Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest-and-virtio
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest-and-virtio: lguest: barrier me harder lguest: use bool instead of int lguest: use KVM hypercalls lguest: wire up pte_update/pte_update_defer lguest: fix spurious BUG_ON() on invalid guest stack. virtio: more neatening of virtio_ring macros. virtio: fix BAD_RING, START_US and END_USE macros
This commit is contained in:
Коммит
db6f204019
|
@ -1630,6 +1630,13 @@ static bool service_io(struct device *dev)
|
|||
}
|
||||
}
|
||||
|
||||
/* OK, so we noted that it was pretty poor to use an fdatasync as a
|
||||
* barrier. But Christoph Hellwig points out that we need a sync
|
||||
* *afterwards* as well: "Barriers specify no reordering to the front
|
||||
* or the back." And Jens Axboe confirmed it, so here we are: */
|
||||
if (out->type & VIRTIO_BLK_T_BARRIER)
|
||||
fdatasync(vblk->fd);
|
||||
|
||||
/* We can't trigger an IRQ, because we're not the Launcher. It does
|
||||
* that when we tell it we're done. */
|
||||
add_used(dev->vq, head, wlen);
|
||||
|
|
|
@ -26,36 +26,20 @@
|
|||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <asm/hw_irq.h>
|
||||
#include <asm/kvm_para.h>
|
||||
|
||||
/*G:031 But first, how does our Guest contact the Host to ask for privileged
|
||||
* operations? There are two ways: the direct way is to make a "hypercall",
|
||||
* to make requests of the Host Itself.
|
||||
*
|
||||
* Our hypercall mechanism uses the highest unused trap code (traps 32 and
|
||||
* above are used by real hardware interrupts). Fifteen hypercalls are
|
||||
* We use the KVM hypercall mechanism. Eighteen hypercalls are
|
||||
* available: the hypercall number is put in the %eax register, and the
|
||||
* arguments (when required) are placed in %edx, %ebx and %ecx. If a return
|
||||
* arguments (when required) are placed in %ebx, %ecx and %edx. If a return
|
||||
* value makes sense, it's returned in %eax.
|
||||
*
|
||||
* Grossly invalid calls result in Sudden Death at the hands of the vengeful
|
||||
* Host, rather than returning failure. This reflects Winston Churchill's
|
||||
* definition of a gentleman: "someone who is only rude intentionally". */
|
||||
static inline unsigned long
|
||||
hcall(unsigned long call,
|
||||
unsigned long arg1, unsigned long arg2, unsigned long arg3)
|
||||
{
|
||||
/* "int" is the Intel instruction to trigger a trap. */
|
||||
asm volatile("int $" __stringify(LGUEST_TRAP_ENTRY)
|
||||
/* The call in %eax (aka "a") might be overwritten */
|
||||
: "=a"(call)
|
||||
/* The arguments are in %eax, %edx, %ebx & %ecx */
|
||||
: "a"(call), "d"(arg1), "b"(arg2), "c"(arg3)
|
||||
/* "memory" means this might write somewhere in memory.
|
||||
* This isn't true for all calls, but it's safe to tell
|
||||
* gcc that it might happen so it doesn't get clever. */
|
||||
: "memory");
|
||||
return call;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Can't use our min() macro here: needs to be a constant */
|
||||
|
@ -64,7 +48,7 @@ hcall(unsigned long call,
|
|||
#define LHCALL_RING_SIZE 64
|
||||
struct hcall_args {
|
||||
/* These map directly onto eax, ebx, ecx, edx in struct lguest_regs */
|
||||
unsigned long arg0, arg2, arg3, arg1;
|
||||
unsigned long arg0, arg1, arg2, arg3;
|
||||
};
|
||||
|
||||
#endif /* !__ASSEMBLY__ */
|
||||
|
|
|
@ -107,7 +107,7 @@ static void async_hcall(unsigned long call, unsigned long arg1,
|
|||
local_irq_save(flags);
|
||||
if (lguest_data.hcall_status[next_call] != 0xFF) {
|
||||
/* Table full, so do normal hcall which will flush table. */
|
||||
hcall(call, arg1, arg2, arg3);
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
} else {
|
||||
lguest_data.hcalls[next_call].arg0 = call;
|
||||
lguest_data.hcalls[next_call].arg1 = arg1;
|
||||
|
@ -134,13 +134,32 @@ static void async_hcall(unsigned long call, unsigned long arg1,
|
|||
*
|
||||
* So, when we're in lazy mode, we call async_hcall() to store the call for
|
||||
* future processing: */
|
||||
static void lazy_hcall(unsigned long call,
|
||||
static void lazy_hcall1(unsigned long call,
|
||||
unsigned long arg1)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall1(call, arg1);
|
||||
else
|
||||
async_hcall(call, arg1, 0, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall2(unsigned long call,
|
||||
unsigned long arg1,
|
||||
unsigned long arg2)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall2(call, arg1, arg2);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall3(unsigned long call,
|
||||
unsigned long arg1,
|
||||
unsigned long arg2,
|
||||
unsigned long arg3)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
hcall(call, arg1, arg2, arg3);
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, arg3);
|
||||
}
|
||||
|
@ -150,7 +169,7 @@ static void lazy_hcall(unsigned long call,
|
|||
static void lguest_leave_lazy_mode(void)
|
||||
{
|
||||
paravirt_leave_lazy(paravirt_get_lazy_mode());
|
||||
hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_FLUSH_ASYNC);
|
||||
}
|
||||
|
||||
/*G:033
|
||||
|
@ -229,7 +248,7 @@ static void lguest_write_idt_entry(gate_desc *dt,
|
|||
/* Keep the local copy up to date. */
|
||||
native_write_idt_entry(dt, entrynum, g);
|
||||
/* Tell Host about this new entry. */
|
||||
hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
|
||||
kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
|
||||
}
|
||||
|
||||
/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
|
||||
|
@ -241,7 +260,7 @@ static void lguest_load_idt(const struct desc_ptr *desc)
|
|||
struct desc_struct *idt = (void *)desc->address;
|
||||
|
||||
for (i = 0; i < (desc->size+1)/8; i++)
|
||||
hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
|
||||
kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -261,8 +280,8 @@ static void lguest_load_idt(const struct desc_ptr *desc)
|
|||
*/
|
||||
static void lguest_load_gdt(const struct desc_ptr *desc)
|
||||
{
|
||||
BUG_ON((desc->size+1)/8 != GDT_ENTRIES);
|
||||
hcall(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES, 0);
|
||||
BUG_ON((desc->size + 1) / 8 != GDT_ENTRIES);
|
||||
kvm_hypercall2(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES);
|
||||
}
|
||||
|
||||
/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
|
||||
|
@ -272,7 +291,7 @@ static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
|
|||
const void *desc, int type)
|
||||
{
|
||||
native_write_gdt_entry(dt, entrynum, desc, type);
|
||||
hcall(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES, 0);
|
||||
kvm_hypercall2(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES);
|
||||
}
|
||||
|
||||
/* OK, I lied. There are three "thread local storage" GDT entries which change
|
||||
|
@ -284,7 +303,7 @@ static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
|
|||
* can't handle us removing entries we're currently using. So we clear
|
||||
* the GS register here: if it's needed it'll be reloaded anyway. */
|
||||
lazy_load_gs(0);
|
||||
lazy_hcall(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu, 0);
|
||||
lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
|
||||
}
|
||||
|
||||
/*G:038 That's enough excitement for now, back to ploughing through each of
|
||||
|
@ -382,7 +401,7 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
|
|||
static unsigned long current_cr0;
|
||||
static void lguest_write_cr0(unsigned long val)
|
||||
{
|
||||
lazy_hcall(LHCALL_TS, val & X86_CR0_TS, 0, 0);
|
||||
lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
|
||||
current_cr0 = val;
|
||||
}
|
||||
|
||||
|
@ -396,7 +415,7 @@ static unsigned long lguest_read_cr0(void)
|
|||
* the vowels have been optimized out. */
|
||||
static void lguest_clts(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_TS, 0, 0, 0);
|
||||
lazy_hcall1(LHCALL_TS, 0);
|
||||
current_cr0 &= ~X86_CR0_TS;
|
||||
}
|
||||
|
||||
|
@ -418,7 +437,7 @@ static bool cr3_changed = false;
|
|||
static void lguest_write_cr3(unsigned long cr3)
|
||||
{
|
||||
lguest_data.pgdir = cr3;
|
||||
lazy_hcall(LHCALL_NEW_PGTABLE, cr3, 0, 0);
|
||||
lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
|
||||
cr3_changed = true;
|
||||
}
|
||||
|
||||
|
@ -490,11 +509,17 @@ static void lguest_write_cr4(unsigned long val)
|
|||
* into a process' address space. We set the entry then tell the Host the
|
||||
* toplevel and address this corresponds to. The Guest uses one pagetable per
|
||||
* process, so we need to tell the Host which one we're changing (mm->pgd). */
|
||||
static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep)
|
||||
{
|
||||
lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
|
||||
}
|
||||
|
||||
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
lazy_hcall(LHCALL_SET_PTE, __pa(mm->pgd), addr, pteval.pte_low);
|
||||
lguest_pte_update(mm, addr, ptep);
|
||||
}
|
||||
|
||||
/* The Guest calls this to set a top-level entry. Again, we set the entry then
|
||||
|
@ -503,8 +528,8 @@ static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|||
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
||||
{
|
||||
*pmdp = pmdval;
|
||||
lazy_hcall(LHCALL_SET_PMD, __pa(pmdp)&PAGE_MASK,
|
||||
(__pa(pmdp)&(PAGE_SIZE-1))/4, 0);
|
||||
lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
|
||||
}
|
||||
|
||||
/* There are a couple of legacy places where the kernel sets a PTE, but we
|
||||
|
@ -520,7 +545,7 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
|||
{
|
||||
*ptep = pteval;
|
||||
if (cr3_changed)
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
|
||||
|
@ -536,7 +561,7 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
|||
static void lguest_flush_tlb_single(unsigned long addr)
|
||||
{
|
||||
/* Simply set it to zero: if it was not, it will fault back in. */
|
||||
lazy_hcall(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
|
||||
lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
|
||||
}
|
||||
|
||||
/* This is what happens after the Guest has removed a large number of entries.
|
||||
|
@ -544,7 +569,7 @@ static void lguest_flush_tlb_single(unsigned long addr)
|
|||
* have changed, ie. virtual addresses below PAGE_OFFSET. */
|
||||
static void lguest_flush_tlb_user(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 0, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 0);
|
||||
}
|
||||
|
||||
/* This is called when the kernel page tables have changed. That's not very
|
||||
|
@ -552,7 +577,7 @@ static void lguest_flush_tlb_user(void)
|
|||
* slow), so it's worth separating this from the user flushing above. */
|
||||
static void lguest_flush_tlb_kernel(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -689,7 +714,7 @@ static int lguest_clockevent_set_next_event(unsigned long delta,
|
|||
}
|
||||
|
||||
/* Please wake us this far in the future. */
|
||||
hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0);
|
||||
kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -700,7 +725,7 @@ static void lguest_clockevent_set_mode(enum clock_event_mode mode,
|
|||
case CLOCK_EVT_MODE_UNUSED:
|
||||
case CLOCK_EVT_MODE_SHUTDOWN:
|
||||
/* A 0 argument shuts the clock down. */
|
||||
hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
|
||||
break;
|
||||
case CLOCK_EVT_MODE_ONESHOT:
|
||||
/* This is what we expect. */
|
||||
|
@ -775,8 +800,8 @@ static void lguest_time_init(void)
|
|||
static void lguest_load_sp0(struct tss_struct *tss,
|
||||
struct thread_struct *thread)
|
||||
{
|
||||
lazy_hcall(LHCALL_SET_STACK, __KERNEL_DS|0x1, thread->sp0,
|
||||
THREAD_SIZE/PAGE_SIZE);
|
||||
lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
|
||||
THREAD_SIZE / PAGE_SIZE);
|
||||
}
|
||||
|
||||
/* Let's just say, I wouldn't do debugging under a Guest. */
|
||||
|
@ -849,7 +874,7 @@ static void set_lguest_basic_apic_ops(void)
|
|||
/* STOP! Until an interrupt comes in. */
|
||||
static void lguest_safe_halt(void)
|
||||
{
|
||||
hcall(LHCALL_HALT, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_HALT);
|
||||
}
|
||||
|
||||
/* The SHUTDOWN hypercall takes a string to describe what's happening, and
|
||||
|
@ -859,7 +884,8 @@ static void lguest_safe_halt(void)
|
|||
* rather than virtual addresses, so we use __pa() here. */
|
||||
static void lguest_power_off(void)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa("Power down"), LGUEST_SHUTDOWN_POWEROFF, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
|
||||
LGUEST_SHUTDOWN_POWEROFF);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -869,7 +895,7 @@ static void lguest_power_off(void)
|
|||
*/
|
||||
static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
|
||||
/* The hcall won't return, but to keep gcc happy, we're "done". */
|
||||
return NOTIFY_DONE;
|
||||
}
|
||||
|
@ -910,7 +936,7 @@ static __init int early_put_chars(u32 vtermno, const char *buf, int count)
|
|||
len = sizeof(scratch) - 1;
|
||||
scratch[len] = '\0';
|
||||
memcpy(scratch, buf, len);
|
||||
hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0);
|
||||
kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
|
||||
|
||||
/* This routine returns the number of bytes actually written. */
|
||||
return len;
|
||||
|
@ -920,7 +946,7 @@ static __init int early_put_chars(u32 vtermno, const char *buf, int count)
|
|||
* Launcher to reboot us. */
|
||||
static void lguest_restart(char *reason)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
|
||||
}
|
||||
|
||||
/*G:050
|
||||
|
@ -1040,6 +1066,8 @@ __init void lguest_init(void)
|
|||
pv_mmu_ops.read_cr3 = lguest_read_cr3;
|
||||
pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
|
||||
pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mode;
|
||||
pv_mmu_ops.pte_update = lguest_pte_update;
|
||||
pv_mmu_ops.pte_update_defer = lguest_pte_update;
|
||||
|
||||
#ifdef CONFIG_X86_LOCAL_APIC
|
||||
/* apic read/write intercepts */
|
||||
|
|
|
@ -27,8 +27,8 @@ ENTRY(lguest_entry)
|
|||
/* We make the "initialization" hypercall now to tell the Host about
|
||||
* us, and also find out where it put our page tables. */
|
||||
movl $LHCALL_LGUEST_INIT, %eax
|
||||
movl $lguest_data - __PAGE_OFFSET, %edx
|
||||
int $LGUEST_TRAP_ENTRY
|
||||
movl $lguest_data - __PAGE_OFFSET, %ebx
|
||||
.byte 0x0f,0x01,0xc1 /* KVM_HYPERCALL */
|
||||
|
||||
/* Set up the initial stack so we can run C code. */
|
||||
movl $(init_thread_union+THREAD_SIZE),%esp
|
||||
|
|
|
@ -152,8 +152,8 @@ static void unmap_switcher(void)
|
|||
* code. We have to check that the range is below the pfn_limit the Launcher
|
||||
* gave us. We have to make sure that addr + len doesn't give us a false
|
||||
* positive by overflowing, too. */
|
||||
int lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len)
|
||||
bool lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len)
|
||||
{
|
||||
return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
|
||||
}
|
||||
|
|
|
@ -34,7 +34,7 @@ static int idt_type(u32 lo, u32 hi)
|
|||
}
|
||||
|
||||
/* An IDT entry can't be used unless the "present" bit is set. */
|
||||
static int idt_present(u32 lo, u32 hi)
|
||||
static bool idt_present(u32 lo, u32 hi)
|
||||
{
|
||||
return (hi & 0x8000);
|
||||
}
|
||||
|
@ -60,7 +60,8 @@ static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
|
|||
* We set up the stack just like the CPU does for a real interrupt, so it's
|
||||
* identical for the Guest (and the standard "iret" instruction will undo
|
||||
* it). */
|
||||
static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
|
||||
static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
|
||||
bool has_err)
|
||||
{
|
||||
unsigned long gstack, origstack;
|
||||
u32 eflags, ss, irq_enable;
|
||||
|
@ -184,7 +185,7 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
|
|||
/* set_guest_interrupt() takes the interrupt descriptor and a
|
||||
* flag to say whether this interrupt pushes an error code onto
|
||||
* the stack as well: virtual interrupts never do. */
|
||||
set_guest_interrupt(cpu, idt->a, idt->b, 0);
|
||||
set_guest_interrupt(cpu, idt->a, idt->b, false);
|
||||
}
|
||||
|
||||
/* Every time we deliver an interrupt, we update the timestamp in the
|
||||
|
@ -244,26 +245,26 @@ void free_interrupts(void)
|
|||
/*H:220 Now we've got the routines to deliver interrupts, delivering traps like
|
||||
* page fault is easy. The only trick is that Intel decided that some traps
|
||||
* should have error codes: */
|
||||
static int has_err(unsigned int trap)
|
||||
static bool has_err(unsigned int trap)
|
||||
{
|
||||
return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
|
||||
}
|
||||
|
||||
/* deliver_trap() returns true if it could deliver the trap. */
|
||||
int deliver_trap(struct lg_cpu *cpu, unsigned int num)
|
||||
bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
|
||||
{
|
||||
/* Trap numbers are always 8 bit, but we set an impossible trap number
|
||||
* for traps inside the Switcher, so check that here. */
|
||||
if (num >= ARRAY_SIZE(cpu->arch.idt))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* Early on the Guest hasn't set the IDT entries (or maybe it put a
|
||||
* bogus one in): if we fail here, the Guest will be killed. */
|
||||
if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
|
||||
return 0;
|
||||
return false;
|
||||
set_guest_interrupt(cpu, cpu->arch.idt[num].a,
|
||||
cpu->arch.idt[num].b, has_err(num));
|
||||
return 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*H:250 Here's the hard part: returning to the Host every time a trap happens
|
||||
|
@ -279,18 +280,19 @@ int deliver_trap(struct lg_cpu *cpu, unsigned int num)
|
|||
*
|
||||
* This routine indicates if a particular trap number could be delivered
|
||||
* directly. */
|
||||
static int direct_trap(unsigned int num)
|
||||
static bool direct_trap(unsigned int num)
|
||||
{
|
||||
/* Hardware interrupts don't go to the Guest at all (except system
|
||||
* call). */
|
||||
if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* The Host needs to see page faults (for shadow paging and to save the
|
||||
* fault address), general protection faults (in/out emulation) and
|
||||
* device not available (TS handling), and of course, the hypercall
|
||||
* trap. */
|
||||
return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
|
||||
* device not available (TS handling), invalid opcode fault (kvm hcall),
|
||||
* and of course, the hypercall trap. */
|
||||
return num != 14 && num != 13 && num != 7 &&
|
||||
num != 6 && num != LGUEST_TRAP_ENTRY;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
|
|
@ -109,8 +109,8 @@ struct lguest
|
|||
extern struct mutex lguest_lock;
|
||||
|
||||
/* core.c: */
|
||||
int lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len);
|
||||
bool lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len);
|
||||
void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
|
||||
void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
|
||||
|
||||
|
@ -140,7 +140,7 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
|
|||
|
||||
/* interrupts_and_traps.c: */
|
||||
void maybe_do_interrupt(struct lg_cpu *cpu);
|
||||
int deliver_trap(struct lg_cpu *cpu, unsigned int num);
|
||||
bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
|
||||
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
|
||||
u32 low, u32 hi);
|
||||
void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
|
||||
|
@ -173,7 +173,7 @@ void guest_pagetable_flush_user(struct lg_cpu *cpu);
|
|||
void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
|
||||
unsigned long vaddr, pte_t val);
|
||||
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
|
||||
int demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
|
||||
bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
|
||||
void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
|
||||
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
|
||||
void page_table_guest_data_init(struct lg_cpu *cpu);
|
||||
|
|
|
@ -161,7 +161,7 @@ static void set_status(struct virtio_device *vdev, u8 status)
|
|||
|
||||
/* We set the status. */
|
||||
to_lgdev(vdev)->desc->status = status;
|
||||
hcall(LHCALL_NOTIFY, (max_pfn<<PAGE_SHIFT) + offset, 0, 0);
|
||||
kvm_hypercall1(LHCALL_NOTIFY, (max_pfn << PAGE_SHIFT) + offset);
|
||||
}
|
||||
|
||||
static void lg_set_status(struct virtio_device *vdev, u8 status)
|
||||
|
@ -209,7 +209,7 @@ static void lg_notify(struct virtqueue *vq)
|
|||
* virtqueue structure. */
|
||||
struct lguest_vq_info *lvq = vq->priv;
|
||||
|
||||
hcall(LHCALL_NOTIFY, lvq->config.pfn << PAGE_SHIFT, 0, 0);
|
||||
kvm_hypercall1(LHCALL_NOTIFY, lvq->config.pfn << PAGE_SHIFT);
|
||||
}
|
||||
|
||||
/* An extern declaration inside a C file is bad form. Don't do it. */
|
||||
|
|
|
@ -199,7 +199,7 @@ static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
|
|||
*
|
||||
* If we fixed up the fault (ie. we mapped the address), this routine returns
|
||||
* true. Otherwise, it was a real fault and we need to tell the Guest. */
|
||||
int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
||||
bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
||||
{
|
||||
pgd_t gpgd;
|
||||
pgd_t *spgd;
|
||||
|
@ -211,7 +211,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
||||
/* Toplevel not present? We can't map it in. */
|
||||
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* Now look at the matching shadow entry. */
|
||||
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
|
||||
|
@ -222,7 +222,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
* simple for this corner case. */
|
||||
if (!ptepage) {
|
||||
kill_guest(cpu, "out of memory allocating pte page");
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
/* We check that the Guest pgd is OK. */
|
||||
check_gpgd(cpu, gpgd);
|
||||
|
@ -238,16 +238,16 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
|
||||
/* If this page isn't in the Guest page tables, we can't page it in. */
|
||||
if (!(pte_flags(gpte) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* Check they're not trying to write to a page the Guest wants
|
||||
* read-only (bit 2 of errcode == write). */
|
||||
if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* User access to a kernel-only page? (bit 3 == user access) */
|
||||
if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* Check that the Guest PTE flags are OK, and the page number is below
|
||||
* the pfn_limit (ie. not mapping the Launcher binary). */
|
||||
|
@ -283,7 +283,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
* manipulated, the result returned and the code complete. A small
|
||||
* delay and a trace of alliteration are the only indications the Guest
|
||||
* has that a page fault occurred at all. */
|
||||
return 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*H:360
|
||||
|
@ -296,7 +296,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
*
|
||||
* This is a quick version which answers the question: is this virtual address
|
||||
* mapped by the shadow page tables, and is it writable? */
|
||||
static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
|
||||
static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
|
||||
{
|
||||
pgd_t *spgd;
|
||||
unsigned long flags;
|
||||
|
@ -304,7 +304,7 @@ static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
/* Look at the current top level entry: is it present? */
|
||||
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
|
||||
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
/* Check the flags on the pte entry itself: it must be present and
|
||||
* writable. */
|
||||
|
@ -373,8 +373,10 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
/* First step: get the top-level Guest page table entry. */
|
||||
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
||||
/* Toplevel not present? We can't map it in. */
|
||||
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
|
||||
if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
|
||||
kill_guest(cpu, "Bad address %#lx", vaddr);
|
||||
return -1UL;
|
||||
}
|
||||
|
||||
gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
|
||||
if (!(pte_flags(gpte) & _PAGE_PRESENT))
|
||||
|
|
|
@ -45,7 +45,7 @@
|
|||
* "Task State Segment" which controls all kinds of delicate things. The
|
||||
* LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
|
||||
* the Guest can't be trusted to deal with double faults. */
|
||||
static int ignored_gdt(unsigned int num)
|
||||
static bool ignored_gdt(unsigned int num)
|
||||
{
|
||||
return (num == GDT_ENTRY_TSS
|
||||
|| num == GDT_ENTRY_LGUEST_CS
|
||||
|
|
|
@ -290,6 +290,57 @@ static int emulate_insn(struct lg_cpu *cpu)
|
|||
return 1;
|
||||
}
|
||||
|
||||
/* Our hypercalls mechanism used to be based on direct software interrupts.
|
||||
* After Anthony's "Refactor hypercall infrastructure" kvm patch, we decided to
|
||||
* change over to using kvm hypercalls.
|
||||
*
|
||||
* KVM_HYPERCALL is actually a "vmcall" instruction, which generates an invalid
|
||||
* opcode fault (fault 6) on non-VT cpus, so the easiest solution seemed to be
|
||||
* an *emulation approach*: if the fault was really produced by an hypercall
|
||||
* (is_hypercall() does exactly this check), we can just call the corresponding
|
||||
* hypercall host implementation function.
|
||||
*
|
||||
* But these invalid opcode faults are notably slower than software interrupts.
|
||||
* So we implemented the *patching (or rewriting) approach*: every time we hit
|
||||
* the KVM_HYPERCALL opcode in Guest code, we patch it to the old "int 0x1f"
|
||||
* opcode, so next time the Guest calls this hypercall it will use the
|
||||
* faster trap mechanism.
|
||||
*
|
||||
* Matias even benchmarked it to convince you: this shows the average cycle
|
||||
* cost of a hypercall. For each alternative solution mentioned above we've
|
||||
* made 5 runs of the benchmark:
|
||||
*
|
||||
* 1) direct software interrupt: 2915, 2789, 2764, 2721, 2898
|
||||
* 2) emulation technique: 3410, 3681, 3466, 3392, 3780
|
||||
* 3) patching (rewrite) technique: 2977, 2975, 2891, 2637, 2884
|
||||
*
|
||||
* One two-line function is worth a 20% hypercall speed boost!
|
||||
*/
|
||||
static void rewrite_hypercall(struct lg_cpu *cpu)
|
||||
{
|
||||
/* This are the opcodes we use to patch the Guest. The opcode for "int
|
||||
* $0x1f" is "0xcd 0x1f" but vmcall instruction is 3 bytes long, so we
|
||||
* complete the sequence with a NOP (0x90). */
|
||||
u8 insn[3] = {0xcd, 0x1f, 0x90};
|
||||
|
||||
__lgwrite(cpu, guest_pa(cpu, cpu->regs->eip), insn, sizeof(insn));
|
||||
}
|
||||
|
||||
static bool is_hypercall(struct lg_cpu *cpu)
|
||||
{
|
||||
u8 insn[3];
|
||||
|
||||
/* This must be the Guest kernel trying to do something.
|
||||
* The bottom two bits of the CS segment register are the privilege
|
||||
* level. */
|
||||
if ((cpu->regs->cs & 3) != GUEST_PL)
|
||||
return false;
|
||||
|
||||
/* Is it a vmcall? */
|
||||
__lgread(cpu, insn, guest_pa(cpu, cpu->regs->eip), sizeof(insn));
|
||||
return insn[0] == 0x0f && insn[1] == 0x01 && insn[2] == 0xc1;
|
||||
}
|
||||
|
||||
/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
|
||||
void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
||||
{
|
||||
|
@ -337,7 +388,7 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
|||
break;
|
||||
case 32 ... 255:
|
||||
/* These values mean a real interrupt occurred, in which case
|
||||
* the Host handler has already been run. We just do a
|
||||
* the Host handler has already been run. We just do a
|
||||
* friendly check if another process should now be run, then
|
||||
* return to run the Guest again */
|
||||
cond_resched();
|
||||
|
@ -347,6 +398,15 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
|||
* up the pointer now to indicate a hypercall is pending. */
|
||||
cpu->hcall = (struct hcall_args *)cpu->regs;
|
||||
return;
|
||||
case 6:
|
||||
/* kvm hypercalls trigger an invalid opcode fault (6).
|
||||
* We need to check if ring == GUEST_PL and
|
||||
* faulting instruction == vmcall. */
|
||||
if (is_hypercall(cpu)) {
|
||||
rewrite_hypercall(cpu);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* We didn't handle the trap, so it needs to go to the Guest. */
|
||||
|
|
|
@ -23,15 +23,21 @@
|
|||
|
||||
#ifdef DEBUG
|
||||
/* For development, we want to crash whenever the ring is screwed. */
|
||||
#define BAD_RING(vq, fmt...) \
|
||||
do { dev_err(&vq->vq.vdev->dev, fmt); BUG(); } while(0)
|
||||
#define START_USE(vq) \
|
||||
do { if ((vq)->in_use) panic("in_use = %i\n", (vq)->in_use); (vq)->in_use = __LINE__; mb(); } while(0)
|
||||
#define END_USE(vq) \
|
||||
do { BUG_ON(!(vq)->in_use); (vq)->in_use = 0; mb(); } while(0)
|
||||
#define BAD_RING(_vq, fmt...) \
|
||||
do { dev_err(&(_vq)->vq.vdev->dev, fmt); BUG(); } while(0)
|
||||
/* Caller is supposed to guarantee no reentry. */
|
||||
#define START_USE(_vq) \
|
||||
do { \
|
||||
if ((_vq)->in_use) \
|
||||
panic("in_use = %i\n", (_vq)->in_use); \
|
||||
(_vq)->in_use = __LINE__; \
|
||||
mb(); \
|
||||
} while(0)
|
||||
#define END_USE(_vq) \
|
||||
do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; mb(); } while(0)
|
||||
#else
|
||||
#define BAD_RING(vq, fmt...) \
|
||||
do { dev_err(&vq->vq.vdev->dev, fmt); (vq)->broken = true; } while(0)
|
||||
#define BAD_RING(_vq, fmt...) \
|
||||
do { dev_err(&_vq->vq.vdev->dev, fmt); (_vq)->broken = true; } while(0)
|
||||
#define START_USE(vq)
|
||||
#define END_USE(vq)
|
||||
#endif
|
||||
|
|
Загрузка…
Ссылка в новой задаче