KVM: x86 emulator: move x86_decode_insn() downwards

No code changes.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This commit is contained in:
Avi Kivity 2010-07-29 15:11:52 +03:00
Родитель ef65c88912
Коммит dde7e6d12a
1 изменённых файлов: 372 добавлений и 372 удалений

Просмотреть файл

@ -945,378 +945,6 @@ done:
return rc;
}
int
x86_decode_insn(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
int mode = ctxt->mode;
int def_op_bytes, def_ad_bytes, dual, goffset;
struct opcode opcode, *g_mod012, *g_mod3;
/* we cannot decode insn before we complete previous rep insn */
WARN_ON(ctxt->restart);
c->eip = ctxt->eip;
c->fetch.start = c->fetch.end = c->eip;
ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS);
switch (mode) {
case X86EMUL_MODE_REAL:
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
def_op_bytes = def_ad_bytes = 2;
break;
case X86EMUL_MODE_PROT32:
def_op_bytes = def_ad_bytes = 4;
break;
#ifdef CONFIG_X86_64
case X86EMUL_MODE_PROT64:
def_op_bytes = 4;
def_ad_bytes = 8;
break;
#endif
default:
return -1;
}
c->op_bytes = def_op_bytes;
c->ad_bytes = def_ad_bytes;
/* Legacy prefixes. */
for (;;) {
switch (c->b = insn_fetch(u8, 1, c->eip)) {
case 0x66: /* operand-size override */
/* switch between 2/4 bytes */
c->op_bytes = def_op_bytes ^ 6;
break;
case 0x67: /* address-size override */
if (mode == X86EMUL_MODE_PROT64)
/* switch between 4/8 bytes */
c->ad_bytes = def_ad_bytes ^ 12;
else
/* switch between 2/4 bytes */
c->ad_bytes = def_ad_bytes ^ 6;
break;
case 0x26: /* ES override */
case 0x2e: /* CS override */
case 0x36: /* SS override */
case 0x3e: /* DS override */
set_seg_override(c, (c->b >> 3) & 3);
break;
case 0x64: /* FS override */
case 0x65: /* GS override */
set_seg_override(c, c->b & 7);
break;
case 0x40 ... 0x4f: /* REX */
if (mode != X86EMUL_MODE_PROT64)
goto done_prefixes;
c->rex_prefix = c->b;
continue;
case 0xf0: /* LOCK */
c->lock_prefix = 1;
break;
case 0xf2: /* REPNE/REPNZ */
c->rep_prefix = REPNE_PREFIX;
break;
case 0xf3: /* REP/REPE/REPZ */
c->rep_prefix = REPE_PREFIX;
break;
default:
goto done_prefixes;
}
/* Any legacy prefix after a REX prefix nullifies its effect. */
c->rex_prefix = 0;
}
done_prefixes:
/* REX prefix. */
if (c->rex_prefix)
if (c->rex_prefix & 8)
c->op_bytes = 8; /* REX.W */
/* Opcode byte(s). */
opcode = opcode_table[c->b];
if (opcode.flags == 0) {
/* Two-byte opcode? */
if (c->b == 0x0f) {
c->twobyte = 1;
c->b = insn_fetch(u8, 1, c->eip);
opcode = twobyte_table[c->b];
}
}
c->d = opcode.flags;
if (c->d & Group) {
dual = c->d & GroupDual;
c->modrm = insn_fetch(u8, 1, c->eip);
--c->eip;
if (c->d & GroupDual) {
g_mod012 = opcode.u.gdual->mod012;
g_mod3 = opcode.u.gdual->mod3;
} else
g_mod012 = g_mod3 = opcode.u.group;
c->d &= ~(Group | GroupDual);
goffset = (c->modrm >> 3) & 7;
if ((c->modrm >> 6) == 3)
opcode = g_mod3[goffset];
else
opcode = g_mod012[goffset];
c->d |= opcode.flags;
}
c->execute = opcode.u.execute;
/* Unrecognised? */
if (c->d == 0 || (c->d & Undefined)) {
DPRINTF("Cannot emulate %02x\n", c->b);
return -1;
}
if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
c->op_bytes = 8;
/* ModRM and SIB bytes. */
if (c->d & ModRM)
rc = decode_modrm(ctxt, ops);
else if (c->d & MemAbs)
rc = decode_abs(ctxt, ops);
if (rc != X86EMUL_CONTINUE)
goto done;
if (!c->has_seg_override)
set_seg_override(c, VCPU_SREG_DS);
if (!(!c->twobyte && c->b == 0x8d))
c->modrm_ea += seg_override_base(ctxt, ops, c);
if (c->ad_bytes != 8)
c->modrm_ea = (u32)c->modrm_ea;
if (c->rip_relative)
c->modrm_ea += c->eip;
/*
* Decode and fetch the source operand: register, memory
* or immediate.
*/
switch (c->d & SrcMask) {
case SrcNone:
break;
case SrcReg:
decode_register_operand(&c->src, c, 0);
break;
case SrcMem16:
c->src.bytes = 2;
goto srcmem_common;
case SrcMem32:
c->src.bytes = 4;
goto srcmem_common;
case SrcMem:
c->src.bytes = (c->d & ByteOp) ? 1 :
c->op_bytes;
/* Don't fetch the address for invlpg: it could be unmapped. */
if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7)
break;
srcmem_common:
/*
* For instructions with a ModR/M byte, switch to register
* access if Mod = 3.
*/
if ((c->d & ModRM) && c->modrm_mod == 3) {
c->src.type = OP_REG;
c->src.val = c->modrm_val;
c->src.ptr = c->modrm_ptr;
break;
}
c->src.type = OP_MEM;
c->src.ptr = (unsigned long *)c->modrm_ea;
c->src.val = 0;
break;
case SrcImm:
case SrcImmU:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
if (c->src.bytes == 8)
c->src.bytes = 4;
/* NB. Immediates are sign-extended as necessary. */
switch (c->src.bytes) {
case 1:
c->src.val = insn_fetch(s8, 1, c->eip);
break;
case 2:
c->src.val = insn_fetch(s16, 2, c->eip);
break;
case 4:
c->src.val = insn_fetch(s32, 4, c->eip);
break;
}
if ((c->d & SrcMask) == SrcImmU) {
switch (c->src.bytes) {
case 1:
c->src.val &= 0xff;
break;
case 2:
c->src.val &= 0xffff;
break;
case 4:
c->src.val &= 0xffffffff;
break;
}
}
break;
case SrcImmByte:
case SrcImmUByte:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = 1;
if ((c->d & SrcMask) == SrcImmByte)
c->src.val = insn_fetch(s8, 1, c->eip);
else
c->src.val = insn_fetch(u8, 1, c->eip);
break;
case SrcAcc:
c->src.type = OP_REG;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->src.ptr = &c->regs[VCPU_REGS_RAX];
switch (c->src.bytes) {
case 1:
c->src.val = *(u8 *)c->src.ptr;
break;
case 2:
c->src.val = *(u16 *)c->src.ptr;
break;
case 4:
c->src.val = *(u32 *)c->src.ptr;
break;
case 8:
c->src.val = *(u64 *)c->src.ptr;
break;
}
break;
case SrcOne:
c->src.bytes = 1;
c->src.val = 1;
break;
case SrcSI:
c->src.type = OP_MEM;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->src.ptr = (unsigned long *)
register_address(c, seg_override_base(ctxt, ops, c),
c->regs[VCPU_REGS_RSI]);
c->src.val = 0;
break;
case SrcImmFAddr:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = c->op_bytes + 2;
insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip);
break;
case SrcMemFAddr:
c->src.type = OP_MEM;
c->src.ptr = (unsigned long *)c->modrm_ea;
c->src.bytes = c->op_bytes + 2;
break;
}
/*
* Decode and fetch the second source operand: register, memory
* or immediate.
*/
switch (c->d & Src2Mask) {
case Src2None:
break;
case Src2CL:
c->src2.bytes = 1;
c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
break;
case Src2ImmByte:
c->src2.type = OP_IMM;
c->src2.ptr = (unsigned long *)c->eip;
c->src2.bytes = 1;
c->src2.val = insn_fetch(u8, 1, c->eip);
break;
case Src2One:
c->src2.bytes = 1;
c->src2.val = 1;
break;
}
/* Decode and fetch the destination operand: register or memory. */
switch (c->d & DstMask) {
case ImplicitOps:
/* Special instructions do their own operand decoding. */
return 0;
case DstReg:
decode_register_operand(&c->dst, c,
c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
break;
case DstMem:
case DstMem64:
if ((c->d & ModRM) && c->modrm_mod == 3) {
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.type = OP_REG;
c->dst.val = c->dst.orig_val = c->modrm_val;
c->dst.ptr = c->modrm_ptr;
break;
}
c->dst.type = OP_MEM;
c->dst.ptr = (unsigned long *)c->modrm_ea;
if ((c->d & DstMask) == DstMem64)
c->dst.bytes = 8;
else
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.val = 0;
if (c->d & BitOp) {
unsigned long mask = ~(c->dst.bytes * 8 - 1);
c->dst.ptr = (void *)c->dst.ptr +
(c->src.val & mask) / 8;
}
break;
case DstAcc:
c->dst.type = OP_REG;
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.ptr = &c->regs[VCPU_REGS_RAX];
switch (c->dst.bytes) {
case 1:
c->dst.val = *(u8 *)c->dst.ptr;
break;
case 2:
c->dst.val = *(u16 *)c->dst.ptr;
break;
case 4:
c->dst.val = *(u32 *)c->dst.ptr;
break;
case 8:
c->dst.val = *(u64 *)c->dst.ptr;
break;
}
c->dst.orig_val = c->dst.val;
break;
case DstDI:
c->dst.type = OP_MEM;
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.ptr = (unsigned long *)
register_address(c, es_base(ctxt, ops),
c->regs[VCPU_REGS_RDI]);
c->dst.val = 0;
break;
}
done:
return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
}
static int read_emulated(struct x86_emulate_ctxt *ctxt,
struct x86_emulate_ops *ops,
unsigned long addr, void *dest, unsigned size)
@ -2624,6 +2252,378 @@ static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned long base,
op->ptr = (unsigned long *)register_address(c, base, c->regs[reg]);
}
int
x86_decode_insn(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct decode_cache *c = &ctxt->decode;
int rc = X86EMUL_CONTINUE;
int mode = ctxt->mode;
int def_op_bytes, def_ad_bytes, dual, goffset;
struct opcode opcode, *g_mod012, *g_mod3;
/* we cannot decode insn before we complete previous rep insn */
WARN_ON(ctxt->restart);
c->eip = ctxt->eip;
c->fetch.start = c->fetch.end = c->eip;
ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS);
switch (mode) {
case X86EMUL_MODE_REAL:
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
def_op_bytes = def_ad_bytes = 2;
break;
case X86EMUL_MODE_PROT32:
def_op_bytes = def_ad_bytes = 4;
break;
#ifdef CONFIG_X86_64
case X86EMUL_MODE_PROT64:
def_op_bytes = 4;
def_ad_bytes = 8;
break;
#endif
default:
return -1;
}
c->op_bytes = def_op_bytes;
c->ad_bytes = def_ad_bytes;
/* Legacy prefixes. */
for (;;) {
switch (c->b = insn_fetch(u8, 1, c->eip)) {
case 0x66: /* operand-size override */
/* switch between 2/4 bytes */
c->op_bytes = def_op_bytes ^ 6;
break;
case 0x67: /* address-size override */
if (mode == X86EMUL_MODE_PROT64)
/* switch between 4/8 bytes */
c->ad_bytes = def_ad_bytes ^ 12;
else
/* switch between 2/4 bytes */
c->ad_bytes = def_ad_bytes ^ 6;
break;
case 0x26: /* ES override */
case 0x2e: /* CS override */
case 0x36: /* SS override */
case 0x3e: /* DS override */
set_seg_override(c, (c->b >> 3) & 3);
break;
case 0x64: /* FS override */
case 0x65: /* GS override */
set_seg_override(c, c->b & 7);
break;
case 0x40 ... 0x4f: /* REX */
if (mode != X86EMUL_MODE_PROT64)
goto done_prefixes;
c->rex_prefix = c->b;
continue;
case 0xf0: /* LOCK */
c->lock_prefix = 1;
break;
case 0xf2: /* REPNE/REPNZ */
c->rep_prefix = REPNE_PREFIX;
break;
case 0xf3: /* REP/REPE/REPZ */
c->rep_prefix = REPE_PREFIX;
break;
default:
goto done_prefixes;
}
/* Any legacy prefix after a REX prefix nullifies its effect. */
c->rex_prefix = 0;
}
done_prefixes:
/* REX prefix. */
if (c->rex_prefix)
if (c->rex_prefix & 8)
c->op_bytes = 8; /* REX.W */
/* Opcode byte(s). */
opcode = opcode_table[c->b];
if (opcode.flags == 0) {
/* Two-byte opcode? */
if (c->b == 0x0f) {
c->twobyte = 1;
c->b = insn_fetch(u8, 1, c->eip);
opcode = twobyte_table[c->b];
}
}
c->d = opcode.flags;
if (c->d & Group) {
dual = c->d & GroupDual;
c->modrm = insn_fetch(u8, 1, c->eip);
--c->eip;
if (c->d & GroupDual) {
g_mod012 = opcode.u.gdual->mod012;
g_mod3 = opcode.u.gdual->mod3;
} else
g_mod012 = g_mod3 = opcode.u.group;
c->d &= ~(Group | GroupDual);
goffset = (c->modrm >> 3) & 7;
if ((c->modrm >> 6) == 3)
opcode = g_mod3[goffset];
else
opcode = g_mod012[goffset];
c->d |= opcode.flags;
}
c->execute = opcode.u.execute;
/* Unrecognised? */
if (c->d == 0 || (c->d & Undefined)) {
DPRINTF("Cannot emulate %02x\n", c->b);
return -1;
}
if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
c->op_bytes = 8;
/* ModRM and SIB bytes. */
if (c->d & ModRM)
rc = decode_modrm(ctxt, ops);
else if (c->d & MemAbs)
rc = decode_abs(ctxt, ops);
if (rc != X86EMUL_CONTINUE)
goto done;
if (!c->has_seg_override)
set_seg_override(c, VCPU_SREG_DS);
if (!(!c->twobyte && c->b == 0x8d))
c->modrm_ea += seg_override_base(ctxt, ops, c);
if (c->ad_bytes != 8)
c->modrm_ea = (u32)c->modrm_ea;
if (c->rip_relative)
c->modrm_ea += c->eip;
/*
* Decode and fetch the source operand: register, memory
* or immediate.
*/
switch (c->d & SrcMask) {
case SrcNone:
break;
case SrcReg:
decode_register_operand(&c->src, c, 0);
break;
case SrcMem16:
c->src.bytes = 2;
goto srcmem_common;
case SrcMem32:
c->src.bytes = 4;
goto srcmem_common;
case SrcMem:
c->src.bytes = (c->d & ByteOp) ? 1 :
c->op_bytes;
/* Don't fetch the address for invlpg: it could be unmapped. */
if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7)
break;
srcmem_common:
/*
* For instructions with a ModR/M byte, switch to register
* access if Mod = 3.
*/
if ((c->d & ModRM) && c->modrm_mod == 3) {
c->src.type = OP_REG;
c->src.val = c->modrm_val;
c->src.ptr = c->modrm_ptr;
break;
}
c->src.type = OP_MEM;
c->src.ptr = (unsigned long *)c->modrm_ea;
c->src.val = 0;
break;
case SrcImm:
case SrcImmU:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
if (c->src.bytes == 8)
c->src.bytes = 4;
/* NB. Immediates are sign-extended as necessary. */
switch (c->src.bytes) {
case 1:
c->src.val = insn_fetch(s8, 1, c->eip);
break;
case 2:
c->src.val = insn_fetch(s16, 2, c->eip);
break;
case 4:
c->src.val = insn_fetch(s32, 4, c->eip);
break;
}
if ((c->d & SrcMask) == SrcImmU) {
switch (c->src.bytes) {
case 1:
c->src.val &= 0xff;
break;
case 2:
c->src.val &= 0xffff;
break;
case 4:
c->src.val &= 0xffffffff;
break;
}
}
break;
case SrcImmByte:
case SrcImmUByte:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = 1;
if ((c->d & SrcMask) == SrcImmByte)
c->src.val = insn_fetch(s8, 1, c->eip);
else
c->src.val = insn_fetch(u8, 1, c->eip);
break;
case SrcAcc:
c->src.type = OP_REG;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->src.ptr = &c->regs[VCPU_REGS_RAX];
switch (c->src.bytes) {
case 1:
c->src.val = *(u8 *)c->src.ptr;
break;
case 2:
c->src.val = *(u16 *)c->src.ptr;
break;
case 4:
c->src.val = *(u32 *)c->src.ptr;
break;
case 8:
c->src.val = *(u64 *)c->src.ptr;
break;
}
break;
case SrcOne:
c->src.bytes = 1;
c->src.val = 1;
break;
case SrcSI:
c->src.type = OP_MEM;
c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->src.ptr = (unsigned long *)
register_address(c, seg_override_base(ctxt, ops, c),
c->regs[VCPU_REGS_RSI]);
c->src.val = 0;
break;
case SrcImmFAddr:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = c->op_bytes + 2;
insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip);
break;
case SrcMemFAddr:
c->src.type = OP_MEM;
c->src.ptr = (unsigned long *)c->modrm_ea;
c->src.bytes = c->op_bytes + 2;
break;
}
/*
* Decode and fetch the second source operand: register, memory
* or immediate.
*/
switch (c->d & Src2Mask) {
case Src2None:
break;
case Src2CL:
c->src2.bytes = 1;
c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
break;
case Src2ImmByte:
c->src2.type = OP_IMM;
c->src2.ptr = (unsigned long *)c->eip;
c->src2.bytes = 1;
c->src2.val = insn_fetch(u8, 1, c->eip);
break;
case Src2One:
c->src2.bytes = 1;
c->src2.val = 1;
break;
}
/* Decode and fetch the destination operand: register or memory. */
switch (c->d & DstMask) {
case ImplicitOps:
/* Special instructions do their own operand decoding. */
return 0;
case DstReg:
decode_register_operand(&c->dst, c,
c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
break;
case DstMem:
case DstMem64:
if ((c->d & ModRM) && c->modrm_mod == 3) {
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.type = OP_REG;
c->dst.val = c->dst.orig_val = c->modrm_val;
c->dst.ptr = c->modrm_ptr;
break;
}
c->dst.type = OP_MEM;
c->dst.ptr = (unsigned long *)c->modrm_ea;
if ((c->d & DstMask) == DstMem64)
c->dst.bytes = 8;
else
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.val = 0;
if (c->d & BitOp) {
unsigned long mask = ~(c->dst.bytes * 8 - 1);
c->dst.ptr = (void *)c->dst.ptr +
(c->src.val & mask) / 8;
}
break;
case DstAcc:
c->dst.type = OP_REG;
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.ptr = &c->regs[VCPU_REGS_RAX];
switch (c->dst.bytes) {
case 1:
c->dst.val = *(u8 *)c->dst.ptr;
break;
case 2:
c->dst.val = *(u16 *)c->dst.ptr;
break;
case 4:
c->dst.val = *(u32 *)c->dst.ptr;
break;
case 8:
c->dst.val = *(u64 *)c->dst.ptr;
break;
}
c->dst.orig_val = c->dst.val;
break;
case DstDI:
c->dst.type = OP_MEM;
c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
c->dst.ptr = (unsigned long *)
register_address(c, es_base(ctxt, ops),
c->regs[VCPU_REGS_RDI]);
c->dst.val = 0;
break;
}
done:
return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
}
int
x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
{