);
|
||||
|
||||
ret = get_futex_key(uaddr1, &key1);
|
||||
if (unlikely(ret != 0))
|
||||
goto out;
|
||||
ret = get_futex_key(uaddr2, &key2);
|
||||
if (unlikely(ret != 0))
|
||||
goto out;
|
||||
|
||||
hb1 = hash_futex(&key1);
|
||||
hb2 = hash_futex(&key2);
|
||||
|
||||
double_lock_hb(hb1, hb2);
|
||||
|
||||
if (likely(cmpval != NULL)) {
|
||||
u32 curval;
|
||||
|
||||
ret = get_futex_value_locked(&curval, uaddr1);
|
||||
|
||||
if (unlikely(ret)) {
|
||||
spin_unlock(&hb1->lock);
|
||||
if (hb1 != hb2)
|
||||
spin_unlock(&hb2->lock);
|
||||
|
||||
/*
|
||||
* If we would have faulted, release mmap_sem, fault
|
||||
* it in and start all over again.
|
||||
*/
|
||||
up_read(¤t->mm->mmap_sem);
|
||||
|
||||
ret = get_user(curval, uaddr1);
|
||||
|
||||
if (!ret)
|
||||
goto retry;
|
||||
|
||||
return ret;
|
||||
}
|
||||
if (curval != *cmpval) {
|
||||
ret = -EAGAIN;
|
||||
goto out_unlock;
|
||||
}
|
||||
}
|
||||
|
||||
head1 = &hb1->chain;
|
||||
plist_for_each_entry_safe(this, next, head1, list) {
|
||||
if (!match_futex (&this->key, &key1))
|
||||
continue;
|
||||
if (++ret <= nr_wake) {
|
||||
wake_futex(this);
|
||||
} else {
|
||||
/*
|
||||
* FIRST: get and set the pi_state
|
||||
*/
|
||||
if (!pi_state2) {
|
||||
int s;
|
||||
/* do this only the first time we requeue someone */
|
||||
s = lookup_pi_state_for_requeue(uaddr2, hb2,
|
||||
&key2, &pi_state2);
|
||||
if (s) {
|
||||
ret = s;
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
lock2 = &pi_state2->pi_mutex;
|
||||
spin_lock(&lock2->wait_lock);
|
||||
|
||||
/* Save the top waiter of the wait_list */
|
||||
if (rt_mutex_has_waiters(lock2))
|
||||
top_waiter = rt_mutex_top_waiter(lock2);
|
||||
} else
|
||||
atomic_inc(&pi_state2->refcount);
|
||||
|
||||
|
||||
this->pi_state = pi_state2;
|
||||
|
||||
/*
|
||||
* SECOND: requeue futex_q to the correct hashbucket
|
||||
*/
|
||||
|
||||
/*
|
||||
* If key1 and key2 hash to the same bucket, no need to
|
||||
* requeue.
|
||||
*/
|
||||
if (likely(head1 != &hb2->chain)) {
|
||||
plist_del(&this->list, &hb1->chain);
|
||||
plist_add(&this->list, &hb2->chain);
|
||||
this->lock_ptr = &hb2->lock;
|
||||
#ifdef CONFIG_DEBUG_PI_LIST
|
||||
this->list.plist.lock = &hb2->lock;
|
||||
#endif
|
||||
}
|
||||
this->key = key2;
|
||||
get_futex_key_refs(&key2);
|
||||
drop_count++;
|
||||
|
||||
|
||||
/*
|
||||
* THIRD: queue it to lock2
|
||||
*/
|
||||
spin_lock_irq(&this->task->pi_lock);
|
||||
waiter = &this->waiter;
|
||||
waiter->task = this->task;
|
||||
waiter->lock = lock2;
|
||||
plist_node_init(&waiter->list_entry, this->task->prio);
|
||||
plist_node_init(&waiter->pi_list_entry, this->task->prio);
|
||||
plist_add(&waiter->list_entry, &lock2->wait_list);
|
||||
this->task->pi_blocked_on = waiter;
|
||||
spin_unlock_irq(&this->task->pi_lock);
|
||||
|
||||
if (ret - nr_wake >= nr_requeue)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* If we've requeued some tasks and the top_waiter of the rt_mutex
|
||||
has changed, we must adjust the priority of the owner, if any */
|
||||
if (drop_count) {
|
||||
struct task_struct *owner = rt_mutex_owner(lock2);
|
||||
if (owner &&
|
||||
(top_waiter != (waiter = rt_mutex_top_waiter(lock2)))) {
|
||||
int chain_walk = 0;
|
||||
|
||||
spin_lock_irq(&owner->pi_lock);
|
||||
if (top_waiter)
|
||||
plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
|
||||
else
|
||||
/*
|
||||
* There was no waiters before the requeue,
|
||||
* the flag must be updated
|
||||
*/
|
||||
mark_rt_mutex_waiters(lock2);
|
||||
|
||||
plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
|
||||
__rt_mutex_adjust_prio(owner);
|
||||
if (owner->pi_blocked_on) {
|
||||
chain_walk = 1;
|
||||
get_task_struct(owner);
|
||||
}
|
||||
|
||||
spin_unlock_irq(&owner->pi_lock);
|
||||
spin_unlock(&lock2->wait_lock);
|
||||
|
||||
if (chain_walk)
|
||||
rt_mutex_adjust_prio_chain(owner, 0, lock2, NULL,
|
||||
current);
|
||||
} else {
|
||||
/* No owner or the top_waiter does not change */
|
||||
mark_rt_mutex_waiters(lock2);
|
||||
spin_unlock(&lock2->wait_lock);
|
||||
}
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
spin_unlock(&hb1->lock);
|
||||
if (hb1 != hb2)
|
||||
spin_unlock(&hb2->lock);
|
||||
|
||||
/* drop_futex_key_refs() must be called outside the spinlocks. */
|
||||
while (--drop_count >= 0)
|
||||
drop_futex_key_refs(&key1);
|
||||
|
||||
out:
|
||||
up_read(¤t->mm->mmap_sem);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up all waiters hashed on the physical page that is mapped
|
||||
* to this virtual address:
|
||||
|
@ -984,9 +1250,10 @@ static int unqueue_me(struct futex_q *q)
|
|||
|
||||
/*
|
||||
* PI futexes can not be requeued and must remove themself from the
|
||||
* hash bucket. The hash bucket lock is held on entry and dropped here.
|
||||
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
|
||||
* and dropped here.
|
||||
*/
|
||||
static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
|
||||
static void unqueue_me_pi(struct futex_q *q)
|
||||
{
|
||||
WARN_ON(plist_node_empty(&q->list));
|
||||
plist_del(&q->list, &q->list.plist);
|
||||
|
@ -995,11 +1262,65 @@ static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
|
|||
free_pi_state(q->pi_state);
|
||||
q->pi_state = NULL;
|
||||
|
||||
spin_unlock(&hb->lock);
|
||||
spin_unlock(q->lock_ptr);
|
||||
|
||||
drop_futex_key_refs(&q->key);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fixup the pi_state owner with current.
|
||||
*
|
||||
* The cur->mm semaphore must be held, it is released at return of this
|
||||
* function.
|
||||
*/
|
||||
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
|
||||
struct futex_hash_bucket *hb,
|
||||
struct task_struct *curr)
|
||||
{
|
||||
u32 newtid = curr->pid | FUTEX_WAITERS;
|
||||
struct futex_pi_state *pi_state = q->pi_state;
|
||||
u32 uval, curval, newval;
|
||||
int ret;
|
||||
|
||||
/* Owner died? */
|
||||
if (pi_state->owner != NULL) {
|
||||
spin_lock_irq(&pi_state->owner->pi_lock);
|
||||
WARN_ON(list_empty(&pi_state->list));
|
||||
list_del_init(&pi_state->list);
|
||||
spin_unlock_irq(&pi_state->owner->pi_lock);
|
||||
} else
|
||||
newtid |= FUTEX_OWNER_DIED;
|
||||
|
||||
pi_state->owner = curr;
|
||||
|
||||
spin_lock_irq(&curr->pi_lock);
|
||||
WARN_ON(!list_empty(&pi_state->list));
|
||||
list_add(&pi_state->list, &curr->pi_state_list);
|
||||
spin_unlock_irq(&curr->pi_lock);
|
||||
|
||||
/* Unqueue and drop the lock */
|
||||
unqueue_me_pi(q);
|
||||
up_read(&curr->mm->mmap_sem);
|
||||
/*
|
||||
* We own it, so we have to replace the pending owner
|
||||
* TID. This must be atomic as we have preserve the
|
||||
* owner died bit here.
|
||||
*/
|
||||
ret = get_user(uval, uaddr);
|
||||
while (!ret) {
|
||||
newval = (uval & FUTEX_OWNER_DIED) | newtid;
|
||||
newval |= (uval & FUTEX_WAITER_REQUEUED);
|
||||
curval = futex_atomic_cmpxchg_inatomic(uaddr,
|
||||
uval, newval);
|
||||
if (curval == -EFAULT)
|
||||
ret = -EFAULT;
|
||||
if (curval == uval)
|
||||
break;
|
||||
uval = curval;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long futex_wait_restart(struct restart_block *restart);
|
||||
static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
|
||||
{
|
||||
|
@ -1009,7 +1330,7 @@ static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
|
|||
struct futex_q q;
|
||||
u32 uval;
|
||||
int ret;
|
||||
struct hrtimer_sleeper t;
|
||||
struct hrtimer_sleeper t, *to = NULL;
|
||||
int rem = 0;
|
||||
|
||||
q.pi_state = NULL;
|
||||
|
@ -1063,6 +1384,14 @@ static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
|
|||
if (uval != val)
|
||||
goto out_unlock_release_sem;
|
||||
|
||||
/*
|
||||
* This rt_mutex_waiter structure is prepared here and will
|
||||
* be used only if this task is requeued from a normal futex to
|
||||
* a PI-futex with futex_requeue_pi.
|
||||
*/
|
||||
debug_rt_mutex_init_waiter(&q.waiter);
|
||||
q.waiter.task = NULL;
|
||||
|
||||
/* Only actually queue if *uaddr contained val. */
|
||||
__queue_me(&q, hb);
|
||||
|
||||
|
@ -1092,6 +1421,7 @@ static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
|
|||
if (!abs_time)
|
||||
schedule();
|
||||
else {
|
||||
to = &t;
|
||||
hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
||||
hrtimer_init_sleeper(&t, current);
|
||||
t.timer.expires = *abs_time;
|
||||
|
@ -1119,6 +1449,66 @@ static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time)
|
|||
* we are the only user of it.
|
||||
*/
|
||||
|
||||
if (q.pi_state) {
|
||||
/*
|
||||
* We were woken but have been requeued on a PI-futex.
|
||||
* We have to complete the lock acquisition by taking
|
||||
* the rtmutex.
|
||||
*/
|
||||
|
||||
struct rt_mutex *lock = &q.pi_state->pi_mutex;
|
||||
|
||||
spin_lock(&lock->wait_lock);
|
||||
if (unlikely(q.waiter.task)) {
|
||||
remove_waiter(lock, &q.waiter);
|
||||
}
|
||||
spin_unlock(&lock->wait_lock);
|
||||
|
||||
if (rem)
|
||||
ret = -ETIMEDOUT;
|
||||
else
|
||||
ret = rt_mutex_timed_lock(lock, to, 1);
|
||||
|
||||
down_read(&curr->mm->mmap_sem);
|
||||
spin_lock(q.lock_ptr);
|
||||
|
||||
/*
|
||||
* Got the lock. We might not be the anticipated owner if we
|
||||
* did a lock-steal - fix up the PI-state in that case.
|
||||
*/
|
||||
if (!ret && q.pi_state->owner != curr) {
|
||||
/*
|
||||
* We MUST play with the futex we were requeued on,
|
||||
* NOT the current futex.
|
||||
* We can retrieve it from the key of the pi_state
|
||||
*/
|
||||
uaddr = q.pi_state->key.uaddr;
|
||||
|
||||
/* mmap_sem and hash_bucket lock are unlocked at
|
||||
return of this function */
|
||||
ret = fixup_pi_state_owner(uaddr, &q, hb, curr);
|
||||
} else {
|
||||
/*
|
||||
* Catch the rare case, where the lock was released
|
||||
* when we were on the way back before we locked
|
||||
* the hash bucket.
|
||||
*/
|
||||
if (ret && q.pi_state->owner == curr) {
|
||||
if (rt_mutex_trylock(&q.pi_state->pi_mutex))
|
||||
ret = 0;
|
||||
}
|
||||
/* Unqueue and drop the lock */
|
||||
unqueue_me_pi(&q);
|
||||
up_read(&curr->mm->mmap_sem);
|
||||
}
|
||||
|
||||
debug_rt_mutex_free_waiter(&q.waiter);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
debug_rt_mutex_free_waiter(&q.waiter);
|
||||
|
||||
/* If we were woken (and unqueued), we succeeded, whatever. */
|
||||
if (!unqueue_me(&q))
|
||||
return 0;
|
||||
|
@ -1161,6 +1551,51 @@ static long futex_wait_restart(struct restart_block *restart)
|
|||
}
|
||||
|
||||
|
||||
static void set_pi_futex_owner(struct futex_hash_bucket *hb,
|
||||
union futex_key *key, struct task_struct *p)
|
||||
{
|
||||
struct plist_head *head;
|
||||
struct futex_q *this, *next;
|
||||
struct futex_pi_state *pi_state = NULL;
|
||||
struct rt_mutex *lock;
|
||||
|
||||
/* Search a waiter that should already exists */
|
||||
|
||||
head = &hb->chain;
|
||||
|
||||
plist_for_each_entry_safe(this, next, head, list) {
|
||||
if (match_futex (&this->key, key)) {
|
||||
pi_state = this->pi_state;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
BUG_ON(!pi_state);
|
||||
|
||||
/* set p as pi_state's owner */
|
||||
lock = &pi_state->pi_mutex;
|
||||
|
||||
spin_lock(&lock->wait_lock);
|
||||
spin_lock_irq(&p->pi_lock);
|
||||
|
||||
list_add(&pi_state->list, &p->pi_state_list);
|
||||
pi_state->owner = p;
|
||||
|
||||
|
||||
/* set p as pi_mutex's owner */
|
||||
debug_rt_mutex_proxy_lock(lock, p);
|
||||
WARN_ON(rt_mutex_owner(lock));
|
||||
rt_mutex_set_owner(lock, p, 0);
|
||||
rt_mutex_deadlock_account_lock(lock, p);
|
||||
|
||||
plist_add(&rt_mutex_top_waiter(lock)->pi_list_entry,
|
||||
&p->pi_waiters);
|
||||
__rt_mutex_adjust_prio(p);
|
||||
|
||||
spin_unlock_irq(&p->pi_lock);
|
||||
spin_unlock(&lock->wait_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Userspace tried a 0 -> TID atomic transition of the futex value
|
||||
* and failed. The kernel side here does the whole locking operation:
|
||||
|
@ -1175,7 +1610,7 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
struct futex_hash_bucket *hb;
|
||||
u32 uval, newval, curval;
|
||||
struct futex_q q;
|
||||
int ret, attempt = 0;
|
||||
int ret, lock_held, attempt = 0;
|
||||
|
||||
if (refill_pi_state_cache())
|
||||
return -ENOMEM;
|
||||
|
@ -1198,6 +1633,8 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
hb = queue_lock(&q, -1, NULL);
|
||||
|
||||
retry_locked:
|
||||
lock_held = 0;
|
||||
|
||||
/*
|
||||
* To avoid races, we attempt to take the lock here again
|
||||
* (by doing a 0 -> TID atomic cmpxchg), while holding all
|
||||
|
@ -1216,7 +1653,16 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
|
||||
if (!detect && 0)
|
||||
force_sig(SIGKILL, current);
|
||||
ret = -EDEADLK;
|
||||
/*
|
||||
* Normally, this check is done in user space.
|
||||
* In case of requeue, the owner may attempt to lock this futex,
|
||||
* even if the ownership has already been given by the previous
|
||||
* waker.
|
||||
* In the usual case, this is a case of deadlock, but not in case
|
||||
* of REQUEUE_PI.
|
||||
*/
|
||||
if (!(curval & FUTEX_WAITER_REQUEUED))
|
||||
ret = -EDEADLK;
|
||||
goto out_unlock_release_sem;
|
||||
}
|
||||
|
||||
|
@ -1228,7 +1674,18 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
goto out_unlock_release_sem;
|
||||
|
||||
uval = curval;
|
||||
newval = uval | FUTEX_WAITERS;
|
||||
/*
|
||||
* In case of a requeue, check if there already is an owner
|
||||
* If not, just take the futex.
|
||||
*/
|
||||
if ((curval & FUTEX_WAITER_REQUEUED) && !(curval & FUTEX_TID_MASK)) {
|
||||
/* set current as futex owner */
|
||||
newval = curval | current->pid;
|
||||
lock_held = 1;
|
||||
} else
|
||||
/* Set the WAITERS flag, so the owner will know it has someone
|
||||
to wake at next unlock */
|
||||
newval = curval | FUTEX_WAITERS;
|
||||
|
||||
pagefault_disable();
|
||||
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
|
||||
|
@ -1239,11 +1696,16 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
if (unlikely(curval != uval))
|
||||
goto retry_locked;
|
||||
|
||||
if (lock_held) {
|
||||
set_pi_futex_owner(hb, &q.key, curr);
|
||||
goto out_unlock_release_sem;
|
||||
}
|
||||
|
||||
/*
|
||||
* We dont have the lock. Look up the PI state (or create it if
|
||||
* we are the first waiter):
|
||||
*/
|
||||
ret = lookup_pi_state(uval, hb, &q);
|
||||
ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
|
||||
|
||||
if (unlikely(ret)) {
|
||||
/*
|
||||
|
@ -1306,45 +1768,10 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
* Got the lock. We might not be the anticipated owner if we
|
||||
* did a lock-steal - fix up the PI-state in that case.
|
||||
*/
|
||||
if (!ret && q.pi_state->owner != curr) {
|
||||
u32 newtid = current->pid | FUTEX_WAITERS;
|
||||
|
||||
/* Owner died? */
|
||||
if (q.pi_state->owner != NULL) {
|
||||
spin_lock_irq(&q.pi_state->owner->pi_lock);
|
||||
WARN_ON(list_empty(&q.pi_state->list));
|
||||
list_del_init(&q.pi_state->list);
|
||||
spin_unlock_irq(&q.pi_state->owner->pi_lock);
|
||||
} else
|
||||
newtid |= FUTEX_OWNER_DIED;
|
||||
|
||||
q.pi_state->owner = current;
|
||||
|
||||
spin_lock_irq(¤t->pi_lock);
|
||||
WARN_ON(!list_empty(&q.pi_state->list));
|
||||
list_add(&q.pi_state->list, ¤t->pi_state_list);
|
||||
spin_unlock_irq(¤t->pi_lock);
|
||||
|
||||
/* Unqueue and drop the lock */
|
||||
unqueue_me_pi(&q, hb);
|
||||
up_read(&curr->mm->mmap_sem);
|
||||
/*
|
||||
* We own it, so we have to replace the pending owner
|
||||
* TID. This must be atomic as we have preserve the
|
||||
* owner died bit here.
|
||||
*/
|
||||
ret = get_user(uval, uaddr);
|
||||
while (!ret) {
|
||||
newval = (uval & FUTEX_OWNER_DIED) | newtid;
|
||||
curval = futex_atomic_cmpxchg_inatomic(uaddr,
|
||||
uval, newval);
|
||||
if (curval == -EFAULT)
|
||||
ret = -EFAULT;
|
||||
if (curval == uval)
|
||||
break;
|
||||
uval = curval;
|
||||
}
|
||||
} else {
|
||||
if (!ret && q.pi_state->owner != curr)
|
||||
/* mmap_sem is unlocked at return of this function */
|
||||
ret = fixup_pi_state_owner(uaddr, &q, hb, curr);
|
||||
else {
|
||||
/*
|
||||
* Catch the rare case, where the lock was released
|
||||
* when we were on the way back before we locked
|
||||
|
@ -1355,7 +1782,7 @@ static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time,
|
|||
ret = 0;
|
||||
}
|
||||
/* Unqueue and drop the lock */
|
||||
unqueue_me_pi(&q, hb);
|
||||
unqueue_me_pi(&q);
|
||||
up_read(&curr->mm->mmap_sem);
|
||||
}
|
||||
|
||||
|
@ -1724,6 +2151,8 @@ retry:
|
|||
* userspace.
|
||||
*/
|
||||
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
|
||||
/* Also keep the FUTEX_WAITER_REQUEUED flag if set */
|
||||
mval |= (uval & FUTEX_WAITER_REQUEUED);
|
||||
nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
|
||||
|
||||
if (nval == -EFAULT)
|
||||
|
@ -1854,6 +2283,9 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
|
|||
case FUTEX_TRYLOCK_PI:
|
||||
ret = futex_lock_pi(uaddr, 0, timeout, 1);
|
||||
break;
|
||||
case FUTEX_CMP_REQUEUE_PI:
|
||||
ret = futex_requeue_pi(uaddr, uaddr2, val, val2, &val3);
|
||||
break;
|
||||
default:
|
||||
ret = -ENOSYS;
|
||||
}
|
||||
|
@ -1883,7 +2315,8 @@ asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
|
|||
/*
|
||||
* requeue parameter in 'utime' if op == FUTEX_REQUEUE.
|
||||
*/
|
||||
if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
|
||||
if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE
|
||||
|| op == FUTEX_CMP_REQUEUE_PI)
|
||||
val2 = (u32) (unsigned long) utime;
|
||||
|
||||
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
|
||||
|
|
|
@ -156,7 +156,8 @@ asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val,
|
|||
t = ktime_add(ktime_get(), t);
|
||||
tp = &t;
|
||||
}
|
||||
if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
|
||||
if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE
|
||||
|| op == FUTEX_CMP_REQUEUE_PI)
|
||||
val2 = (int) (unsigned long) utime;
|
||||
|
||||
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
|
||||
|
|
|
@ -56,7 +56,7 @@
|
|||
* state.
|
||||
*/
|
||||
|
||||
static void
|
||||
void
|
||||
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
|
||||
unsigned long mask)
|
||||
{
|
||||
|
@ -80,29 +80,6 @@ static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
|
|||
clear_rt_mutex_waiters(lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* We can speed up the acquire/release, if the architecture
|
||||
* supports cmpxchg and if there's no debugging state to be set up
|
||||
*/
|
||||
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
|
||||
# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
|
||||
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
|
||||
{
|
||||
unsigned long owner, *p = (unsigned long *) &lock->owner;
|
||||
|
||||
do {
|
||||
owner = *p;
|
||||
} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
|
||||
}
|
||||
#else
|
||||
# define rt_mutex_cmpxchg(l,c,n) (0)
|
||||
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
|
||||
{
|
||||
lock->owner = (struct task_struct *)
|
||||
((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Calculate task priority from the waiter list priority
|
||||
*
|
||||
|
@ -123,7 +100,7 @@ int rt_mutex_getprio(struct task_struct *task)
|
|||
*
|
||||
* This can be both boosting and unboosting. task->pi_lock must be held.
|
||||
*/
|
||||
static void __rt_mutex_adjust_prio(struct task_struct *task)
|
||||
void __rt_mutex_adjust_prio(struct task_struct *task)
|
||||
{
|
||||
int prio = rt_mutex_getprio(task);
|
||||
|
||||
|
@ -159,11 +136,11 @@ int max_lock_depth = 1024;
|
|||
* Decreases task's usage by one - may thus free the task.
|
||||
* Returns 0 or -EDEADLK.
|
||||
*/
|
||||
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
||||
int deadlock_detect,
|
||||
struct rt_mutex *orig_lock,
|
||||
struct rt_mutex_waiter *orig_waiter,
|
||||
struct task_struct *top_task)
|
||||
int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
||||
int deadlock_detect,
|
||||
struct rt_mutex *orig_lock,
|
||||
struct rt_mutex_waiter *orig_waiter,
|
||||
struct task_struct *top_task)
|
||||
{
|
||||
struct rt_mutex *lock;
|
||||
struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
|
||||
|
@ -524,8 +501,8 @@ static void wakeup_next_waiter(struct rt_mutex *lock)
|
|||
*
|
||||
* Must be called with lock->wait_lock held
|
||||
*/
|
||||
static void remove_waiter(struct rt_mutex *lock,
|
||||
struct rt_mutex_waiter *waiter)
|
||||
void remove_waiter(struct rt_mutex *lock,
|
||||
struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
int first = (waiter == rt_mutex_top_waiter(lock));
|
||||
struct task_struct *owner = rt_mutex_owner(lock);
|
||||
|
|
|
@ -112,6 +112,29 @@ static inline unsigned long rt_mutex_owner_pending(struct rt_mutex *lock)
|
|||
return (unsigned long)lock->owner & RT_MUTEX_OWNER_PENDING;
|
||||
}
|
||||
|
||||
/*
|
||||
* We can speed up the acquire/release, if the architecture
|
||||
* supports cmpxchg and if there's no debugging state to be set up
|
||||
*/
|
||||
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
|
||||
# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
|
||||
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
|
||||
{
|
||||
unsigned long owner, *p = (unsigned long *) &lock->owner;
|
||||
|
||||
do {
|
||||
owner = *p;
|
||||
} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
|
||||
}
|
||||
#else
|
||||
# define rt_mutex_cmpxchg(l,c,n) (0)
|
||||
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
|
||||
{
|
||||
lock->owner = (struct task_struct *)
|
||||
((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* PI-futex support (proxy locking functions, etc.):
|
||||
*/
|
||||
|
@ -120,4 +143,15 @@ extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
|
|||
struct task_struct *proxy_owner);
|
||||
extern void rt_mutex_proxy_unlock(struct rt_mutex *lock,
|
||||
struct task_struct *proxy_owner);
|
||||
|
||||
extern void rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
|
||||
unsigned long mask);
|
||||
extern void __rt_mutex_adjust_prio(struct task_struct *task);
|
||||
extern int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
||||
int deadlock_detect,
|
||||
struct rt_mutex *orig_lock,
|
||||
struct rt_mutex_waiter *orig_waiter,
|
||||
struct task_struct *top_task);
|
||||
extern void remove_waiter(struct rt_mutex *lock,
|
||||
struct rt_mutex_waiter *waiter);
|
||||
#endif
|
||||
|
|
Загрузка…
Ссылка в новой задаче