* Fix issue where write_cached_data() fails but write() still returns success
 * maps: sa1100-flash: Replace zero-length array with flexible-array member
 * phram: Fix a double free issue in error path
 * Convert fallthrough comments into statements
 * MAINTAINERS: Add the IRC channel to the MTD related subsystems
 
 Raw NAND core changes:
 * Add support for manufacturer specific suspend/resume operation
 * Add support for manufacturer specific lock/unlock operation
 * Replace zero-length array with flexible-array member
 * Fix a typo ("manufecturer")
 * Ensure nand_soft_waitrdy wait period is enough
 
 Raw NAND controller driver changes:
 * Brcmnand:
   - Add support for flash-edu for dma transfers (+ bindings)
 * Cadence:
   - Reinit completion before executing a new command
   - Change bad block marker size
   - Fix the calculation of the avaialble OOB size
   - Get meta data size from registers
 * Qualcom:
   - Use dma_request_chan() instead dma_request_slave_channel()
   - Release resources on failure within qcom_nandc_alloc()
 * Allwinner:
   - Use dma_request_chan() instead dma_request_slave_channel()
 * Marvell:
   - Use dma_request_chan() instead dma_request_slave_channel()
   - Release DMA channel on error
 * Freescale:
   - Use dma_request_chan() instead dma_request_slave_channel()
 * Macronix:
   - Add support for Macronix NAND randomizer (+ bindings)
 * Ams-delta:
   - Rename structures and functions to gpio_nand*
   - Make the driver custom I/O ready
   - Drop useless local variable
   - Support custom driver initialisation
   - Add module device tables
   - Handle more GPIO pins as optional
   - Make read pulses optional
   - Don't hardcode read/write pulse widths
   - Push inversion handling to gpiolib
   - Enable OF partition info support
   - Drop board specific partition info
   - Use struct gpio_nand_platdata
   - Write protect device during probe
 * Ingenic:
   - Use devm_platform_ioremap_resource()
   - Add dependency on MIPS || COMPILE_TEST
 * Denali:
   - Deassert write protect pin
 * ST:
   - Use dma_request_chan() instead dma_request_slave_channel()
 
 Raw NAND chip driver changes:
 * Toshiba:
   - Support reading the number of bitflips for BENAND (Built-in ECC NAND)
 * Macronix:
   - Add support for deep power down mode
   - Add support for block protection
 
 SPI-NAND core changes:
 * Do not erase the block before writing a bad block marker
 * Explicitly use MTD_OPS_RAW to write the bad block marker to OOB
 * Stop using spinand->oobbuf for buffering bad block markers
 * Rework detect procedure for different READ_ID operation
 
 SPI-NAND driver changes:
 * Toshiba:
   - Support for new Kioxia Serial NAND
   - Rename function name to change suffix and prefix (8Gbit)
   - Add comment about Kioxia ID
 * Micron:
   - Add new Micron SPI NAND devices with multiple dies
   - Add M70A series Micron SPI NAND devices
   - identify SPI NAND device with Continuous Read mode
   - Add new Micron SPI NAND devices
   - Describe the SPI NAND device MT29F2G01ABAGD
   - Generalize the OOB layout structure and function names
 
 SPI NOR core changes:
 * Move all the manufacturer specific quirks/code out of the core,
   to make the core logic more readable and thus ease maintenance.
 * Move the SFDP logic out of the core, it provides a better
   separation between the SFDP parsing and core logic.
 * Trim what is exposed in spi-nor.h. The SPI NOR controllers drivers
   must not be able to use structures that are meant just for the
   SPI NOR core.
 * Use the spi-mem direct mapping API to let advanced controllers
   optimize the read/write operations when they support direct mapping.
 * Add generic formula for the Status Register block protection
   handling. It fixes some long standing locking limitations and eases
   the addition of the 4bit block protection support.
 * Add block protection support for flashes with 4 block protection
   bits in the Status Register.
 
 SPI NOR controller drivers changes:
 * The mtk-quadspi driver is replaced by the new spi-mem spi-mtk-nor
   driver.
 * Merge tag 'mtk-mtd-spi-move' into spi-nor/next to avoid conflicts.
 
 HyperBus changes:
 * Print error msg when compatible is wrong or missing
 * Move mapping of direct access window from core to individual drivers
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAl6GEU8ACgkQJWrqGEe9
 VoSQ8gf/WV1vfxfAlgKRQ6WGkdrI+EndmciKx/sqf9KfAu6uNLHx3qcxQeibqvgC
 KmIgJbCLXhgCUBZQLqyjqHtO3zImgPI2WWWR/tkieNaT9NT5jrAunYZpiqkCkjVD
 HjML4iVcLwDJoHPZWTTTsFWd2cDLA8nFVXJQeaGRgdsx3j3D9OSOnfLGTUGfcg2H
 lC0BxA6JRO7tdZlErqzy9BXUasjO5C7rsRzqgTiGT4h/H2yhYmDQhMW+Kz86zWiB
 XdZsZJ2qLlTKntQmzR+30vbolId3iZqsO9q0mVkqWd2UQn5TpmmzNqLoYA6ys8KK
 lW/1E53E3/Pq0+5ejGbD5m4afff+nw==
 =/p2x
 -----END PGP SIGNATURE-----

Merge tag 'mtd/for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux

Pull MTD updates from Miquel Raynal:
 "MTD core changes:
   - Fix issue where write_cached_data() fails but write() still returns
     success

   - maps: sa1100-flash: Replace zero-length array with flexible-array
     member

   - phram: Fix a double free issue in error path

   - Convert fallthrough comments into statements

   - MAINTAINERS: Add the IRC channel to the MTD related subsystems

  Raw NAND core changes:
   - Add support for manufacturer specific suspend/resume operation

   - Add support for manufacturer specific lock/unlock operation

   - Replace zero-length array with flexible-array member

   - Fix a typo ("manufecturer")

   - Ensure nand_soft_waitrdy wait period is enough

  Raw NAND controller driver changes:
   - Brcmnand:
       * Add support for flash-edu for dma transfers (+ bindings)

   - Cadence:
       * Reinit completion before executing a new command
       * Change bad block marker size
       * Fix the calculation of the avaialble OOB size
       * Get meta data size from registers

   - Qualcom:
       * Use dma_request_chan() instead dma_request_slave_channel()
       * Release resources on failure within qcom_nandc_alloc()

   - Allwinner:
       * Use dma_request_chan() instead dma_request_slave_channel()

   - Marvell:
       * Use dma_request_chan() instead dma_request_slave_channel()
       * Release DMA channel on error

   - Freescale:
       * Use dma_request_chan() instead dma_request_slave_channel()

   - Macronix:
       * Add support for Macronix NAND randomizer (+ bindings)

   - Ams-delta:
       * Rename structures and functions to gpio_nand*
       * Make the driver custom I/O ready
       * Drop useless local variable
       * Support custom driver initialisation
       * Add module device tables
       * Handle more GPIO pins as optional
       * Make read pulses optional
       * Don't hardcode read/write pulse widths
       * Push inversion handling to gpiolib
       * Enable OF partition info support
       * Drop board specific partition info
       * Use struct gpio_nand_platdata
       * Write protect device during probe

   - Ingenic:
       * Use devm_platform_ioremap_resource()
       * Add dependency on MIPS || COMPILE_TEST

   - Denali:
       * Deassert write protect pin

   - ST:
       * Use dma_request_chan() instead dma_request_slave_channel()

  Raw NAND chip driver changes:
   - Toshiba:
       * Support reading the number of bitflips for BENAND (Built-in ECC NAND)

   - Macronix:
       * Add support for deep power down mode
       * Add support for block protection

  SPI-NAND core changes:
   - Do not erase the block before writing a bad block marker

   - Explicitly use MTD_OPS_RAW to write the bad block marker to OOB

   - Stop using spinand->oobbuf for buffering bad block markers

   - Rework detect procedure for different READ_ID operation

  SPI-NAND driver changes:
   - Toshiba:
       * Support for new Kioxia Serial NAND
       * Rename function name to change suffix and prefix (8Gbit)
       * Add comment about Kioxia ID

   - Micron:
       * Add new Micron SPI NAND devices with multiple dies
       * Add M70A series Micron SPI NAND devices
       * identify SPI NAND device with Continuous Read mode
       * Add new Micron SPI NAND devices
       * Describe the SPI NAND device MT29F2G01ABAGD
       * Generalize the OOB layout structure and function names

  SPI NOR core changes:
   - Move all the manufacturer specific quirks/code out of the core, to
     make the core logic more readable and thus ease maintenance.

   - Move the SFDP logic out of the core, it provides a better
     separation between the SFDP parsing and core logic.

   - Trim what is exposed in spi-nor.h. The SPI NOR controllers drivers
     must not be able to use structures that are meant just for the SPI
     NOR core.

   - Use the spi-mem direct mapping API to let advanced controllers
     optimize the read/write operations when they support direct
     mapping.

   - Add generic formula for the Status Register block protection
     handling. It fixes some long standing locking limitations and eases
     the addition of the 4bit block protection support.

   - Add block protection support for flashes with 4 block protection
     bits in the Status Register.

  SPI NOR controller drivers changes:
   - The mtk-quadspi driver is replaced by the new spi-mem spi-mtk-nor
     driver.

   - Merge tag 'mtk-mtd-spi-move' into spi-nor/next to avoid conflicts.

  HyperBus changes:
   - Print error msg when compatible is wrong or missing

   - Move mapping of direct access window from core to individual
     drivers"

* tag 'mtd/for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (103 commits)
  mtd: Convert fallthrough comments into statements
  mtd: rawnand: toshiba: Support reading the number of bitflips for BENAND (Built-in ECC NAND)
  MAINTAINERS: Add the IRC channel to the MTD related subsystems
  mtd: Fix issue where write_cached_data() fails but write() still returns success
  mtd: maps: sa1100-flash: Replace zero-length array with flexible-array member
  mtd: phram: fix a double free issue in error path
  mtd: spinand: toshiba: Support for new Kioxia Serial NAND
  mtd: spinand: toshiba: Rename function name to change suffix and prefix (8Gbit)
  mtd: rawnand: macronix: Add support for deep power down mode
  mtd: rawnand: Add support for manufacturer specific suspend/resume operation
  mtd: spi-nor: Enable locking for n25q512ax3/n25q512a
  mtd: spi-nor: Add SR 4bit block protection support
  mtd: spi-nor: Add generic formula for SR block protection handling
  mtd: spi-nor: Set all BP bits to one when lock_len == mtd->size
  mtd: spi-nor: controllers: aspeed-smc: Replace zero-length array with flexible-array member
  mtd: spi-nor: Clear WEL bit when erase or program errors occur
  MAINTAINERS: update entry after SPI NOR controller move
  mtd: spi-nor: Trim what is exposed in spi-nor.h
  mtd: spi-nor: Drop the MFR definitions
  mtd: spi-nor: Get rid of the now empty spi_nor_ids[] table
  ...
This commit is contained in:
Linus Torvalds 2020-04-02 16:45:46 -07:00
Родитель e964f1e04a 025a06c110
Коммит e109f50607
95 изменённых файлов: 8454 добавлений и 6931 удалений

Просмотреть файл

@ -35,11 +35,11 @@ Required properties:
(optional) NAND flash cache range (if at non-standard offset)
- reg-names : a list of the names corresponding to the previous register
ranges. Should contain "nand" and (optionally)
"flash-dma" and/or "nand-cache".
- interrupts : The NAND CTLRDY interrupt and (if Flash DMA is available)
FLASH_DMA_DONE
- interrupt-names : May be "nand_ctlrdy" or "flash_dma_done", if broken out as
individual interrupts.
"flash-dma" or "flash-edu" and/or "nand-cache".
- interrupts : The NAND CTLRDY interrupt, (if Flash DMA is available)
FLASH_DMA_DONE and if EDU is avaialble and used FLASH_EDU_DONE
- interrupt-names : May be "nand_ctlrdy" or "flash_dma_done" or "flash_edu_done",
if broken out as individual interrupts.
May be "nand", if the SoC has the individual NAND
interrupts multiplexed behind another custom piece of
hardware

Просмотреть файл

@ -0,0 +1,27 @@
Macronix NANDs Device Tree Bindings
-----------------------------------
Macronix NANDs support randomizer operation for scrambling user data,
which can be enabled with a SET_FEATURE. The penalty when using the
randomizer are subpage accesses prohibited and more time period needed
for program operation, i.e., tPROG 300us to 340us (randomizer enabled).
Enabling the randomizer is a one time persistent and non reversible
operation.
For more high-reliability concern, if subpage write is not available
with hardware ECC and not enabled at UBI level, then enabling the
randomizer is recommended by default by adding a new specific property
in children nodes.
Required NAND chip properties in children mode:
- randomizer enable: should be "mxic,enable-randomizer-otp"
Example:
nand: nand-controller@unit-address {
nand@0 {
reg = <0>;
mxic,enable-randomizer-otp;
};
};

Просмотреть файл

@ -1945,7 +1945,7 @@ F: Documentation/devicetree/bindings/i2c/i2c-lpc2k.txt
F: arch/arm/boot/dts/lpc43*
F: drivers/i2c/busses/i2c-lpc2k.c
F: drivers/memory/pl172.c
F: drivers/mtd/spi-nor/nxp-spifi.c
F: drivers/mtd/spi-nor/controllers/nxp-spifi.c
F: drivers/rtc/rtc-lpc24xx.c
N: lpc18xx
@ -7851,6 +7851,10 @@ F: Documentation/ABI/testing/debugfs-hyperv
HYPERBUS SUPPORT
M: Vignesh Raghavendra <vigneshr@ti.com>
L: linux-mtd@lists.infradead.org
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git cfi/next
C: irc://irc.oftc.net/mtd
S: Supported
F: drivers/mtd/hyperbus/
F: include/linux/mtd/hyperbus.h
@ -11552,6 +11556,7 @@ L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git nand/next
C: irc://irc.oftc.net/mtd
S: Maintained
F: drivers/mtd/nand/
F: include/linux/mtd/*nand*.h
@ -15835,6 +15840,7 @@ L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git spi-nor/next
C: irc://irc.oftc.net/mtd
S: Maintained
F: drivers/mtd/spi-nor/
F: include/linux/mtd/spi-nor.h

Просмотреть файл

@ -17,6 +17,8 @@
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/mtd/nand-gpio.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/fixed.h>
@ -294,9 +296,42 @@ struct modem_private_data {
static struct modem_private_data modem_priv;
/*
* Define partitions for flash device
*/
static struct mtd_partition partition_info[] = {
{ .name = "Kernel",
.offset = 0,
.size = 3 * SZ_1M + SZ_512K },
{ .name = "u-boot",
.offset = 3 * SZ_1M + SZ_512K,
.size = SZ_256K },
{ .name = "u-boot params",
.offset = 3 * SZ_1M + SZ_512K + SZ_256K,
.size = SZ_256K },
{ .name = "Amstrad LDR",
.offset = 4 * SZ_1M,
.size = SZ_256K },
{ .name = "File system",
.offset = 4 * SZ_1M + 1 * SZ_256K,
.size = 27 * SZ_1M },
{ .name = "PBL reserved",
.offset = 32 * SZ_1M - 3 * SZ_256K,
.size = 3 * SZ_256K },
};
static struct gpio_nand_platdata nand_platdata = {
.parts = partition_info,
.num_parts = ARRAY_SIZE(partition_info),
};
static struct platform_device ams_delta_nand_device = {
.name = "ams-delta-nand",
.id = -1,
.dev = {
.platform_data = &nand_platdata,
},
};
#define OMAP_GPIO_LABEL "gpio-0-15"
@ -306,10 +341,14 @@ static struct gpiod_lookup_table ams_delta_nand_gpio_table = {
.table = {
GPIO_LOOKUP(OMAP_GPIO_LABEL, AMS_DELTA_GPIO_PIN_NAND_RB, "rdy",
0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NCE, "nce", 0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NRE, "nre", 0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NWP, "nwp", 0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NWE, "nwe", 0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NCE, "nce",
GPIO_ACTIVE_LOW),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NRE, "nre",
GPIO_ACTIVE_LOW),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NWP, "nwp",
GPIO_ACTIVE_LOW),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_NWE, "nwe",
GPIO_ACTIVE_LOW),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_ALE, "ale", 0),
GPIO_LOOKUP(LATCH2_LABEL, LATCH2_PIN_NAND_CLE, "cle", 0),
GPIO_LOOKUP_IDX(OMAP_MPUIO_LABEL, 0, "data", 0, 0),

Просмотреть файл

@ -403,8 +403,8 @@
compatible = "brcm,brcmnand-v5.0", "brcm,brcmnand";
#address-cells = <1>;
#size-cells = <0>;
reg-names = "nand";
reg = <0x41b800 0x400>;
reg-names = "nand", "flash-edu";
reg = <0x41b800 0x400>, <0x41bc00 0x24>;
interrupt-parent = <&hif_l2_intc>;
interrupts = <24>;
status = "disabled";

Просмотреть файл

@ -834,7 +834,7 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long
/* Someone else might have been playing with it. */
return -EAGAIN;
}
/* Fall through */
fallthrough;
case FL_READY:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
@ -907,7 +907,7 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
/* Fall through */
fallthrough;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);

Просмотреть файл

@ -966,8 +966,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
/* fall through */
fallthrough;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);
@ -2935,7 +2934,7 @@ static void cfi_amdstd_sync (struct mtd_info *mtd)
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
/* fall through */
fallthrough;
case FL_SYNCING:
mutex_unlock(&chip->mutex);
break;

Просмотреть файл

@ -324,8 +324,7 @@ static inline int do_read_onechip(struct map_info *map, struct flchip *chip, lof
case FL_JEDEC_QUERY:
map_write(map, CMD(0x70), cmd_addr);
chip->state = FL_STATUS;
/* Fall through */
fallthrough;
case FL_STATUS:
status = map_read(map, cmd_addr);
if (map_word_andequal(map, status, status_OK, status_OK)) {
@ -462,8 +461,7 @@ static int do_write_buffer(struct map_info *map, struct flchip *chip,
#ifdef DEBUG_CFI_FEATURES
printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
#endif
/* Fall through */
fallthrough;
case FL_STATUS:
status = map_read(map, cmd_adr);
if (map_word_andequal(map, status, status_OK, status_OK))
@ -756,8 +754,7 @@ retry:
case FL_READY:
map_write(map, CMD(0x70), adr);
chip->state = FL_STATUS;
/* Fall through */
fallthrough;
case FL_STATUS:
status = map_read(map, adr);
if (map_word_andequal(map, status, status_OK, status_OK))
@ -998,7 +995,7 @@ static void cfi_staa_sync (struct mtd_info *mtd)
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
/* Fall through */
fallthrough;
case FL_SYNCING:
mutex_unlock(&chip->mutex);
break;
@ -1054,8 +1051,7 @@ retry:
case FL_READY:
map_write(map, CMD(0x70), adr);
chip->state = FL_STATUS;
/* Fall through */
fallthrough;
case FL_STATUS:
status = map_read(map, adr);
if (map_word_andequal(map, status, status_OK, status_OK))
@ -1201,8 +1197,7 @@ retry:
case FL_READY:
map_write(map, CMD(0x70), adr);
chip->state = FL_STATUS;
/* Fall through */
fallthrough;
case FL_STATUS:
status = map_read(map, adr);
if (map_word_andequal(map, status, status_OK, status_OK))

Просмотреть файл

@ -109,13 +109,13 @@ map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi
case 8:
onecmd |= (onecmd << (chip_mode * 32));
#endif
/* fall through */
fallthrough;
case 4:
onecmd |= (onecmd << (chip_mode * 16));
/* fall through */
fallthrough;
case 2:
onecmd |= (onecmd << (chip_mode * 8));
/* fall through */
fallthrough;
case 1:
;
}
@ -165,13 +165,13 @@ unsigned long cfi_merge_status(map_word val, struct map_info *map,
case 8:
res |= (onestat >> (chip_mode * 32));
#endif
/* fall through */
fallthrough;
case 4:
res |= (onestat >> (chip_mode * 16));
/* fall through */
fallthrough;
case 2:
res |= (onestat >> (chip_mode * 8));
/* fall through */
fallthrough;
case 1:
;
}

Просмотреть файл

@ -329,10 +329,10 @@ static int ustrtoul(const char *cp, char **endp, unsigned int base)
switch (**endp) {
case 'G' :
result *= 1024;
/* fall through */
fallthrough;
case 'M':
result *= 1024;
/* fall through */
fallthrough;
case 'K':
case 'k':
result *= 1024;

Просмотреть файл

@ -148,10 +148,10 @@ static int parse_num64(uint64_t *num64, char *token)
switch (token[len - 2]) {
case 'G':
shift += 10;
/* fall through */
fallthrough;
case 'M':
shift += 10;
/* fall through */
fallthrough;
case 'k':
shift += 10;
token[len - 2] = 0;
@ -243,22 +243,25 @@ static int phram_setup(const char *val)
ret = parse_num64(&start, token[1]);
if (ret) {
kfree(name);
parse_err("illegal start address\n");
goto error;
}
ret = parse_num64(&len, token[2]);
if (ret) {
kfree(name);
parse_err("illegal device length\n");
goto error;
}
ret = register_device(name, start, len);
if (!ret)
pr_info("%s device: %#llx at %#llx\n", name, len, start);
else
kfree(name);
if (ret)
goto error;
pr_info("%s device: %#llx at %#llx\n", name, len, start);
return 0;
error:
kfree(name);
return ret;
}

Просмотреть файл

@ -11,6 +11,7 @@
#include <linux/mtd/mtd.h>
#include <linux/mux/consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/types.h>
@ -57,8 +58,10 @@ static const struct hyperbus_ops am654_hbmc_ops = {
static int am654_hbmc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct am654_hbmc_priv *priv;
struct resource res;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
@ -67,6 +70,10 @@ static int am654_hbmc_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, priv);
ret = of_address_to_resource(np, 0, &res);
if (ret)
return ret;
if (of_property_read_bool(dev->of_node, "mux-controls")) {
struct mux_control *control = devm_mux_control_get(dev, NULL);
@ -88,6 +95,11 @@ static int am654_hbmc_probe(struct platform_device *pdev)
goto disable_pm;
}
priv->hbdev.map.size = resource_size(&res);
priv->hbdev.map.virt = devm_ioremap_resource(dev, &res);
if (IS_ERR(priv->hbdev.map.virt))
return PTR_ERR(priv->hbdev.map.virt);
priv->ctlr.dev = dev;
priv->ctlr.ops = &am654_hbmc_ops;
priv->hbdev.ctlr = &priv->ctlr;

Просмотреть файл

@ -10,7 +10,6 @@
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/types.h>
static struct hyperbus_device *map_to_hbdev(struct map_info *map)
@ -62,7 +61,6 @@ int hyperbus_register_device(struct hyperbus_device *hbdev)
struct hyperbus_ctlr *ctlr;
struct device_node *np;
struct map_info *map;
struct resource res;
struct device *dev;
int ret;
@ -73,22 +71,15 @@ int hyperbus_register_device(struct hyperbus_device *hbdev)
np = hbdev->np;
ctlr = hbdev->ctlr;
if (!of_device_is_compatible(np, "cypress,hyperflash"))
if (!of_device_is_compatible(np, "cypress,hyperflash")) {
dev_err(ctlr->dev, "\"cypress,hyperflash\" compatible missing\n");
return -ENODEV;
}
hbdev->memtype = HYPERFLASH;
ret = of_address_to_resource(np, 0, &res);
if (ret)
return ret;
dev = ctlr->dev;
map = &hbdev->map;
map->size = resource_size(&res);
map->virt = devm_ioremap_resource(dev, &res);
if (IS_ERR(map->virt))
return PTR_ERR(map->virt);
map->name = dev_name(dev);
map->bankwidth = 2;
map->device_node = np;

Просмотреть файл

@ -130,7 +130,7 @@ static int find_boot_record(struct INFTLrecord *inftl)
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
" NoOfBDTLPartitions = %d\n"
" BlockMultiplerBits = %d\n"
" BlockMultiplierBits = %d\n"
" FormatFlgs = %d\n"
" OsakVersion = 0x%x\n"
" PercentUsed = %d\n",

Просмотреть файл

@ -68,7 +68,6 @@ struct mtd_info *lpddr_cmdset(struct map_info *map)
shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
GFP_KERNEL);
if (!shared) {
kfree(lpddr);
kfree(mtd);
return NULL;
}
@ -305,8 +304,7 @@ static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
/* fall through */
fallthrough;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);

Просмотреть файл

@ -34,7 +34,7 @@ struct sa_subdev_info {
struct sa_info {
struct mtd_info *mtd;
int num_subdev;
struct sa_subdev_info subdev[0];
struct sa_subdev_info subdev[];
};
static DEFINE_SPINLOCK(sa1100_vpp_lock);
@ -81,8 +81,7 @@ static int sa1100_probe_subdev(struct sa_subdev_info *subdev, struct resource *r
default:
printk(KERN_WARNING "SA1100 flash: unknown base address "
"0x%08lx, assuming CS0\n", phys);
/* Fall through */
fallthrough;
case SA1100_CS0_PHYS:
subdev->map.bankwidth = (MSC0 & MSC_RBW) ? 2 : 4;
break;

Просмотреть файл

@ -294,12 +294,13 @@ static void mtdblock_release(struct mtd_blktrans_dev *mbd)
static int mtdblock_flush(struct mtd_blktrans_dev *dev)
{
struct mtdblk_dev *mtdblk = container_of(dev, struct mtdblk_dev, mbd);
int ret;
mutex_lock(&mtdblk->cache_mutex);
write_cached_data(mtdblk);
ret = write_cached_data(mtdblk);
mutex_unlock(&mtdblk->cache_mutex);
mtd_sync(dev->mtd);
return 0;
return ret;
}
static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)

Просмотреть файл

@ -349,6 +349,7 @@ static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops = {};
uint32_t retlen;
@ -360,7 +361,7 @@ static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
if (length > 4096)
return -EINVAL;
if (!mtd->_write_oob)
if (!master->_write_oob)
return -EOPNOTSUPP;
ops.ooblen = length;
@ -586,6 +587,7 @@ static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
static int mtdchar_write_ioctl(struct mtd_info *mtd,
struct mtd_write_req __user *argp)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_write_req req;
struct mtd_oob_ops ops = {};
const void __user *usr_data, *usr_oob;
@ -597,9 +599,8 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
usr_data = (const void __user *)(uintptr_t)req.usr_data;
usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
if (!mtd->_write_oob)
if (!master->_write_oob)
return -EOPNOTSUPP;
ops.mode = req.mode;
ops.len = (size_t)req.len;
ops.ooblen = (size_t)req.ooblen;
@ -635,6 +636,7 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct mtd_info *master = mtd_get_master(mtd);
void __user *argp = (void __user *)arg;
int ret = 0;
struct mtd_info_user info;
@ -824,7 +826,7 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct nand_oobinfo oi;
if (!mtd->ooblayout)
if (!master->ooblayout)
return -EOPNOTSUPP;
ret = get_oobinfo(mtd, &oi);
@ -918,7 +920,7 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct nand_ecclayout_user *usrlay;
if (!mtd->ooblayout)
if (!master->ooblayout)
return -EOPNOTSUPP;
usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);

Просмотреть файл

@ -456,13 +456,14 @@ static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
struct mtd_pairing_info *info)
{
int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
struct mtd_info *master = mtd_get_master(mtd);
int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
if (wunit < 0 || wunit >= npairs)
return -EINVAL;
if (mtd->pairing && mtd->pairing->get_info)
return mtd->pairing->get_info(mtd, wunit, info);
if (master->pairing && master->pairing->get_info)
return master->pairing->get_info(master, wunit, info);
info->group = 0;
info->pair = wunit;
@ -498,15 +499,16 @@ EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
const struct mtd_pairing_info *info)
{
int ngroups = mtd_pairing_groups(mtd);
int npairs = mtd_wunit_per_eb(mtd) / ngroups;
struct mtd_info *master = mtd_get_master(mtd);
int ngroups = mtd_pairing_groups(master);
int npairs = mtd_wunit_per_eb(master) / ngroups;
if (!info || info->pair < 0 || info->pair >= npairs ||
info->group < 0 || info->group >= ngroups)
return -EINVAL;
if (mtd->pairing && mtd->pairing->get_wunit)
return mtd->pairing->get_wunit(mtd, info);
if (master->pairing && master->pairing->get_wunit)
return mtd->pairing->get_wunit(master, info);
return info->pair;
}
@ -524,10 +526,12 @@ EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
*/
int mtd_pairing_groups(struct mtd_info *mtd)
{
if (!mtd->pairing || !mtd->pairing->ngroups)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->pairing || !master->pairing->ngroups)
return 1;
return mtd->pairing->ngroups;
return master->pairing->ngroups;
}
EXPORT_SYMBOL_GPL(mtd_pairing_groups);
@ -587,6 +591,7 @@ static int mtd_nvmem_add(struct mtd_info *mtd)
int add_mtd_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_notifier *not;
int i, error;
@ -608,7 +613,7 @@ int add_mtd_device(struct mtd_info *mtd)
(mtd->_read && mtd->_read_oob)))
return -EINVAL;
if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
if (WARN_ON((!mtd->erasesize || !master->_erase) &&
!(mtd->flags & MTD_NO_ERASE)))
return -EINVAL;
@ -765,7 +770,8 @@ static void mtd_set_dev_defaults(struct mtd_info *mtd)
pr_debug("mtd device won't show a device symlink in sysfs\n");
}
mtd->orig_flags = mtd->flags;
INIT_LIST_HEAD(&mtd->partitions);
mutex_init(&mtd->master.partitions_lock);
}
/**
@ -971,20 +977,26 @@ EXPORT_SYMBOL_GPL(get_mtd_device);
int __get_mtd_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
int err;
if (!try_module_get(mtd->owner))
if (!try_module_get(master->owner))
return -ENODEV;
if (mtd->_get_device) {
err = mtd->_get_device(mtd);
if (master->_get_device) {
err = master->_get_device(mtd);
if (err) {
module_put(mtd->owner);
module_put(master->owner);
return err;
}
}
mtd->usecount++;
while (mtd->parent) {
mtd->usecount++;
mtd = mtd->parent;
}
return 0;
}
EXPORT_SYMBOL_GPL(__get_mtd_device);
@ -1038,13 +1050,18 @@ EXPORT_SYMBOL_GPL(put_mtd_device);
void __put_mtd_device(struct mtd_info *mtd)
{
--mtd->usecount;
BUG_ON(mtd->usecount < 0);
struct mtd_info *master = mtd_get_master(mtd);
if (mtd->_put_device)
mtd->_put_device(mtd);
while (mtd->parent) {
--mtd->usecount;
BUG_ON(mtd->usecount < 0);
mtd = mtd->parent;
}
module_put(mtd->owner);
if (master->_put_device)
master->_put_device(master);
module_put(master->owner);
}
EXPORT_SYMBOL_GPL(__put_mtd_device);
@ -1055,9 +1072,13 @@ EXPORT_SYMBOL_GPL(__put_mtd_device);
*/
int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct mtd_info *master = mtd_get_master(mtd);
u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
int ret;
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
if (!mtd->erasesize || !mtd->_erase)
if (!mtd->erasesize || !master->_erase)
return -ENOTSUPP;
if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
@ -1069,7 +1090,14 @@ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
return 0;
ledtrig_mtd_activity();
return mtd->_erase(mtd, instr);
instr->addr += mst_ofs;
ret = master->_erase(master, instr);
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= mst_ofs;
instr->addr -= mst_ofs;
return ret;
}
EXPORT_SYMBOL_GPL(mtd_erase);
@ -1079,30 +1107,36 @@ EXPORT_SYMBOL_GPL(mtd_erase);
int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
void **virt, resource_size_t *phys)
{
struct mtd_info *master = mtd_get_master(mtd);
*retlen = 0;
*virt = NULL;
if (phys)
*phys = 0;
if (!mtd->_point)
if (!master->_point)
return -EOPNOTSUPP;
if (from < 0 || from >= mtd->size || len > mtd->size - from)
return -EINVAL;
if (!len)
return 0;
return mtd->_point(mtd, from, len, retlen, virt, phys);
from = mtd_get_master_ofs(mtd, from);
return master->_point(master, from, len, retlen, virt, phys);
}
EXPORT_SYMBOL_GPL(mtd_point);
/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
if (!mtd->_unpoint)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_unpoint)
return -EOPNOTSUPP;
if (from < 0 || from >= mtd->size || len > mtd->size - from)
return -EINVAL;
if (!len)
return 0;
return mtd->_unpoint(mtd, from, len);
return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
}
EXPORT_SYMBOL_GPL(mtd_unpoint);
@ -1129,6 +1163,25 @@ unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
}
EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
const struct mtd_ecc_stats *old_stats)
{
struct mtd_ecc_stats diff;
if (master == mtd)
return;
diff = master->ecc_stats;
diff.failed -= old_stats->failed;
diff.corrected -= old_stats->corrected;
while (mtd->parent) {
mtd->ecc_stats.failed += diff.failed;
mtd->ecc_stats.corrected += diff.corrected;
mtd = mtd->parent;
}
}
int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
u_char *buf)
{
@ -1171,8 +1224,10 @@ EXPORT_SYMBOL_GPL(mtd_write);
int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
const u_char *buf)
{
struct mtd_info *master = mtd_get_master(mtd);
*retlen = 0;
if (!mtd->_panic_write)
if (!master->_panic_write)
return -EOPNOTSUPP;
if (to < 0 || to >= mtd->size || len > mtd->size - to)
return -EINVAL;
@ -1183,7 +1238,8 @@ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
if (!mtd->oops_panic_write)
mtd->oops_panic_write = true;
return mtd->_panic_write(mtd, to, len, retlen, buf);
return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_panic_write);
@ -1222,7 +1278,10 @@ static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_ecc_stats old_stats = master->ecc_stats;
int ret_code;
ops->retlen = ops->oobretlen = 0;
ret_code = mtd_check_oob_ops(mtd, from, ops);
@ -1232,14 +1291,17 @@ int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
ledtrig_mtd_activity();
/* Check the validity of a potential fallback on mtd->_read */
if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
if (!master->_read_oob && (!master->_read || ops->oobbuf))
return -EOPNOTSUPP;
if (mtd->_read_oob)
ret_code = mtd->_read_oob(mtd, from, ops);
from = mtd_get_master_ofs(mtd, from);
if (master->_read_oob)
ret_code = master->_read_oob(master, from, ops);
else
ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
ops->datbuf);
ret_code = master->_read(master, from, ops->len, &ops->retlen,
ops->datbuf);
mtd_update_ecc_stats(mtd, master, &old_stats);
/*
* In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
@ -1258,6 +1320,7 @@ EXPORT_SYMBOL_GPL(mtd_read_oob);
int mtd_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_info *master = mtd_get_master(mtd);
int ret;
ops->retlen = ops->oobretlen = 0;
@ -1272,14 +1335,16 @@ int mtd_write_oob(struct mtd_info *mtd, loff_t to,
ledtrig_mtd_activity();
/* Check the validity of a potential fallback on mtd->_write */
if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
if (!master->_write_oob && (!master->_write || ops->oobbuf))
return -EOPNOTSUPP;
if (mtd->_write_oob)
return mtd->_write_oob(mtd, to, ops);
to = mtd_get_master_ofs(mtd, to);
if (master->_write_oob)
return master->_write_oob(master, to, ops);
else
return mtd->_write(mtd, to, ops->len, &ops->retlen,
ops->datbuf);
return master->_write(master, to, ops->len, &ops->retlen,
ops->datbuf);
}
EXPORT_SYMBOL_GPL(mtd_write_oob);
@ -1302,15 +1367,17 @@ EXPORT_SYMBOL_GPL(mtd_write_oob);
int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobecc)
{
struct mtd_info *master = mtd_get_master(mtd);
memset(oobecc, 0, sizeof(*oobecc));
if (!mtd || section < 0)
if (!master || section < 0)
return -EINVAL;
if (!mtd->ooblayout || !mtd->ooblayout->ecc)
if (!master->ooblayout || !master->ooblayout->ecc)
return -ENOTSUPP;
return mtd->ooblayout->ecc(mtd, section, oobecc);
return master->ooblayout->ecc(master, section, oobecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
@ -1334,15 +1401,17 @@ EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
int mtd_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobfree)
{
struct mtd_info *master = mtd_get_master(mtd);
memset(oobfree, 0, sizeof(*oobfree));
if (!mtd || section < 0)
if (!master || section < 0)
return -EINVAL;
if (!mtd->ooblayout || !mtd->ooblayout->free)
if (!master->ooblayout || !master->ooblayout->free)
return -ENOTSUPP;
return mtd->ooblayout->free(mtd, section, oobfree);
return master->ooblayout->free(master, section, oobfree);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
@ -1651,60 +1720,69 @@ EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
struct otp_info *buf)
{
if (!mtd->_get_fact_prot_info)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_get_fact_prot_info)
return -EOPNOTSUPP;
if (!len)
return 0;
return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
return master->_get_fact_prot_info(master, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_info *master = mtd_get_master(mtd);
*retlen = 0;
if (!mtd->_read_fact_prot_reg)
if (!master->_read_fact_prot_reg)
return -EOPNOTSUPP;
if (!len)
return 0;
return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
return master->_read_fact_prot_reg(master, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
struct otp_info *buf)
{
if (!mtd->_get_user_prot_info)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_get_user_prot_info)
return -EOPNOTSUPP;
if (!len)
return 0;
return mtd->_get_user_prot_info(mtd, len, retlen, buf);
return master->_get_user_prot_info(master, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_info *master = mtd_get_master(mtd);
*retlen = 0;
if (!mtd->_read_user_prot_reg)
if (!master->_read_user_prot_reg)
return -EOPNOTSUPP;
if (!len)
return 0;
return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
return master->_read_user_prot_reg(master, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_info *master = mtd_get_master(mtd);
int ret;
*retlen = 0;
if (!mtd->_write_user_prot_reg)
if (!master->_write_user_prot_reg)
return -EOPNOTSUPP;
if (!len)
return 0;
ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
if (ret)
return ret;
@ -1718,80 +1796,105 @@ EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
{
if (!mtd->_lock_user_prot_reg)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_lock_user_prot_reg)
return -EOPNOTSUPP;
if (!len)
return 0;
return mtd->_lock_user_prot_reg(mtd, from, len);
return master->_lock_user_prot_reg(master, from, len);
}
EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
/* Chip-supported device locking */
int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_lock)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_lock)
return -EOPNOTSUPP;
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
return mtd->_lock(mtd, ofs, len);
return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
}
EXPORT_SYMBOL_GPL(mtd_lock);
int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_unlock)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_unlock)
return -EOPNOTSUPP;
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
return mtd->_unlock(mtd, ofs, len);
return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
}
EXPORT_SYMBOL_GPL(mtd_unlock);
int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_is_locked)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_is_locked)
return -EOPNOTSUPP;
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
return mtd->_is_locked(mtd, ofs, len);
return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
}
EXPORT_SYMBOL_GPL(mtd_is_locked);
int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_info *master = mtd_get_master(mtd);
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!mtd->_block_isreserved)
if (!master->_block_isreserved)
return 0;
return mtd->_block_isreserved(mtd, ofs);
return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
}
EXPORT_SYMBOL_GPL(mtd_block_isreserved);
int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_info *master = mtd_get_master(mtd);
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!mtd->_block_isbad)
if (!master->_block_isbad)
return 0;
return mtd->_block_isbad(mtd, ofs);
return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
}
EXPORT_SYMBOL_GPL(mtd_block_isbad);
int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
if (!mtd->_block_markbad)
struct mtd_info *master = mtd_get_master(mtd);
int ret;
if (!master->_block_markbad)
return -EOPNOTSUPP;
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!(mtd->flags & MTD_WRITEABLE))
return -EROFS;
return mtd->_block_markbad(mtd, ofs);
ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
if (ret)
return ret;
while (mtd->parent) {
mtd->ecc_stats.badblocks++;
mtd = mtd->parent;
}
return 0;
}
EXPORT_SYMBOL_GPL(mtd_block_markbad);
@ -1841,12 +1944,17 @@ static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
struct mtd_info *master = mtd_get_master(mtd);
*retlen = 0;
if (!(mtd->flags & MTD_WRITEABLE))
return -EROFS;
if (!mtd->_writev)
if (!master->_writev)
return default_mtd_writev(mtd, vecs, count, to, retlen);
return mtd->_writev(mtd, vecs, count, to, retlen);
return master->_writev(master, vecs, count,
mtd_get_master_ofs(mtd, to), retlen);
}
EXPORT_SYMBOL_GPL(mtd_writev);

Просмотреть файл

@ -20,339 +20,52 @@
#include "mtdcore.h"
/* Our partition linked list */
static LIST_HEAD(mtd_partitions);
static DEFINE_MUTEX(mtd_partitions_mutex);
/**
* struct mtd_part - our partition node structure
*
* @mtd: struct holding partition details
* @parent: parent mtd - flash device or another partition
* @offset: partition offset relative to the *flash device*
*/
struct mtd_part {
struct mtd_info mtd;
struct mtd_info *parent;
uint64_t offset;
struct list_head list;
};
/*
* Given a pointer to the MTD object in the mtd_part structure, we can retrieve
* the pointer to that structure.
*/
static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
{
return container_of(mtd, struct mtd_part, mtd);
}
static u64 part_absolute_offset(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
if (!mtd_is_partition(mtd))
return 0;
return part_absolute_offset(part->parent) + part->offset;
}
/*
* MTD methods which simply translate the effective address and pass through
* to the _real_ device.
*/
static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
static inline void free_partition(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
struct mtd_ecc_stats stats;
int res;
stats = part->parent->ecc_stats;
res = part->parent->_read(part->parent, from + part->offset, len,
retlen, buf);
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
part->parent->ecc_stats.failed - stats.failed;
else
mtd->ecc_stats.corrected +=
part->parent->ecc_stats.corrected - stats.corrected;
return res;
kfree(mtd->name);
kfree(mtd);
}
static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_point(part->parent, from + part->offset, len,
retlen, virt, phys);
}
static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_unpoint(part->parent, from + part->offset, len);
}
static int part_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = mtd_to_part(mtd);
struct mtd_ecc_stats stats;
int res;
stats = part->parent->ecc_stats;
res = part->parent->_read_oob(part->parent, from + part->offset, ops);
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
part->parent->ecc_stats.failed - stats.failed;
else
mtd->ecc_stats.corrected +=
part->parent->ecc_stats.corrected - stats.corrected;
return res;
}
static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_read_user_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_user_prot_info(part->parent, len, retlen,
buf);
}
static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_read_fact_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_fact_prot_info(part->parent, len, retlen,
buf);
}
static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_write(part->parent, to + part->offset, len,
retlen, buf);
}
static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_panic_write(part->parent, to + part->offset, len,
retlen, buf);
}
static int part_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_write_oob(part->parent, to + part->offset, ops);
}
static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_write_user_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_lock_user_prot_reg(part->parent, from, len);
}
static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_writev(part->parent, vecs, count,
to + part->offset, retlen);
}
static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct mtd_part *part = mtd_to_part(mtd);
int ret;
instr->addr += part->offset;
ret = part->parent->_erase(part->parent, instr);
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
return ret;
}
static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_lock(part->parent, ofs + part->offset, len);
}
static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_unlock(part->parent, ofs + part->offset, len);
}
static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_is_locked(part->parent, ofs + part->offset, len);
}
static void part_sync(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_sync(part->parent);
}
static int part_suspend(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_suspend(part->parent);
}
static void part_resume(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_resume(part->parent);
}
static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
ofs += part->offset;
return part->parent->_block_isreserved(part->parent, ofs);
}
static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
ofs += part->offset;
return part->parent->_block_isbad(part->parent, ofs);
}
static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
int res;
ofs += part->offset;
res = part->parent->_block_markbad(part->parent, ofs);
if (!res)
mtd->ecc_stats.badblocks++;
return res;
}
static int part_get_device(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_device(part->parent);
}
static void part_put_device(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_put_device(part->parent);
}
static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct mtd_part *part = mtd_to_part(mtd);
return mtd_ooblayout_ecc(part->parent, section, oobregion);
}
static int part_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct mtd_part *part = mtd_to_part(mtd);
return mtd_ooblayout_free(part->parent, section, oobregion);
}
static const struct mtd_ooblayout_ops part_ooblayout_ops = {
.ecc = part_ooblayout_ecc,
.free = part_ooblayout_free,
};
static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_max_bad_blocks(part->parent,
ofs + part->offset, len);
}
static inline void free_partition(struct mtd_part *p)
{
kfree(p->mtd.name);
kfree(p);
}
static struct mtd_part *allocate_partition(struct mtd_info *parent,
const struct mtd_partition *part, int partno,
uint64_t cur_offset)
static struct mtd_info *allocate_partition(struct mtd_info *parent,
const struct mtd_partition *part,
int partno, uint64_t cur_offset)
{
int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
parent->erasesize;
struct mtd_part *slave;
struct mtd_info *child, *master = mtd_get_master(parent);
u32 remainder;
char *name;
u64 tmp;
/* allocate the partition structure */
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
child = kzalloc(sizeof(*child), GFP_KERNEL);
name = kstrdup(part->name, GFP_KERNEL);
if (!name || !slave) {
if (!name || !child) {
printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
parent->name);
kfree(name);
kfree(slave);
kfree(child);
return ERR_PTR(-ENOMEM);
}
/* set up the MTD object for this partition */
slave->mtd.type = parent->type;
slave->mtd.flags = parent->orig_flags & ~part->mask_flags;
slave->mtd.orig_flags = slave->mtd.flags;
slave->mtd.size = part->size;
slave->mtd.writesize = parent->writesize;
slave->mtd.writebufsize = parent->writebufsize;
slave->mtd.oobsize = parent->oobsize;
slave->mtd.oobavail = parent->oobavail;
slave->mtd.subpage_sft = parent->subpage_sft;
slave->mtd.pairing = parent->pairing;
child->type = parent->type;
child->part.flags = parent->flags & ~part->mask_flags;
child->flags = child->part.flags;
child->size = part->size;
child->writesize = parent->writesize;
child->writebufsize = parent->writebufsize;
child->oobsize = parent->oobsize;
child->oobavail = parent->oobavail;
child->subpage_sft = parent->subpage_sft;
slave->mtd.name = name;
slave->mtd.owner = parent->owner;
child->name = name;
child->owner = parent->owner;
/* NOTE: Historically, we didn't arrange MTDs as a tree out of
* concern for showing the same data in multiple partitions.
@ -360,134 +73,76 @@ static struct mtd_part *allocate_partition(struct mtd_info *parent,
* so the MTD_PARTITIONED_MASTER option allows that. The master
* will have device nodes etc only if this is set, so make the
* parent conditional on that option. Note, this is a way to
* distinguish between the master and the partition in sysfs.
* distinguish between the parent and its partitions in sysfs.
*/
slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
&parent->dev :
parent->dev.parent;
slave->mtd.dev.of_node = part->of_node;
child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
&parent->dev : parent->dev.parent;
child->dev.of_node = part->of_node;
child->parent = parent;
child->part.offset = part->offset;
INIT_LIST_HEAD(&child->partitions);
if (parent->_read)
slave->mtd._read = part_read;
if (parent->_write)
slave->mtd._write = part_write;
if (parent->_panic_write)
slave->mtd._panic_write = part_panic_write;
if (parent->_point && parent->_unpoint) {
slave->mtd._point = part_point;
slave->mtd._unpoint = part_unpoint;
}
if (parent->_read_oob)
slave->mtd._read_oob = part_read_oob;
if (parent->_write_oob)
slave->mtd._write_oob = part_write_oob;
if (parent->_read_user_prot_reg)
slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
if (parent->_read_fact_prot_reg)
slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
if (parent->_write_user_prot_reg)
slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
if (parent->_lock_user_prot_reg)
slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
if (parent->_get_user_prot_info)
slave->mtd._get_user_prot_info = part_get_user_prot_info;
if (parent->_get_fact_prot_info)
slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
if (parent->_sync)
slave->mtd._sync = part_sync;
if (!partno && !parent->dev.class && parent->_suspend &&
parent->_resume) {
slave->mtd._suspend = part_suspend;
slave->mtd._resume = part_resume;
}
if (parent->_writev)
slave->mtd._writev = part_writev;
if (parent->_lock)
slave->mtd._lock = part_lock;
if (parent->_unlock)
slave->mtd._unlock = part_unlock;
if (parent->_is_locked)
slave->mtd._is_locked = part_is_locked;
if (parent->_block_isreserved)
slave->mtd._block_isreserved = part_block_isreserved;
if (parent->_block_isbad)
slave->mtd._block_isbad = part_block_isbad;
if (parent->_block_markbad)
slave->mtd._block_markbad = part_block_markbad;
if (parent->_max_bad_blocks)
slave->mtd._max_bad_blocks = part_max_bad_blocks;
if (parent->_get_device)
slave->mtd._get_device = part_get_device;
if (parent->_put_device)
slave->mtd._put_device = part_put_device;
slave->mtd._erase = part_erase;
slave->parent = parent;
slave->offset = part->offset;
if (slave->offset == MTDPART_OFS_APPEND)
slave->offset = cur_offset;
if (slave->offset == MTDPART_OFS_NXTBLK) {
if (child->part.offset == MTDPART_OFS_APPEND)
child->part.offset = cur_offset;
if (child->part.offset == MTDPART_OFS_NXTBLK) {
tmp = cur_offset;
slave->offset = cur_offset;
child->part.offset = cur_offset;
remainder = do_div(tmp, wr_alignment);
if (remainder) {
slave->offset += wr_alignment - remainder;
child->part.offset += wr_alignment - remainder;
printk(KERN_NOTICE "Moving partition %d: "
"0x%012llx -> 0x%012llx\n", partno,
(unsigned long long)cur_offset, (unsigned long long)slave->offset);
(unsigned long long)cur_offset,
child->part.offset);
}
}
if (slave->offset == MTDPART_OFS_RETAIN) {
slave->offset = cur_offset;
if (parent->size - slave->offset >= slave->mtd.size) {
slave->mtd.size = parent->size - slave->offset
- slave->mtd.size;
if (child->part.offset == MTDPART_OFS_RETAIN) {
child->part.offset = cur_offset;
if (parent->size - child->part.offset >= child->size) {
child->size = parent->size - child->part.offset -
child->size;
} else {
printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
part->name, parent->size - slave->offset,
slave->mtd.size);
part->name, parent->size - child->part.offset,
child->size);
/* register to preserve ordering */
goto out_register;
}
}
if (slave->mtd.size == MTDPART_SIZ_FULL)
slave->mtd.size = parent->size - slave->offset;
if (child->size == MTDPART_SIZ_FULL)
child->size = parent->size - child->part.offset;
printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
child->part.offset, child->part.offset + child->size,
child->name);
/* let's do some sanity checks */
if (slave->offset >= parent->size) {
if (child->part.offset >= parent->size) {
/* let's register it anyway to preserve ordering */
slave->offset = 0;
slave->mtd.size = 0;
child->part.offset = 0;
child->size = 0;
/* Initialize ->erasesize to make add_mtd_device() happy. */
slave->mtd.erasesize = parent->erasesize;
child->erasesize = parent->erasesize;
printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
part->name);
goto out_register;
}
if (slave->offset + slave->mtd.size > parent->size) {
slave->mtd.size = parent->size - slave->offset;
if (child->part.offset + child->size > parent->size) {
child->size = parent->size - child->part.offset;
printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
part->name, parent->name, (unsigned long long)slave->mtd.size);
part->name, parent->name, child->size);
}
if (parent->numeraseregions > 1) {
/* Deal with variable erase size stuff */
int i, max = parent->numeraseregions;
u64 end = slave->offset + slave->mtd.size;
u64 end = child->part.offset + child->size;
struct mtd_erase_region_info *regions = parent->eraseregions;
/* Find the first erase regions which is part of this
* partition. */
for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
for (i = 0; i < max && regions[i].offset <= child->part.offset;
i++)
;
/* The loop searched for the region _behind_ the first one */
if (i > 0)
@ -495,70 +150,68 @@ static struct mtd_part *allocate_partition(struct mtd_info *parent,
/* Pick biggest erasesize */
for (; i < max && regions[i].offset < end; i++) {
if (slave->mtd.erasesize < regions[i].erasesize) {
slave->mtd.erasesize = regions[i].erasesize;
}
if (child->erasesize < regions[i].erasesize)
child->erasesize = regions[i].erasesize;
}
BUG_ON(slave->mtd.erasesize == 0);
BUG_ON(child->erasesize == 0);
} else {
/* Single erase size */
slave->mtd.erasesize = parent->erasesize;
child->erasesize = parent->erasesize;
}
/*
* Slave erasesize might differ from the master one if the master
* Child erasesize might differ from the parent one if the parent
* exposes several regions with different erasesize. Adjust
* wr_alignment accordingly.
*/
if (!(slave->mtd.flags & MTD_NO_ERASE))
wr_alignment = slave->mtd.erasesize;
if (!(child->flags & MTD_NO_ERASE))
wr_alignment = child->erasesize;
tmp = part_absolute_offset(parent) + slave->offset;
tmp = mtd_get_master_ofs(child, 0);
remainder = do_div(tmp, wr_alignment);
if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
if ((child->flags & MTD_WRITEABLE) && remainder) {
/* Doesn't start on a boundary of major erase size */
/* FIXME: Let it be writable if it is on a boundary of
* _minor_ erase size though */
slave->mtd.flags &= ~MTD_WRITEABLE;
child->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
part->name);
}
tmp = part_absolute_offset(parent) + slave->mtd.size;
tmp = mtd_get_master_ofs(child, 0) + child->size;
remainder = do_div(tmp, wr_alignment);
if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
slave->mtd.flags &= ~MTD_WRITEABLE;
if ((child->flags & MTD_WRITEABLE) && remainder) {
child->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
part->name);
}
mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
slave->mtd.ecc_step_size = parent->ecc_step_size;
slave->mtd.ecc_strength = parent->ecc_strength;
slave->mtd.bitflip_threshold = parent->bitflip_threshold;
child->ecc_step_size = parent->ecc_step_size;
child->ecc_strength = parent->ecc_strength;
child->bitflip_threshold = parent->bitflip_threshold;
if (parent->_block_isbad) {
if (master->_block_isbad) {
uint64_t offs = 0;
while (offs < slave->mtd.size) {
if (mtd_block_isreserved(parent, offs + slave->offset))
slave->mtd.ecc_stats.bbtblocks++;
else if (mtd_block_isbad(parent, offs + slave->offset))
slave->mtd.ecc_stats.badblocks++;
offs += slave->mtd.erasesize;
while (offs < child->size) {
if (mtd_block_isreserved(child, offs))
child->ecc_stats.bbtblocks++;
else if (mtd_block_isbad(child, offs))
child->ecc_stats.badblocks++;
offs += child->erasesize;
}
}
out_register:
return slave;
return child;
}
static ssize_t mtd_partition_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mtd_info *mtd = dev_get_drvdata(dev);
struct mtd_part *part = mtd_to_part(mtd);
return snprintf(buf, PAGE_SIZE, "%llu\n", part->offset);
return snprintf(buf, PAGE_SIZE, "%lld\n", mtd->part.offset);
}
static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
@ -568,9 +221,9 @@ static const struct attribute *mtd_partition_attrs[] = {
NULL
};
static int mtd_add_partition_attrs(struct mtd_part *new)
static int mtd_add_partition_attrs(struct mtd_info *new)
{
int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
if (ret)
printk(KERN_WARNING
"mtd: failed to create partition attrs, err=%d\n", ret);
@ -580,8 +233,9 @@ static int mtd_add_partition_attrs(struct mtd_part *new)
int mtd_add_partition(struct mtd_info *parent, const char *name,
long long offset, long long length)
{
struct mtd_info *master = mtd_get_master(parent);
struct mtd_partition part;
struct mtd_part *new;
struct mtd_info *child;
int ret = 0;
/* the direct offset is expected */
@ -600,28 +254,28 @@ int mtd_add_partition(struct mtd_info *parent, const char *name,
part.size = length;
part.offset = offset;
new = allocate_partition(parent, &part, -1, offset);
if (IS_ERR(new))
return PTR_ERR(new);
child = allocate_partition(parent, &part, -1, offset);
if (IS_ERR(child))
return PTR_ERR(child);
mutex_lock(&mtd_partitions_mutex);
list_add(&new->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
mutex_lock(&master->master.partitions_lock);
list_add_tail(&child->part.node, &parent->partitions);
mutex_unlock(&master->master.partitions_lock);
ret = add_mtd_device(&new->mtd);
ret = add_mtd_device(child);
if (ret)
goto err_remove_part;
mtd_add_partition_attrs(new);
mtd_add_partition_attrs(child);
return 0;
err_remove_part:
mutex_lock(&mtd_partitions_mutex);
list_del(&new->list);
mutex_unlock(&mtd_partitions_mutex);
mutex_lock(&master->master.partitions_lock);
list_del(&child->part.node);
mutex_unlock(&master->master.partitions_lock);
free_partition(new);
free_partition(child);
return ret;
}
@ -630,119 +284,142 @@ EXPORT_SYMBOL_GPL(mtd_add_partition);
/**
* __mtd_del_partition - delete MTD partition
*
* @priv: internal MTD struct for partition to be deleted
* @priv: MTD structure to be deleted
*
* This function must be called with the partitions mutex locked.
*/
static int __mtd_del_partition(struct mtd_part *priv)
static int __mtd_del_partition(struct mtd_info *mtd)
{
struct mtd_part *child, *next;
struct mtd_info *child, *next;
int err;
list_for_each_entry_safe(child, next, &mtd_partitions, list) {
if (child->parent == &priv->mtd) {
err = __mtd_del_partition(child);
if (err)
return err;
}
list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
err = __mtd_del_partition(child);
if (err)
return err;
}
sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
err = del_mtd_device(&priv->mtd);
err = del_mtd_device(mtd);
if (err)
return err;
list_del(&priv->list);
free_partition(priv);
list_del(&child->part.node);
free_partition(mtd);
return 0;
}
/*
* This function unregisters and destroy all slave MTD objects which are
* attached to the given MTD object.
* attached to the given MTD object, recursively.
*/
int del_mtd_partitions(struct mtd_info *mtd)
static int __del_mtd_partitions(struct mtd_info *mtd)
{
struct mtd_part *slave, *next;
struct mtd_info *child, *next;
LIST_HEAD(tmp_list);
int ret, err = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if (slave->parent == mtd) {
ret = __mtd_del_partition(slave);
if (ret < 0)
err = ret;
list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
if (mtd_has_partitions(child))
del_mtd_partitions(child);
pr_info("Deleting %s MTD partition\n", child->name);
ret = del_mtd_device(child);
if (ret < 0) {
pr_err("Error when deleting partition \"%s\" (%d)\n",
child->name, ret);
err = ret;
continue;
}
mutex_unlock(&mtd_partitions_mutex);
list_del(&child->part.node);
free_partition(child);
}
return err;
}
int del_mtd_partitions(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
int ret;
pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
mutex_lock(&master->master.partitions_lock);
ret = __del_mtd_partitions(mtd);
mutex_unlock(&master->master.partitions_lock);
return ret;
}
int mtd_del_partition(struct mtd_info *mtd, int partno)
{
struct mtd_part *slave, *next;
struct mtd_info *child, *master = mtd_get_master(mtd);
int ret = -EINVAL;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if ((slave->parent == mtd) &&
(slave->mtd.index == partno)) {
ret = __mtd_del_partition(slave);
mutex_lock(&master->master.partitions_lock);
list_for_each_entry(child, &mtd->partitions, part.node) {
if (child->index == partno) {
ret = __mtd_del_partition(child);
break;
}
mutex_unlock(&mtd_partitions_mutex);
}
mutex_unlock(&master->master.partitions_lock);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_del_partition);
/*
* This function, given a master MTD object and a partition table, creates
* and registers slave MTD objects which are bound to the master according to
* the partition definitions.
* This function, given a parent MTD object and a partition table, creates
* and registers the child MTD objects which are bound to the parent according
* to the partition definitions.
*
* For historical reasons, this function's caller only registers the master
* For historical reasons, this function's caller only registers the parent
* if the MTD_PARTITIONED_MASTER config option is set.
*/
int add_mtd_partitions(struct mtd_info *master,
int add_mtd_partitions(struct mtd_info *parent,
const struct mtd_partition *parts,
int nbparts)
{
struct mtd_part *slave;
struct mtd_info *child, *master = mtd_get_master(parent);
uint64_t cur_offset = 0;
int i, ret;
printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
nbparts, parent->name);
for (i = 0; i < nbparts; i++) {
slave = allocate_partition(master, parts + i, i, cur_offset);
if (IS_ERR(slave)) {
ret = PTR_ERR(slave);
child = allocate_partition(parent, parts + i, i, cur_offset);
if (IS_ERR(child)) {
ret = PTR_ERR(child);
goto err_del_partitions;
}
mutex_lock(&mtd_partitions_mutex);
list_add(&slave->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
mutex_lock(&master->master.partitions_lock);
list_add_tail(&child->part.node, &parent->partitions);
mutex_unlock(&master->master.partitions_lock);
ret = add_mtd_device(&slave->mtd);
ret = add_mtd_device(child);
if (ret) {
mutex_lock(&mtd_partitions_mutex);
list_del(&slave->list);
mutex_unlock(&mtd_partitions_mutex);
mutex_lock(&master->master.partitions_lock);
list_del(&child->part.node);
mutex_unlock(&master->master.partitions_lock);
free_partition(slave);
free_partition(child);
goto err_del_partitions;
}
mtd_add_partition_attrs(slave);
/* Look for subpartitions */
parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
mtd_add_partition_attrs(child);
cur_offset = slave->offset + slave->mtd.size;
/* Look for subpartitions */
parse_mtd_partitions(child, parts[i].types, NULL);
cur_offset = child->part.offset + child->size;
}
return 0;
@ -1023,29 +700,11 @@ void mtd_part_parser_cleanup(struct mtd_partitions *parts)
}
}
int mtd_is_partition(const struct mtd_info *mtd)
{
struct mtd_part *part;
int ispart = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry(part, &mtd_partitions, list)
if (&part->mtd == mtd) {
ispart = 1;
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ispart;
}
EXPORT_SYMBOL_GPL(mtd_is_partition);
/* Returns the size of the entire flash chip */
uint64_t mtd_get_device_size(const struct mtd_info *mtd)
{
if (!mtd_is_partition(mtd))
return mtd->size;
struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
return mtd_get_device_size(mtd_to_part(mtd)->parent);
return master->size;
}
EXPORT_SYMBOL_GPL(mtd_get_device_size);

Просмотреть файл

@ -3259,7 +3259,7 @@ static void onenand_check_features(struct mtd_info *mtd)
switch (density) {
case ONENAND_DEVICE_DENSITY_8Gb:
this->options |= ONENAND_HAS_NOP_1;
/* fall through */
fallthrough;
case ONENAND_DEVICE_DENSITY_4Gb:
if (ONENAND_IS_DDP(this))
this->options |= ONENAND_HAS_2PLANE;

Просмотреть файл

@ -19,15 +19,17 @@
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand-gpio.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
/*
* MTD structure for E3 (Delta)
*/
struct ams_delta_nand {
struct gpio_nand {
struct nand_controller base;
struct nand_chip nand_chip;
struct gpio_desc *gpiod_rdy;
@ -39,41 +41,20 @@ struct ams_delta_nand {
struct gpio_desc *gpiod_cle;
struct gpio_descs *data_gpiods;
bool data_in;
unsigned int tRP;
unsigned int tWP;
u8 (*io_read)(struct gpio_nand *this);
void (*io_write)(struct gpio_nand *this, u8 byte);
};
/*
* Define partitions for flash devices
*/
static const struct mtd_partition partition_info[] = {
{ .name = "Kernel",
.offset = 0,
.size = 3 * SZ_1M + SZ_512K },
{ .name = "u-boot",
.offset = 3 * SZ_1M + SZ_512K,
.size = SZ_256K },
{ .name = "u-boot params",
.offset = 3 * SZ_1M + SZ_512K + SZ_256K,
.size = SZ_256K },
{ .name = "Amstrad LDR",
.offset = 4 * SZ_1M,
.size = SZ_256K },
{ .name = "File system",
.offset = 4 * SZ_1M + 1 * SZ_256K,
.size = 27 * SZ_1M },
{ .name = "PBL reserved",
.offset = 32 * SZ_1M - 3 * SZ_256K,
.size = 3 * SZ_256K },
};
static void ams_delta_write_commit(struct ams_delta_nand *priv)
static void gpio_nand_write_commit(struct gpio_nand *priv)
{
gpiod_set_value(priv->gpiod_nwe, 0);
ndelay(40);
gpiod_set_value(priv->gpiod_nwe, 1);
ndelay(priv->tWP);
gpiod_set_value(priv->gpiod_nwe, 0);
}
static void ams_delta_io_write(struct ams_delta_nand *priv, u8 byte)
static void gpio_nand_io_write(struct gpio_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
@ -81,10 +62,10 @@ static void ams_delta_io_write(struct ams_delta_nand *priv, u8 byte)
gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
ams_delta_write_commit(priv);
gpio_nand_write_commit(priv);
}
static void ams_delta_dir_output(struct ams_delta_nand *priv, u8 byte)
static void gpio_nand_dir_output(struct gpio_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
@ -94,30 +75,30 @@ static void ams_delta_dir_output(struct ams_delta_nand *priv, u8 byte)
gpiod_direction_output_raw(data_gpiods->desc[i],
test_bit(i, values));
ams_delta_write_commit(priv);
gpio_nand_write_commit(priv);
priv->data_in = false;
}
static u8 ams_delta_io_read(struct ams_delta_nand *priv)
static u8 gpio_nand_io_read(struct gpio_nand *priv)
{
u8 res;
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, };
gpiod_set_value(priv->gpiod_nre, 0);
ndelay(40);
gpiod_set_value(priv->gpiod_nre, 1);
ndelay(priv->tRP);
gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
gpiod_set_value(priv->gpiod_nre, 1);
gpiod_set_value(priv->gpiod_nre, 0);
res = values[0];
return res;
}
static void ams_delta_dir_input(struct ams_delta_nand *priv)
static void gpio_nand_dir_input(struct gpio_nand *priv)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
int i;
@ -128,68 +109,67 @@ static void ams_delta_dir_input(struct ams_delta_nand *priv)
priv->data_in = true;
}
static void ams_delta_write_buf(struct ams_delta_nand *priv, const u8 *buf,
int len)
static void gpio_nand_write_buf(struct gpio_nand *priv, const u8 *buf, int len)
{
int i = 0;
if (len > 0 && priv->data_in)
ams_delta_dir_output(priv, buf[i++]);
gpio_nand_dir_output(priv, buf[i++]);
while (i < len)
ams_delta_io_write(priv, buf[i++]);
priv->io_write(priv, buf[i++]);
}
static void ams_delta_read_buf(struct ams_delta_nand *priv, u8 *buf, int len)
static void gpio_nand_read_buf(struct gpio_nand *priv, u8 *buf, int len)
{
int i;
if (!priv->data_in)
ams_delta_dir_input(priv);
if (priv->data_gpiods && !priv->data_in)
gpio_nand_dir_input(priv);
for (i = 0; i < len; i++)
buf[i] = ams_delta_io_read(priv);
buf[i] = priv->io_read(priv);
}
static void ams_delta_ctrl_cs(struct ams_delta_nand *priv, bool assert)
static void gpio_nand_ctrl_cs(struct gpio_nand *priv, bool assert)
{
gpiod_set_value(priv->gpiod_nce, assert ? 0 : 1);
gpiod_set_value(priv->gpiod_nce, assert);
}
static int ams_delta_exec_op(struct nand_chip *this,
static int gpio_nand_exec_op(struct nand_chip *this,
const struct nand_operation *op, bool check_only)
{
struct ams_delta_nand *priv = nand_get_controller_data(this);
struct gpio_nand *priv = nand_get_controller_data(this);
const struct nand_op_instr *instr;
int ret = 0;
if (check_only)
return 0;
ams_delta_ctrl_cs(priv, 1);
gpio_nand_ctrl_cs(priv, 1);
for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) {
switch (instr->type) {
case NAND_OP_CMD_INSTR:
gpiod_set_value(priv->gpiod_cle, 1);
ams_delta_write_buf(priv, &instr->ctx.cmd.opcode, 1);
gpio_nand_write_buf(priv, &instr->ctx.cmd.opcode, 1);
gpiod_set_value(priv->gpiod_cle, 0);
break;
case NAND_OP_ADDR_INSTR:
gpiod_set_value(priv->gpiod_ale, 1);
ams_delta_write_buf(priv, instr->ctx.addr.addrs,
gpio_nand_write_buf(priv, instr->ctx.addr.addrs,
instr->ctx.addr.naddrs);
gpiod_set_value(priv->gpiod_ale, 0);
break;
case NAND_OP_DATA_IN_INSTR:
ams_delta_read_buf(priv, instr->ctx.data.buf.in,
gpio_nand_read_buf(priv, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
ams_delta_write_buf(priv, instr->ctx.data.buf.out,
gpio_nand_write_buf(priv, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
@ -206,28 +186,61 @@ static int ams_delta_exec_op(struct nand_chip *this,
break;
}
ams_delta_ctrl_cs(priv, 0);
gpio_nand_ctrl_cs(priv, 0);
return ret;
}
static const struct nand_controller_ops ams_delta_ops = {
.exec_op = ams_delta_exec_op,
static int gpio_nand_setup_data_interface(struct nand_chip *this, int csline,
const struct nand_data_interface *cf)
{
struct gpio_nand *priv = nand_get_controller_data(this);
const struct nand_sdr_timings *sdr = nand_get_sdr_timings(cf);
struct device *dev = &nand_to_mtd(this)->dev;
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
if (priv->gpiod_nre) {
priv->tRP = DIV_ROUND_UP(sdr->tRP_min, 1000);
dev_dbg(dev, "using %u ns read pulse width\n", priv->tRP);
}
priv->tWP = DIV_ROUND_UP(sdr->tWP_min, 1000);
dev_dbg(dev, "using %u ns write pulse width\n", priv->tWP);
return 0;
}
static const struct nand_controller_ops gpio_nand_ops = {
.exec_op = gpio_nand_exec_op,
.setup_data_interface = gpio_nand_setup_data_interface,
};
/*
* Main initialization routine
*/
static int ams_delta_init(struct platform_device *pdev)
static int gpio_nand_probe(struct platform_device *pdev)
{
struct ams_delta_nand *priv;
struct gpio_nand_platdata *pdata = dev_get_platdata(&pdev->dev);
const struct mtd_partition *partitions = NULL;
int num_partitions = 0;
struct gpio_nand *priv;
struct nand_chip *this;
struct mtd_info *mtd;
struct gpio_descs *data_gpiods;
int (*probe)(struct platform_device *pdev, struct gpio_nand *priv);
int err = 0;
if (pdata) {
partitions = pdata->parts;
num_partitions = pdata->num_parts;
}
/* Allocate memory for MTD device structure and private data */
priv = devm_kzalloc(&pdev->dev, sizeof(struct ams_delta_nand),
priv = devm_kzalloc(&pdev->dev, sizeof(struct gpio_nand),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
@ -238,6 +251,7 @@ static int ams_delta_init(struct platform_device *pdev)
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(this, priv);
nand_set_flash_node(this, pdev->dev.of_node);
priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN);
if (IS_ERR(priv->gpiod_rdy)) {
@ -251,29 +265,33 @@ static int ams_delta_init(struct platform_device *pdev)
platform_set_drvdata(pdev, priv);
/* Set chip enabled, but */
priv->gpiod_nwp = devm_gpiod_get(&pdev->dev, "nwp", GPIOD_OUT_HIGH);
/* Set chip enabled but write protected */
priv->gpiod_nwp = devm_gpiod_get_optional(&pdev->dev, "nwp",
GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nwp)) {
err = PTR_ERR(priv->gpiod_nwp);
dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nce = devm_gpiod_get(&pdev->dev, "nce", GPIOD_OUT_HIGH);
priv->gpiod_nce = devm_gpiod_get_optional(&pdev->dev, "nce",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nce)) {
err = PTR_ERR(priv->gpiod_nce);
dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nre = devm_gpiod_get(&pdev->dev, "nre", GPIOD_OUT_HIGH);
priv->gpiod_nre = devm_gpiod_get_optional(&pdev->dev, "nre",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nre)) {
err = PTR_ERR(priv->gpiod_nre);
dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nwe = devm_gpiod_get(&pdev->dev, "nwe", GPIOD_OUT_HIGH);
priv->gpiod_nwe = devm_gpiod_get_optional(&pdev->dev, "nwe",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nwe)) {
err = PTR_ERR(priv->gpiod_nwe);
dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err);
@ -295,28 +313,62 @@ static int ams_delta_init(struct platform_device *pdev)
}
/* Request array of data pins, initialize them as input */
data_gpiods = devm_gpiod_get_array(&pdev->dev, "data", GPIOD_IN);
if (IS_ERR(data_gpiods)) {
err = PTR_ERR(data_gpiods);
priv->data_gpiods = devm_gpiod_get_array_optional(&pdev->dev, "data",
GPIOD_IN);
if (IS_ERR(priv->data_gpiods)) {
err = PTR_ERR(priv->data_gpiods);
dev_err(&pdev->dev, "data GPIO request failed: %d\n", err);
return err;
}
priv->data_gpiods = data_gpiods;
priv->data_in = true;
if (priv->data_gpiods) {
if (!priv->gpiod_nwe) {
dev_err(&pdev->dev,
"mandatory NWE pin not provided by platform\n");
return -ENODEV;
}
/* Initialize the NAND controller object embedded in ams_delta_nand. */
priv->base.ops = &ams_delta_ops;
priv->io_read = gpio_nand_io_read;
priv->io_write = gpio_nand_io_write;
priv->data_in = true;
}
if (pdev->id_entry)
probe = (void *) pdev->id_entry->driver_data;
else
probe = of_device_get_match_data(&pdev->dev);
if (probe)
err = probe(pdev, priv);
if (err)
return err;
if (!priv->io_read || !priv->io_write) {
dev_err(&pdev->dev, "incomplete device configuration\n");
return -ENODEV;
}
/* Initialize the NAND controller object embedded in gpio_nand. */
priv->base.ops = &gpio_nand_ops;
nand_controller_init(&priv->base);
this->controller = &priv->base;
/*
* FIXME: We should release write protection only after nand_scan() to
* be on the safe side but we can't do that until we have a generic way
* to assert/deassert WP from the core. Even if the core shouldn't
* write things in the nand_scan() path, it should have control on this
* pin just in case we ever need to disable write protection during
* chip detection/initialization.
*/
/* Release write protection */
gpiod_set_value(priv->gpiod_nwp, 0);
/* Scan to find existence of the device */
err = nand_scan(this, 1);
if (err)
return err;
/* Register the partitions */
err = mtd_device_register(mtd, partition_info,
ARRAY_SIZE(partition_info));
err = mtd_device_register(mtd, partitions, num_partitions);
if (err)
goto err_nand_cleanup;
@ -331,26 +383,47 @@ err_nand_cleanup:
/*
* Clean up routine
*/
static int ams_delta_cleanup(struct platform_device *pdev)
static int gpio_nand_remove(struct platform_device *pdev)
{
struct ams_delta_nand *priv = platform_get_drvdata(pdev);
struct gpio_nand *priv = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip);
/* Apply write protection */
gpiod_set_value(priv->gpiod_nwp, 1);
/* Unregister device */
nand_release(mtd_to_nand(mtd));
return 0;
}
static struct platform_driver ams_delta_nand_driver = {
.probe = ams_delta_init,
.remove = ams_delta_cleanup,
static const struct of_device_id gpio_nand_of_id_table[] = {
{
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, gpio_nand_of_id_table);
static const struct platform_device_id gpio_nand_plat_id_table[] = {
{
.name = "ams-delta-nand",
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(platform, gpio_nand_plat_id_table);
static struct platform_driver gpio_nand_driver = {
.probe = gpio_nand_probe,
.remove = gpio_nand_remove,
.id_table = gpio_nand_plat_id_table,
.driver = {
.name = "ams-delta-nand",
.of_match_table = of_match_ptr(gpio_nand_of_id_table),
},
};
module_platform_driver(ams_delta_nand_driver);
module_platform_driver(gpio_nand_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");

Просмотреть файл

@ -102,6 +102,45 @@ struct brcm_nand_dma_desc {
#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
#define NAND_POLL_STATUS_TIMEOUT_MS 100
#define EDU_CMD_WRITE 0x00
#define EDU_CMD_READ 0x01
#define EDU_STATUS_ACTIVE BIT(0)
#define EDU_ERR_STATUS_ERRACK BIT(0)
#define EDU_DONE_MASK GENMASK(1, 0)
#define EDU_CONFIG_MODE_NAND BIT(0)
#define EDU_CONFIG_SWAP_BYTE BIT(1)
#ifdef CONFIG_CPU_BIG_ENDIAN
#define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
#else
#define EDU_CONFIG_SWAP_CFG 0
#endif
/* edu registers */
enum edu_reg {
EDU_CONFIG = 0,
EDU_DRAM_ADDR,
EDU_EXT_ADDR,
EDU_LENGTH,
EDU_CMD,
EDU_STOP,
EDU_STATUS,
EDU_DONE,
EDU_ERR_STATUS,
};
static const u16 edu_regs[] = {
[EDU_CONFIG] = 0x00,
[EDU_DRAM_ADDR] = 0x04,
[EDU_EXT_ADDR] = 0x08,
[EDU_LENGTH] = 0x0c,
[EDU_CMD] = 0x10,
[EDU_STOP] = 0x14,
[EDU_STATUS] = 0x18,
[EDU_DONE] = 0x1c,
[EDU_ERR_STATUS] = 0x20,
};
/* flash_dma registers */
enum flash_dma_reg {
FLASH_DMA_REVISION = 0,
@ -167,6 +206,8 @@ enum {
BRCMNAND_HAS_WP = BIT(3),
};
struct brcmnand_host;
struct brcmnand_controller {
struct device *dev;
struct nand_controller controller;
@ -185,17 +226,32 @@ struct brcmnand_controller {
int cmd_pending;
bool dma_pending;
bool edu_pending;
struct completion done;
struct completion dma_done;
struct completion edu_done;
/* List of NAND hosts (one for each chip-select) */
struct list_head host_list;
/* EDU info, per-transaction */
const u16 *edu_offsets;
void __iomem *edu_base;
int edu_irq;
int edu_count;
u64 edu_dram_addr;
u32 edu_ext_addr;
u32 edu_cmd;
u32 edu_config;
/* flash_dma reg */
const u16 *flash_dma_offsets;
struct brcm_nand_dma_desc *dma_desc;
dma_addr_t dma_pa;
int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
u32 len, u8 dma_cmd);
/* in-memory cache of the FLASH_CACHE, used only for some commands */
u8 flash_cache[FC_BYTES];
@ -216,6 +272,7 @@ struct brcmnand_controller {
u32 nand_cs_nand_xor;
u32 corr_stat_threshold;
u32 flash_dma_mode;
u32 flash_edu_mode;
bool pio_poll_mode;
};
@ -657,6 +714,22 @@ static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
__raw_writel(val, ctrl->nand_fc + word * 4);
}
static inline void edu_writel(struct brcmnand_controller *ctrl,
enum edu_reg reg, u32 val)
{
u16 offs = ctrl->edu_offsets[reg];
brcmnand_writel(val, ctrl->edu_base + offs);
}
static inline u32 edu_readl(struct brcmnand_controller *ctrl,
enum edu_reg reg)
{
u16 offs = ctrl->edu_offsets[reg];
return brcmnand_readl(ctrl->edu_base + offs);
}
static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
{
@ -926,6 +999,16 @@ static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
return ctrl->flash_dma_base;
}
static inline bool has_edu(struct brcmnand_controller *ctrl)
{
return ctrl->edu_base;
}
static inline bool use_dma(struct brcmnand_controller *ctrl)
{
return has_flash_dma(ctrl) || has_edu(ctrl);
}
static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
{
if (ctrl->pio_poll_mode)
@ -1299,6 +1382,52 @@ static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
return tbytes;
}
static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
{
/* initialize edu */
edu_writel(ctrl, EDU_ERR_STATUS, 0);
edu_readl(ctrl, EDU_ERR_STATUS);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_readl(ctrl, EDU_DONE);
}
/* edu irq */
static irqreturn_t brcmnand_edu_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
if (ctrl->edu_count) {
ctrl->edu_count--;
while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
udelay(1);
edu_writel(ctrl, EDU_DONE, 0);
edu_readl(ctrl, EDU_DONE);
}
if (ctrl->edu_count) {
ctrl->edu_dram_addr += FC_BYTES;
ctrl->edu_ext_addr += FC_BYTES;
edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
edu_readl(ctrl, EDU_DRAM_ADDR);
edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
edu_readl(ctrl, EDU_EXT_ADDR);
mb(); /* flush previous writes */
edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
edu_readl(ctrl, EDU_CMD);
return IRQ_HANDLED;
}
complete(&ctrl->edu_done);
return IRQ_HANDLED;
}
static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
@ -1307,6 +1436,16 @@ static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
if (ctrl->dma_pending)
return IRQ_HANDLED;
/* check if you need to piggy back on the ctrlrdy irq */
if (ctrl->edu_pending) {
if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
/* Discard interrupts while using dedicated edu irq */
return IRQ_HANDLED;
/* no registered edu irq, call handler */
return brcmnand_edu_irq(irq, data);
}
complete(&ctrl->done);
return IRQ_HANDLED;
}
@ -1644,6 +1783,81 @@ static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
}
}
/**
* Kick EDU engine
*/
static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
u32 len, u8 cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
unsigned long timeo = msecs_to_jiffies(200);
int ret = 0;
int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
unsigned int trans = len >> FC_SHIFT;
dma_addr_t pa;
pa = dma_map_single(ctrl->dev, buf, len, dir);
if (dma_mapping_error(ctrl->dev, pa)) {
dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
return -ENOMEM;
}
ctrl->edu_pending = true;
ctrl->edu_dram_addr = pa;
ctrl->edu_ext_addr = addr;
ctrl->edu_cmd = edu_cmd;
ctrl->edu_count = trans;
edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
edu_readl(ctrl, EDU_DRAM_ADDR);
edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
edu_readl(ctrl, EDU_EXT_ADDR);
edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
edu_readl(ctrl, EDU_LENGTH);
/* Start edu engine */
mb(); /* flush previous writes */
edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
edu_readl(ctrl, EDU_CMD);
if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
dev_err(ctrl->dev,
"timeout waiting for EDU; status %#x, error status %#x\n",
edu_readl(ctrl, EDU_STATUS),
edu_readl(ctrl, EDU_ERR_STATUS));
}
dma_unmap_single(ctrl->dev, pa, len, dir);
/* for program page check NAND status */
if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
edu_cmd == EDU_CMD_WRITE) {
dev_info(ctrl->dev, "program failed at %llx\n",
(unsigned long long)addr);
ret = -EIO;
}
/* Make sure the EDU status is clean */
if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
dev_warn(ctrl->dev, "EDU still active: %#x\n",
edu_readl(ctrl, EDU_STATUS));
if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
(unsigned long long)addr);
ret = -EIO;
}
ctrl->edu_pending = false;
brcmnand_edu_init(ctrl);
edu_writel(ctrl, EDU_STOP, 0); /* force stop */
edu_readl(ctrl, EDU_STOP);
return ret;
}
/**
* Construct a FLASH_DMA descriptor as part of a linked list. You must know the
* following ahead of time:
@ -1850,9 +2064,11 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
try_dmaread:
brcmnand_clear_ecc_addr(ctrl);
if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
CMD_PAGE_READ);
if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
err = ctrl->dma_trans(host, addr, buf,
trans * FC_BYTES,
CMD_PAGE_READ);
if (err) {
if (mtd_is_bitflip_or_eccerr(err))
err_addr = addr;
@ -1988,10 +2204,12 @@ static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
for (i = 0; i < ctrl->max_oob; i += 4)
oob_reg_write(ctrl, i, 0xffffffff);
if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
if (brcmnand_dma_trans(host, addr, (u32 *)buf,
mtd->writesize, CMD_PROGRAM_PAGE))
if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
CMD_PROGRAM_PAGE))
ret = -EIO;
goto out;
}
@ -2494,6 +2712,8 @@ static int brcmnand_suspend(struct device *dev)
if (has_flash_dma(ctrl))
ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
else if (has_edu(ctrl))
ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
return 0;
}
@ -2508,6 +2728,14 @@ static int brcmnand_resume(struct device *dev)
flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
}
if (has_edu(ctrl))
ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
else {
edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
edu_readl(ctrl, EDU_CONFIG);
brcmnand_edu_init(ctrl);
}
brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
@ -2553,6 +2781,49 @@ MODULE_DEVICE_TABLE(of, brcmnand_of_match);
/***********************************************************************
* Platform driver setup (per controller)
***********************************************************************/
static int brcmnand_edu_setup(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
struct resource *res;
int ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
if (res) {
ctrl->edu_base = devm_ioremap_resource(dev, res);
if (IS_ERR(ctrl->edu_base))
return PTR_ERR(ctrl->edu_base);
ctrl->edu_offsets = edu_regs;
edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
EDU_CONFIG_SWAP_CFG);
edu_readl(ctrl, EDU_CONFIG);
/* initialize edu */
brcmnand_edu_init(ctrl);
ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
if (ctrl->edu_irq < 0) {
dev_warn(dev,
"FLASH EDU enabled, using ctlrdy irq\n");
} else {
ret = devm_request_irq(dev, ctrl->edu_irq,
brcmnand_edu_irq, 0,
"brcmnand-edu", ctrl);
if (ret < 0) {
dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
ctrl->edu_irq, ret);
return ret;
}
dev_info(dev, "FLASH EDU enabled using irq %u\n",
ctrl->edu_irq);
}
}
return 0;
}
int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
{
@ -2578,6 +2849,7 @@ int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
init_completion(&ctrl->done);
init_completion(&ctrl->dma_done);
init_completion(&ctrl->edu_done);
nand_controller_init(&ctrl->controller);
ctrl->controller.ops = &brcmnand_controller_ops;
INIT_LIST_HEAD(&ctrl->host_list);
@ -2675,6 +2947,15 @@ int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
}
dev_info(dev, "enabling FLASH_DMA\n");
/* set flash dma transfer function to call */
ctrl->dma_trans = brcmnand_dma_trans;
} else {
ret = brcmnand_edu_setup(pdev);
if (ret < 0)
goto err;
/* set edu transfer function to call */
ctrl->dma_trans = brcmnand_edu_trans;
}
/* Disable automatic device ID config, direct addressing */

Просмотреть файл

@ -30,7 +30,6 @@
* Generic mode is used for executing rest of commands.
*/
#define MAX_OOB_SIZE_PER_SECTOR 32
#define MAX_ADDRESS_CYC 6
#define MAX_ERASE_ADDRESS_CYC 3
#define MAX_DATA_SIZE 0xFFFC
@ -190,6 +189,7 @@
/* BCH Engine identification register 3. */
#define BCH_CFG_3 0x844
#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
/* Ready/Busy# line status. */
#define RBN_SETINGS 0x1004
@ -499,6 +499,7 @@ struct cdns_nand_ctrl {
unsigned long assigned_cs;
struct list_head chips;
u8 bch_metadata_size;
};
struct cdns_nand_chip {
@ -997,6 +998,7 @@ static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
return status;
cadence_nand_reset_irq(cdns_ctrl);
reinit_completion(&cdns_ctrl->complete);
writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
cdns_ctrl->reg + CMD_REG2);
@ -1077,6 +1079,14 @@ static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
int max_step_size = 0, nstrengths, i;
u32 reg;
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
if (cdns_ctrl->bch_metadata_size < 4) {
dev_err(cdns_ctrl->dev,
"Driver needs at least 4 bytes of BCH meta data\n");
return -EIO;
}
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
@ -1170,7 +1180,8 @@ static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
cadence_nand_get_caps(cdns_ctrl);
cadence_nand_read_bch_caps(cdns_ctrl);
if (cadence_nand_read_bch_caps(cdns_ctrl))
return -EIO;
/*
* Set IO width access to 8.
@ -2585,9 +2596,8 @@ int cadence_nand_attach_chip(struct nand_chip *chip)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
u32 ecc_size;
struct mtd_info *mtd = nand_to_mtd(chip);
u32 max_oob_data_size;
int ret;
if (chip->options & NAND_BUSWIDTH_16) {
@ -2603,12 +2613,9 @@ int cadence_nand_attach_chip(struct nand_chip *chip)
chip->options |= NAND_NO_SUBPAGE_WRITE;
cdns_chip->bbm_offs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
cdns_chip->bbm_offs &= ~0x01;
cdns_chip->bbm_len = 2;
} else {
cdns_chip->bbm_len = 1;
}
cdns_chip->bbm_offs &= ~0x01;
/* this value should be even number */
cdns_chip->bbm_len = 2;
ret = nand_ecc_choose_conf(chip,
&cdns_ctrl->ecc_caps,
@ -2625,13 +2632,12 @@ int cadence_nand_attach_chip(struct nand_chip *chip)
/* Error correction configuration. */
cdns_chip->sector_size = chip->ecc.size;
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
if (cdns_chip->avail_oob_size > max_oob_data_size)
cdns_chip->avail_oob_size = max_oob_data_size;
if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
> mtd->oobsize)

Просмотреть файл

@ -1317,6 +1317,7 @@ int denali_init(struct denali_controller *denali)
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
denali_clear_irq_all(denali);

Просмотреть файл

@ -328,7 +328,7 @@ struct denali_chip {
struct nand_chip chip;
struct list_head node;
unsigned int nsels;
struct denali_chip_sel sels[0];
struct denali_chip_sel sels[];
};
/**

Просмотреть файл

@ -1169,7 +1169,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
" NoOfBDTLPartitions = %d\n"
" BlockMultiplerBits = %d\n"
" BlockMultiplierBits = %d\n"
" FormatFlgs = %d\n"
" OsakVersion = %d.%d.%d.%d\n"
" PercentUsed = %d\n",
@ -1482,7 +1482,7 @@ static int __init doc_probe(unsigned long physadr)
break;
case DOC_ChipID_DocMilPlus32:
pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
/* fall through */
fallthrough;
default:
ret = -ENODEV;
goto notfound;

Просмотреть файл

@ -324,8 +324,7 @@ static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ1:
column += 256;
/* fall-through */
fallthrough;
case NAND_CMD_READ0:
dev_dbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"

Просмотреть файл

@ -1148,20 +1148,21 @@ static int acquire_dma_channels(struct gpmi_nand_data *this)
{
struct platform_device *pdev = this->pdev;
struct dma_chan *dma_chan;
int ret = 0;
/* request dma channel */
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
if (!dma_chan) {
dev_err(this->dev, "Failed to request DMA channel.\n");
goto acquire_err;
dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
if (IS_ERR(dma_chan)) {
ret = PTR_ERR(dma_chan);
if (ret != -EPROBE_DEFER)
dev_err(this->dev, "DMA channel request failed: %d\n",
ret);
release_dma_channels(this);
} else {
this->dma_chans[0] = dma_chan;
}
this->dma_chans[0] = dma_chan;
return 0;
acquire_err:
release_dma_channels(this);
return -EINVAL;
return ret;
}
static int gpmi_get_clks(struct gpmi_nand_data *this)

Просмотреть файл

@ -1,6 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-only
config MTD_NAND_JZ4780
tristate "JZ4780 NAND controller"
depends on MIPS || COMPILE_TEST
depends on JZ4780_NEMC
help
Enables support for NAND Flash connected to the NEMC on JZ4780 SoC

Просмотреть файл

@ -124,7 +124,6 @@ int ingenic_ecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ingenic_ecc *ecc;
struct resource *res;
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc)
@ -134,8 +133,7 @@ int ingenic_ecc_probe(struct platform_device *pdev)
if (!ecc->ops)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ecc->base = devm_ioremap_resource(dev, res);
ecc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ecc->base))
return PTR_ERR(ecc->base);

Просмотреть файл

@ -253,7 +253,7 @@ static int ingenic_nand_attach_chip(struct nand_chip *chip)
chip->ecc.hwctl = ingenic_nand_ecc_hwctl;
chip->ecc.calculate = ingenic_nand_ecc_calculate;
chip->ecc.correct = ingenic_nand_ecc_correct;
/* fall through */
fallthrough;
case NAND_ECC_SOFT:
dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n",
(nfc->ecc) ? "hardware ECC" : "software ECC",

Просмотреть файл

@ -145,10 +145,10 @@ static void jz4725b_bch_read_parity(struct ingenic_ecc *bch, u8 *buf,
switch (size8) {
case 3:
dest8[2] = (val >> 16) & 0xff;
/* fall-through */
fallthrough;
case 2:
dest8[1] = (val >> 8) & 0xff;
/* fall-through */
fallthrough;
case 1:
dest8[0] = val & 0xff;
break;

Просмотреть файл

@ -123,10 +123,10 @@ static void jz4780_bch_read_parity(struct ingenic_ecc *bch, void *buf,
switch (size8) {
case 3:
dest8[2] = (val >> 16) & 0xff;
/* fall through */
fallthrough;
case 2:
dest8[1] = (val >> 8) & 0xff;
/* fall through */
fallthrough;
case 1:
dest8[0] = val & 0xff;
break;

Просмотреть файл

@ -30,6 +30,7 @@
#define NAND_MFR_SAMSUNG 0xec
#define NAND_MFR_SANDISK 0x45
#define NAND_MFR_STMICRO 0x20
/* Kioxia is new name of Toshiba memory. */
#define NAND_MFR_TOSHIBA 0x98
#define NAND_MFR_WINBOND 0xef

Просмотреть файл

@ -334,7 +334,7 @@ struct marvell_nand_chip {
int addr_cyc;
int selected_die;
unsigned int nsels;
struct marvell_nand_chip_sel sels[0];
struct marvell_nand_chip_sel sels[];
};
static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
@ -2743,16 +2743,21 @@ static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
if (ret)
return ret;
nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
if (!nfc->dma_chan) {
dev_err(nfc->dev,
"Unable to request data DMA channel\n");
return -ENODEV;
nfc->dma_chan = dma_request_chan(nfc->dev, "data");
if (IS_ERR(nfc->dma_chan)) {
ret = PTR_ERR(nfc->dma_chan);
nfc->dma_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nfc->dev, "DMA channel request failed: %d\n",
ret);
return ret;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r)
return -ENXIO;
if (!r) {
ret = -ENXIO;
goto release_channel;
}
config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
@ -2763,7 +2768,7 @@ static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
ret = dmaengine_slave_config(nfc->dma_chan, &config);
if (ret < 0) {
dev_err(nfc->dev, "Failed to configure DMA channel\n");
return ret;
goto release_channel;
}
/*
@ -2773,12 +2778,20 @@ static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
* the provided buffer.
*/
nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
if (!nfc->dma_buf)
return -ENOMEM;
if (!nfc->dma_buf) {
ret = -ENOMEM;
goto release_channel;
}
nfc->use_dma = true;
return 0;
release_channel:
dma_release_channel(nfc->dma_chan);
nfc->dma_chan = NULL;
return ret;
}
static void marvell_nfc_reset(struct marvell_nfc *nfc)
@ -2920,10 +2933,13 @@ static int marvell_nfc_probe(struct platform_device *pdev)
ret = marvell_nand_chips_init(dev, nfc);
if (ret)
goto unprepare_reg_clk;
goto release_dma;
return 0;
release_dma:
if (nfc->use_dma)
dma_release_channel(nfc->dma_chan);
unprepare_reg_clk:
clk_disable_unprepare(nfc->reg_clk);
unprepare_core_clk:

Просмотреть файл

@ -118,7 +118,7 @@ struct meson_nfc_nand_chip {
u8 *data_buf;
__le64 *info_buf;
u32 nsels;
u8 sels[0];
u8 sels[];
};
struct meson_nand_ecc {

Просмотреть файл

@ -131,7 +131,7 @@ struct mtk_nfc_nand_chip {
u32 spare_per_sector;
int nsels;
u8 sels[0];
u8 sels[];
/* nothing after this field */
};

Просмотреть файл

@ -683,7 +683,12 @@ int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
if (ret)
return ret;
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
/*
* +1 below is necessary because if we are now in the last fraction
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
* small jiffy fraction - possibly leading to false timeout
*/
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
do {
ret = nand_read_data_op(chip, &status, sizeof(status), true);
if (ret)
@ -4321,16 +4326,22 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_suspend(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
mutex_lock(&chip->lock);
chip->suspended = 1;
if (chip->suspend)
ret = chip->suspend(chip);
if (!ret)
chip->suspended = 1;
mutex_unlock(&chip->lock);
return 0;
return ret;
}
/**
@ -4342,11 +4353,14 @@ static void nand_resume(struct mtd_info *mtd)
struct nand_chip *chip = mtd_to_nand(mtd);
mutex_lock(&chip->lock);
if (chip->suspended)
if (chip->suspended) {
if (chip->resume)
chip->resume(chip);
chip->suspended = 0;
else
} else {
pr_err("%s called for a chip which is not in suspended state\n",
__func__);
}
mutex_unlock(&chip->lock);
}
@ -4360,6 +4374,38 @@ static void nand_shutdown(struct mtd_info *mtd)
nand_suspend(mtd);
}
/**
* nand_lock - [MTD Interface] Lock the NAND flash
* @mtd: MTD device structure
* @ofs: offset byte address
* @len: number of bytes to lock (must be a multiple of block/page size)
*/
static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->lock_area)
return -ENOTSUPP;
return chip->lock_area(chip, ofs, len);
}
/**
* nand_unlock - [MTD Interface] Unlock the NAND flash
* @mtd: MTD device structure
* @ofs: offset byte address
* @len: number of bytes to unlock (must be a multiple of block/page size)
*/
static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->unlock_area)
return -ENOTSUPP;
return chip->unlock_area(chip, ofs, len);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip)
{
@ -5591,8 +5637,7 @@ static int nand_scan_tail(struct nand_chip *chip)
}
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc_oob_first;
/* fall through */
fallthrough;
case NAND_ECC_HW:
/* Use standard hwecc read page function? */
if (!ecc->read_page)
@ -5611,8 +5656,7 @@ static int nand_scan_tail(struct nand_chip *chip)
ecc->read_subpage = nand_read_subpage;
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
ecc->write_subpage = nand_write_subpage_hwecc;
/* fall through */
fallthrough;
case NAND_ECC_HW_SYNDROME:
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
(!ecc->read_page ||
@ -5649,8 +5693,7 @@ static int nand_scan_tail(struct nand_chip *chip)
ecc->size, mtd->writesize);
ecc->mode = NAND_ECC_SOFT;
ecc->algo = NAND_ECC_HAMMING;
/* fall through */
fallthrough;
case NAND_ECC_SOFT:
ret = nand_set_ecc_soft_ops(chip);
if (ret) {
@ -5786,8 +5829,8 @@ static int nand_scan_tail(struct nand_chip *chip)
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = NULL;
mtd->_unlock = NULL;
mtd->_lock = nand_lock;
mtd->_unlock = nand_unlock;
mtd->_suspend = nand_suspend;
mtd->_resume = nand_resume;
mtd->_reboot = nand_shutdown;
@ -5907,6 +5950,8 @@ void nand_cleanup(struct nand_chip *chip)
chip->ecc.algo == NAND_ECC_BCH)
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
nanddev_cleanup(&chip->base);
/* Free bad block table memory */
kfree(chip->bbt);
kfree(chip->data_buf);

Просмотреть файл

@ -26,7 +26,7 @@
struct hynix_read_retry {
int nregs;
const u8 *regs;
u8 values[0];
u8 values[];
};
/**

Просмотреть файл

@ -331,8 +331,7 @@ static void nand_command(struct nand_chip *chip, unsigned int command,
*/
if (column == -1 && page_addr == -1)
return;
/* fall through */
fallthrough;
default:
/*
* If we don't have access to the busy pin, we apply the given
@ -483,8 +482,7 @@ static void nand_command_lp(struct nand_chip *chip, unsigned int command,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
/* fall through - This applies to read commands */
fallthrough; /* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given

Просмотреть файл

@ -6,11 +6,31 @@
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
*/
#include "linux/delay.h"
#include "internals.h"
#define MACRONIX_READ_RETRY_BIT BIT(0)
#define MACRONIX_NUM_READ_RETRY_MODES 6
#define ONFI_FEATURE_ADDR_MXIC_PROTECTION 0xA0
#define MXIC_BLOCK_PROTECTION_ALL_LOCK 0x38
#define MXIC_BLOCK_PROTECTION_ALL_UNLOCK 0x0
#define ONFI_FEATURE_ADDR_MXIC_RANDOMIZER 0xB0
#define MACRONIX_RANDOMIZER_BIT BIT(1)
#define MACRONIX_RANDOMIZER_ENPGM BIT(0)
#define MACRONIX_RANDOMIZER_RANDEN BIT(1)
#define MACRONIX_RANDOMIZER_RANDOPT BIT(2)
#define MACRONIX_RANDOMIZER_MODE_ENTER \
(MACRONIX_RANDOMIZER_ENPGM | \
MACRONIX_RANDOMIZER_RANDEN | \
MACRONIX_RANDOMIZER_RANDOPT)
#define MACRONIX_RANDOMIZER_MODE_EXIT \
(MACRONIX_RANDOMIZER_RANDEN | \
MACRONIX_RANDOMIZER_RANDOPT)
#define MXIC_CMD_POWER_DOWN 0xB9
struct nand_onfi_vendor_macronix {
u8 reserved;
u8 reliability_func;
@ -29,15 +49,83 @@ static int macronix_nand_setup_read_retry(struct nand_chip *chip, int mode)
return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
}
static int macronix_nand_randomizer_check_enable(struct nand_chip *chip)
{
u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
int ret;
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
feature);
if (ret < 0)
return ret;
if (feature[0])
return feature[0];
feature[0] = MACRONIX_RANDOMIZER_MODE_ENTER;
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
feature);
if (ret < 0)
return ret;
/* RANDEN and RANDOPT OTP bits are programmed */
feature[0] = 0x0;
ret = nand_prog_page_op(chip, 0, 0, feature, 1);
if (ret < 0)
return ret;
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
feature);
if (ret < 0)
return ret;
feature[0] &= MACRONIX_RANDOMIZER_MODE_EXIT;
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
feature);
if (ret < 0)
return ret;
return 0;
}
static void macronix_nand_onfi_init(struct nand_chip *chip)
{
struct nand_parameters *p = &chip->parameters;
struct nand_onfi_vendor_macronix *mxic;
struct device_node *dn = nand_get_flash_node(chip);
int rand_otp = 0;
int ret;
if (!p->onfi)
return;
if (of_find_property(dn, "mxic,enable-randomizer-otp", NULL))
rand_otp = 1;
mxic = (struct nand_onfi_vendor_macronix *)p->onfi->vendor;
/* Subpage write is prohibited in randomizer operatoin */
if (rand_otp && chip->options & NAND_NO_SUBPAGE_WRITE &&
mxic->reliability_func & MACRONIX_RANDOMIZER_BIT) {
if (p->supports_set_get_features) {
bitmap_set(p->set_feature_list,
ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, 1);
bitmap_set(p->get_feature_list,
ONFI_FEATURE_ADDR_MXIC_RANDOMIZER, 1);
ret = macronix_nand_randomizer_check_enable(chip);
if (ret < 0) {
bitmap_clear(p->set_feature_list,
ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
1);
bitmap_clear(p->get_feature_list,
ONFI_FEATURE_ADDR_MXIC_RANDOMIZER,
1);
pr_info("Macronix NAND randomizer failed\n");
} else {
pr_info("Macronix NAND randomizer enabled\n");
}
}
}
if ((mxic->reliability_func & MACRONIX_READ_RETRY_BIT) == 0)
return;
@ -91,6 +179,143 @@ static void macronix_nand_fix_broken_get_timings(struct nand_chip *chip)
ONFI_FEATURE_ADDR_TIMING_MODE, 1);
}
/*
* Macronix NAND supports Block Protection by Protectoin(PT) pin;
* active high at power-on which protects the entire chip even the #WP is
* disabled. Lock/unlock protection area can be partition according to
* protection bits, i.e. upper 1/2 locked, upper 1/4 locked and so on.
*/
static int mxic_nand_lock(struct nand_chip *chip, loff_t ofs, uint64_t len)
{
u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
int ret;
feature[0] = MXIC_BLOCK_PROTECTION_ALL_LOCK;
nand_select_target(chip, 0);
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION,
feature);
nand_deselect_target(chip);
if (ret)
pr_err("%s all blocks failed\n", __func__);
return ret;
}
static int mxic_nand_unlock(struct nand_chip *chip, loff_t ofs, uint64_t len)
{
u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
int ret;
feature[0] = MXIC_BLOCK_PROTECTION_ALL_UNLOCK;
nand_select_target(chip, 0);
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION,
feature);
nand_deselect_target(chip);
if (ret)
pr_err("%s all blocks failed\n", __func__);
return ret;
}
static void macronix_nand_block_protection_support(struct nand_chip *chip)
{
u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
int ret;
bitmap_set(chip->parameters.get_feature_list,
ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1);
feature[0] = MXIC_BLOCK_PROTECTION_ALL_UNLOCK;
nand_select_target(chip, 0);
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_MXIC_PROTECTION,
feature);
nand_deselect_target(chip);
if (ret || feature[0] != MXIC_BLOCK_PROTECTION_ALL_LOCK) {
if (ret)
pr_err("Block protection check failed\n");
bitmap_clear(chip->parameters.get_feature_list,
ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1);
return;
}
bitmap_set(chip->parameters.set_feature_list,
ONFI_FEATURE_ADDR_MXIC_PROTECTION, 1);
chip->lock_area = mxic_nand_lock;
chip->unlock_area = mxic_nand_unlock;
}
static int nand_power_down_op(struct nand_chip *chip)
{
int ret;
if (nand_has_exec_op(chip)) {
struct nand_op_instr instrs[] = {
NAND_OP_CMD(MXIC_CMD_POWER_DOWN, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
ret = nand_exec_op(chip, &op);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, MXIC_CMD_POWER_DOWN, -1, -1);
}
return 0;
}
static int mxic_nand_suspend(struct nand_chip *chip)
{
int ret;
nand_select_target(chip, 0);
ret = nand_power_down_op(chip);
if (ret < 0)
pr_err("Suspending MXIC NAND chip failed (%d)\n", ret);
nand_deselect_target(chip);
return ret;
}
static void mxic_nand_resume(struct nand_chip *chip)
{
/*
* Toggle #CS pin to resume NAND device and don't care
* of the others CLE, #WE, #RE pins status.
* A NAND controller ensure it is able to assert/de-assert #CS
* by sending any byte over the NAND bus.
* i.e.,
* NAND power down command or reset command w/o R/B# status checking.
*/
nand_select_target(chip, 0);
nand_power_down_op(chip);
/* The minimum of a recovery time tRDP is 35 us */
usleep_range(35, 100);
nand_deselect_target(chip);
}
static void macronix_nand_deep_power_down_support(struct nand_chip *chip)
{
int i;
static const char * const deep_power_down_dev[] = {
"MX30UF1G28AD",
"MX30UF2G28AD",
"MX30UF4G28AD",
};
i = match_string(deep_power_down_dev, ARRAY_SIZE(deep_power_down_dev),
chip->parameters.model);
if (i < 0)
return;
chip->suspend = mxic_nand_suspend;
chip->resume = mxic_nand_resume;
}
static int macronix_nand_init(struct nand_chip *chip)
{
if (nand_is_slc(chip))
@ -98,6 +323,8 @@ static int macronix_nand_init(struct nand_chip *chip)
macronix_nand_fix_broken_get_timings(chip);
macronix_nand_onfi_init(chip);
macronix_nand_block_protection_support(chip);
macronix_nand_deep_power_down_support(chip);
return 0;
}

Просмотреть файл

@ -14,14 +14,68 @@
/* Recommended to rewrite for BENAND */
#define TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED BIT(3)
/* ECC Status Read Command for BENAND */
#define TOSHIBA_NAND_CMD_ECC_STATUS_READ 0x7A
/* ECC Status Mask for BENAND */
#define TOSHIBA_NAND_ECC_STATUS_MASK 0x0F
/* Uncorrectable Error for BENAND */
#define TOSHIBA_NAND_ECC_STATUS_UNCORR 0x0F
/* Max ECC Steps for BENAND */
#define TOSHIBA_NAND_MAX_ECC_STEPS 8
static int toshiba_nand_benand_read_eccstatus_op(struct nand_chip *chip,
u8 *buf)
{
u8 *ecc_status = buf;
if (nand_has_exec_op(chip)) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(TOSHIBA_NAND_CMD_ECC_STATUS_READ,
PSEC_TO_NSEC(sdr->tADL_min)),
NAND_OP_8BIT_DATA_IN(chip->ecc.steps, ecc_status, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
return nand_exec_op(chip, &op);
}
return -ENOTSUPP;
}
static int toshiba_nand_benand_eccstatus(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
unsigned int max_bitflips = 0;
u8 status;
u8 status, ecc_status[TOSHIBA_NAND_MAX_ECC_STEPS];
/* Check Status */
ret = toshiba_nand_benand_read_eccstatus_op(chip, ecc_status);
if (!ret) {
unsigned int i, bitflips = 0;
for (i = 0; i < chip->ecc.steps; i++) {
bitflips = ecc_status[i] & TOSHIBA_NAND_ECC_STATUS_MASK;
if (bitflips == TOSHIBA_NAND_ECC_STATUS_UNCORR) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += bitflips;
max_bitflips = max(max_bitflips, bitflips);
}
}
return max_bitflips;
}
/*
* Fallback to regular status check if
* toshiba_nand_benand_read_eccstatus_op() failed.
*/
ret = nand_status_op(chip, &status);
if (ret)
return ret;
@ -108,7 +162,7 @@ static void toshiba_nand_decode_id(struct nand_chip *chip)
*/
if (chip->id.len >= 6 && nand_is_slc(chip) &&
(chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
!(chip->id.data[4] & 0x80) /* !BENAND */) {
!(chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND) /* !BENAND */) {
memorg->oobsize = 32 * memorg->pagesize >> 9;
mtd->oobsize = memorg->oobsize;
}

Просмотреть файл

@ -2251,10 +2251,10 @@ static int __init ns_init_module(void)
switch (bbt) {
case 2:
chip->bbt_options |= NAND_BBT_NO_OOB;
/* fall through */
fallthrough;
case 1:
chip->bbt_options |= NAND_BBT_USE_FLASH;
/* fall through */
fallthrough;
case 0:
break;
default:

Просмотреть файл

@ -455,13 +455,13 @@ static int elm_context_save(struct elm_info *info)
ELM_SYNDROME_FRAGMENT_5 + offset);
regs->elm_syndrome_fragment_4[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_4 + offset);
/* fall through */
fallthrough;
case BCH8_ECC:
regs->elm_syndrome_fragment_3[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_3 + offset);
regs->elm_syndrome_fragment_2[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_2 + offset);
/* fall through */
fallthrough;
case BCH4_ECC:
regs->elm_syndrome_fragment_1[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_1 + offset);
@ -503,13 +503,13 @@ static int elm_context_restore(struct elm_info *info)
regs->elm_syndrome_fragment_5[i]);
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset,
regs->elm_syndrome_fragment_4[i]);
/* fall through */
fallthrough;
case BCH8_ECC:
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset,
regs->elm_syndrome_fragment_3[i]);
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset,
regs->elm_syndrome_fragment_2[i]);
/* fall through */
fallthrough;
case BCH4_ECC:
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset,
regs->elm_syndrome_fragment_1[i]);

Просмотреть файл

@ -2628,6 +2628,29 @@ static const struct nand_controller_ops qcom_nandc_ops = {
.attach_chip = qcom_nand_attach_chip,
};
static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
{
if (nandc->props->is_bam) {
if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
dma_unmap_single(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (nandc->tx_chan)
dma_release_channel(nandc->tx_chan);
if (nandc->rx_chan)
dma_release_channel(nandc->rx_chan);
if (nandc->cmd_chan)
dma_release_channel(nandc->cmd_chan);
} else {
if (nandc->chan)
dma_release_channel(nandc->chan);
}
}
static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
{
int ret;
@ -2673,22 +2696,37 @@ static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
return -EIO;
}
nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
if (!nandc->tx_chan) {
dev_err(nandc->dev, "failed to request tx channel\n");
return -ENODEV;
nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
if (IS_ERR(nandc->tx_chan)) {
ret = PTR_ERR(nandc->tx_chan);
nandc->tx_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"tx DMA channel request failed: %d\n",
ret);
goto unalloc;
}
nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
if (!nandc->rx_chan) {
dev_err(nandc->dev, "failed to request rx channel\n");
return -ENODEV;
nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
if (IS_ERR(nandc->rx_chan)) {
ret = PTR_ERR(nandc->rx_chan);
nandc->rx_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"rx DMA channel request failed: %d\n",
ret);
goto unalloc;
}
nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
if (!nandc->cmd_chan) {
dev_err(nandc->dev, "failed to request cmd channel\n");
return -ENODEV;
nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
if (IS_ERR(nandc->cmd_chan)) {
ret = PTR_ERR(nandc->cmd_chan);
nandc->cmd_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"cmd DMA channel request failed: %d\n",
ret);
goto unalloc;
}
/*
@ -2702,14 +2740,19 @@ static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
if (!nandc->bam_txn) {
dev_err(nandc->dev,
"failed to allocate bam transaction\n");
return -ENOMEM;
ret = -ENOMEM;
goto unalloc;
}
} else {
nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
if (!nandc->chan) {
dev_err(nandc->dev,
"failed to request slave channel\n");
return -ENODEV;
nandc->chan = dma_request_chan(nandc->dev, "rxtx");
if (IS_ERR(nandc->chan)) {
ret = PTR_ERR(nandc->chan);
nandc->chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"rxtx DMA channel request failed: %d\n",
ret);
return ret;
}
}
@ -2720,29 +2763,9 @@ static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
nandc->controller.ops = &qcom_nandc_ops;
return 0;
}
static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
{
if (nandc->props->is_bam) {
if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
dma_unmap_single(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (nandc->tx_chan)
dma_release_channel(nandc->tx_chan);
if (nandc->rx_chan)
dma_release_channel(nandc->rx_chan);
if (nandc->cmd_chan)
dma_release_channel(nandc->cmd_chan);
} else {
if (nandc->chan)
dma_release_channel(nandc->chan);
}
unalloc:
qcom_nandc_unalloc(nandc);
return ret;
}
/* one time setup of a few nand controller registers */

Просмотреть файл

@ -1606,15 +1606,36 @@ static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
/* DMA configuration */
static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
{
int ret;
int ret = 0;
fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
fmc2->dma_tx_ch = dma_request_chan(fmc2->dev, "tx");
if (IS_ERR(fmc2->dma_tx_ch)) {
ret = PTR_ERR(fmc2->dma_tx_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request tx DMA channel: %d\n", ret);
fmc2->dma_tx_ch = NULL;
goto err_dma;
}
if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
return 0;
fmc2->dma_rx_ch = dma_request_chan(fmc2->dev, "rx");
if (IS_ERR(fmc2->dma_rx_ch)) {
ret = PTR_ERR(fmc2->dma_rx_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request rx DMA channel: %d\n", ret);
fmc2->dma_rx_ch = NULL;
goto err_dma;
}
fmc2->dma_ecc_ch = dma_request_chan(fmc2->dev, "ecc");
if (IS_ERR(fmc2->dma_ecc_ch)) {
ret = PTR_ERR(fmc2->dma_ecc_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request ecc DMA channel: %d\n", ret);
fmc2->dma_ecc_ch = NULL;
goto err_dma;
}
ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
@ -1635,6 +1656,15 @@ static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
init_completion(&fmc2->dma_ecc_complete);
return 0;
err_dma:
if (ret == -ENODEV) {
dev_warn(fmc2->dev,
"DMAs not defined in the DT, polling mode is used\n");
ret = 0;
}
return ret;
}
/* NAND callbacks setup */

Просмотреть файл

@ -195,7 +195,7 @@ struct sunxi_nand_chip {
u32 timing_cfg;
u32 timing_ctl;
int nsels;
struct sunxi_nand_chip_sel sels[0];
struct sunxi_nand_chip_sel sels[];
};
static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
@ -2123,8 +2123,16 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
if (ret)
goto out_ahb_reset_reassert;
nfc->dmac = dma_request_slave_channel(dev, "rxtx");
if (nfc->dmac) {
nfc->dmac = dma_request_chan(dev, "rxtx");
if (IS_ERR(nfc->dmac)) {
ret = PTR_ERR(nfc->dmac);
if (ret == -EPROBE_DEFER)
goto out_ahb_reset_reassert;
/* Ignore errors to fall back to PIO mode */
dev_warn(dev, "failed to request rxtx DMA channel: %d\n", ret);
nfc->dmac = NULL;
} else {
struct dma_slave_config dmac_cfg = { };
dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data;
@ -2138,9 +2146,6 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
if (nfc->caps->extra_mbus_conf)
writel(readl(nfc->regs + NFC_REG_CTL) |
NFC_DMA_TYPE_NORMAL, nfc->regs + NFC_REG_CTL);
} else {
dev_warn(dev, "failed to request rxtx DMA channel\n");
}
platform_set_drvdata(pdev, nfc);

Просмотреть файл

@ -16,6 +16,7 @@
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
@ -370,10 +371,11 @@ out:
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
u8 ndummy, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
SPINAND_MAX_ID_LEN);
struct spi_mem_op op = SPINAND_READID_OP(
naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
@ -568,18 +570,18 @@ static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooblen = 2,
.ooblen = sizeof(marker),
.ooboffs = 0,
.oobbuf.in = spinand->oobbuf,
.oobbuf.in = marker,
.mode = MTD_OPS_RAW,
};
memset(spinand->oobbuf, 0, 2);
spinand_select_target(spinand, pos->target);
spinand_read_page(spinand, &req, false);
if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
if (marker[0] != 0xff || marker[1] != 0xff)
return true;
return false;
@ -603,15 +605,16 @@ static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooboffs = 0,
.ooblen = 2,
.oobbuf.out = spinand->oobbuf,
.ooblen = sizeof(marker),
.oobbuf.out = marker,
.mode = MTD_OPS_RAW,
};
int ret;
/* Erase block before marking it bad. */
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
@ -620,9 +623,6 @@ static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
if (ret)
return ret;
spinand_erase_op(spinand, pos);
memset(spinand->oobbuf, 0, 2);
return spinand_write_page(spinand, &req);
}
@ -762,24 +762,62 @@ static const struct spinand_manufacturer *spinand_manufacturers[] = {
&winbond_spinand_manufacturer,
};
static int spinand_manufacturer_detect(struct spinand_device *spinand)
static int spinand_manufacturer_match(struct spinand_device *spinand,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
ret = spinand_manufacturers[i]->ops->detect(spinand);
if (ret > 0) {
spinand->manufacturer = spinand_manufacturers[i];
return 0;
} else if (ret < 0) {
return ret;
}
}
const struct spinand_manufacturer *manufacturer =
spinand_manufacturers[i];
if (id[0] != manufacturer->id)
continue;
ret = spinand_match_and_init(spinand,
manufacturer->chips,
manufacturer->nchips,
rdid_method);
if (ret < 0)
continue;
spinand->manufacturer = manufacturer;
return 0;
}
return -ENOTSUPP;
}
static int spinand_id_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
ret = spinand_read_id_op(spinand, 0, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 1, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_ADDR);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 0, 1, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_DUMMY);
return ret;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
@ -835,9 +873,9 @@ spinand_select_op_variant(struct spinand_device *spinand,
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
* @rdid_method: read id method to match
*
* Should be used by SPI NAND manufacturer drivers when they want to find a
* match between a device ID retrieved through the READ_ID command and an
* Match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
@ -846,8 +884,10 @@ spinand_select_op_variant(struct spinand_device *spinand,
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u16 devid)
unsigned int table_size,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
@ -855,13 +895,17 @@ int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (devid != info->devid)
if (rdid_method != info->devid.method)
continue;
if (memcmp(id + 1, info->devid.id, info->devid.len))
continue;
nand->memorg = table[i].memorg;
nand->eccreq = table[i].eccreq;
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->id.len = 1 + table[i].devid.len;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
@ -898,13 +942,7 @@ static int spinand_detect(struct spinand_device *spinand)
if (ret)
return ret;
ret = spinand_read_id_op(spinand, spinand->id.data);
if (ret)
return ret;
spinand->id.len = SPINAND_MAX_ID_LEN;
ret = spinand_manufacturer_detect(spinand);
ret = spinand_id_detect(spinand);
if (ret) {
dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
spinand->id.data);

Просмотреть файл

@ -195,7 +195,8 @@ static int gd5fxgq4ufxxg_ecc_get_status(struct spinand_device *spinand,
}
static const struct spinand_info gigadevice_spinand_table[] = {
SPINAND_INFO("GD5F1GQ4xA", 0xF1,
SPINAND_INFO("GD5F1GQ4xA",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf1),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -204,7 +205,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
0,
SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
gd5fxgq4xa_ecc_get_status)),
SPINAND_INFO("GD5F2GQ4xA", 0xF2,
SPINAND_INFO("GD5F2GQ4xA",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf2),
NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -213,7 +215,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
0,
SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
gd5fxgq4xa_ecc_get_status)),
SPINAND_INFO("GD5F4GQ4xA", 0xF4,
SPINAND_INFO("GD5F4GQ4xA",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf4),
NAND_MEMORG(1, 2048, 64, 64, 4096, 80, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -222,7 +225,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
0,
SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
gd5fxgq4xa_ecc_get_status)),
SPINAND_INFO("GD5F1GQ4UExxG", 0xd1,
SPINAND_INFO("GD5F1GQ4UExxG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xd1),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -231,7 +235,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
0,
SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
gd5fxgq4uexxg_ecc_get_status)),
SPINAND_INFO("GD5F1GQ4UFxxG", 0xb148,
SPINAND_INFO("GD5F1GQ4UFxxG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xb1, 0x48),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
@ -242,39 +247,13 @@ static const struct spinand_info gigadevice_spinand_table[] = {
gd5fxgq4ufxxg_ecc_get_status)),
};
static int gigadevice_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
u16 did;
int ret;
/*
* Earlier GDF5-series devices (A,E) return [0][MID][DID]
* Later (F) devices return [MID][DID1][DID2]
*/
if (id[0] == SPINAND_MFR_GIGADEVICE)
did = (id[1] << 8) + id[2];
else if (id[0] == 0 && id[1] == SPINAND_MFR_GIGADEVICE)
did = id[2];
else
return 0;
ret = spinand_match_and_init(spinand, gigadevice_spinand_table,
ARRAY_SIZE(gigadevice_spinand_table),
did);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = {
.detect = gigadevice_spinand_detect,
};
const struct spinand_manufacturer gigadevice_spinand_manufacturer = {
.id = SPINAND_MFR_GIGADEVICE,
.name = "GigaDevice",
.chips = gigadevice_spinand_table,
.nchips = ARRAY_SIZE(gigadevice_spinand_table),
.ops = &gigadevice_spinand_manuf_ops,
};

Просмотреть файл

@ -99,7 +99,8 @@ static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand,
}
static const struct spinand_info macronix_spinand_table[] = {
SPINAND_INFO("MX35LF1GE4AB", 0x12,
SPINAND_INFO("MX35LF1GE4AB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x12),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -108,7 +109,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35LF2GE4AB", 0x22,
SPINAND_INFO("MX35LF2GE4AB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x22),
NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -118,33 +120,13 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)),
};
static int macronix_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Macronix SPI NAND read ID needs a dummy byte, so the first byte in
* raw_id is garbage.
*/
if (id[1] != SPINAND_MFR_MACRONIX)
return 0;
ret = spinand_match_and_init(spinand, macronix_spinand_table,
ARRAY_SIZE(macronix_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops macronix_spinand_manuf_ops = {
.detect = macronix_spinand_detect,
};
const struct spinand_manufacturer macronix_spinand_manufacturer = {
.id = SPINAND_MFR_MACRONIX,
.name = "Macronix",
.chips = macronix_spinand_table,
.nchips = ARRAY_SIZE(macronix_spinand_table),
.ops = &macronix_spinand_manuf_ops,
};

Просмотреть файл

@ -18,6 +18,16 @@
#define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4)
#define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4)
#define MICRON_CFG_CR BIT(0)
/*
* As per datasheet, die selection is done by the 6th bit of Die
* Select Register (Address 0xD0).
*/
#define MICRON_DIE_SELECT_REG 0xD0
#define MICRON_SELECT_DIE(x) ((x) << 6)
static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
@ -34,38 +44,52 @@ static SPINAND_OP_VARIANTS(update_cache_variants,
SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
SPINAND_PROG_LOAD(false, 0, NULL, 0));
static int mt29f2g01abagd_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
region->offset = 64;
region->length = 64;
region->offset = mtd->oobsize / 2;
region->length = mtd->oobsize / 2;
return 0;
}
static int mt29f2g01abagd_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
static int micron_8_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = 62;
region->length = (mtd->oobsize / 2) - 2;
return 0;
}
static const struct mtd_ooblayout_ops mt29f2g01abagd_ooblayout = {
.ecc = mt29f2g01abagd_ooblayout_ecc,
.free = mt29f2g01abagd_ooblayout_free,
static const struct mtd_ooblayout_ops micron_8_ooblayout = {
.ecc = micron_8_ooblayout_ecc,
.free = micron_8_ooblayout_free,
};
static int mt29f2g01abagd_ecc_get_status(struct spinand_device *spinand,
u8 status)
static int micron_select_target(struct spinand_device *spinand,
unsigned int target)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(MICRON_DIE_SELECT_REG,
spinand->scratchbuf);
if (target > 1)
return -EINVAL;
*spinand->scratchbuf = MICRON_SELECT_DIE(target);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int micron_8_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
switch (status & MICRON_STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
@ -91,43 +115,131 @@ static int mt29f2g01abagd_ecc_get_status(struct spinand_device *spinand,
}
static const struct spinand_info micron_spinand_table[] = {
SPINAND_INFO("MT29F2G01ABAGD", 0x24,
/* M79A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01ABAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&mt29f2g01abagd_ooblayout,
mt29f2g01abagd_ecc_get_status)),
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 2Gb 1.8V */
SPINAND_INFO("MT29F2G01ABBGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 3.3V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 1.8V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ADAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 4Gb 1.8V */
SPINAND_INFO("MT29F4G01ABBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 8Gb 3.3V */
SPINAND_INFO("MT29F8G01ADAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 8Gb 1.8V */
SPINAND_INFO("MT29F8G01ADBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
};
static int micron_spinand_detect(struct spinand_device *spinand)
static int micron_spinand_init(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Micron SPI NAND read ID need a dummy byte,
* so the first byte in raw_id is dummy.
* M70A device series enable Continuous Read feature at Power-up,
* which is not supported. Disable this bit to avoid any possible
* failure.
*/
if (id[1] != SPINAND_MFR_MICRON)
return 0;
if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT)
return spinand_upd_cfg(spinand, MICRON_CFG_CR, 0);
ret = spinand_match_and_init(spinand, micron_spinand_table,
ARRAY_SIZE(micron_spinand_table), id[2]);
if (ret)
return ret;
return 1;
return 0;
}
static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
.detect = micron_spinand_detect,
.init = micron_spinand_init,
};
const struct spinand_manufacturer micron_spinand_manufacturer = {
.id = SPINAND_MFR_MICRON,
.name = "Micron",
.chips = micron_spinand_table,
.nchips = ARRAY_SIZE(micron_spinand_table),
.ops = &micron_spinand_manuf_ops,
};

Просмотреть файл

@ -97,7 +97,8 @@ static const struct mtd_ooblayout_ops pn26g0xa_ooblayout = {
static const struct spinand_info paragon_spinand_table[] = {
SPINAND_INFO("PN26G01A", 0xe1,
SPINAND_INFO("PN26G01A",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xe1),
NAND_MEMORG(1, 2048, 128, 64, 1024, 21, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -106,7 +107,8 @@ static const struct spinand_info paragon_spinand_table[] = {
0,
SPINAND_ECCINFO(&pn26g0xa_ooblayout,
pn26g0xa_ecc_get_status)),
SPINAND_INFO("PN26G02A", 0xe2,
SPINAND_INFO("PN26G02A",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xe2),
NAND_MEMORG(1, 2048, 128, 64, 2048, 41, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -117,31 +119,13 @@ static const struct spinand_info paragon_spinand_table[] = {
pn26g0xa_ecc_get_status)),
};
static int paragon_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/* Read ID returns [0][MID][DID] */
if (id[1] != SPINAND_MFR_PARAGON)
return 0;
ret = spinand_match_and_init(spinand, paragon_spinand_table,
ARRAY_SIZE(paragon_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops paragon_spinand_manuf_ops = {
.detect = paragon_spinand_detect,
};
const struct spinand_manufacturer paragon_spinand_manufacturer = {
.id = SPINAND_MFR_PARAGON,
.name = "Paragon",
.chips = paragon_spinand_table,
.nchips = ARRAY_SIZE(paragon_spinand_table),
.ops = &paragon_spinand_manuf_ops,
};

Просмотреть файл

@ -10,6 +10,7 @@
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
/* Kioxia is new name of Toshiba memory. */
#define SPINAND_MFR_TOSHIBA 0x98
#define TOSH_STATUS_ECC_HAS_BITFLIPS_T (3 << 4)
@ -19,14 +20,26 @@ static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(write_cache_x4_variants,
SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
SPINAND_PROG_LOAD(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(update_cache_x4_variants,
SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
SPINAND_PROG_LOAD(false, 0, NULL, 0));
/**
* Backward compatibility for 1st generation Serial NAND devices
* which don't support Quad Program Load operation.
*/
static SPINAND_OP_VARIANTS(write_cache_variants,
SPINAND_PROG_LOAD(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(update_cache_variants,
SPINAND_PROG_LOAD(false, 0, NULL, 0));
static int tc58cxgxsx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
static int tx58cxgxsxraix_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 0)
return -ERANGE;
@ -37,8 +50,8 @@ static int tc58cxgxsx_ooblayout_ecc(struct mtd_info *mtd, int section,
return 0;
}
static int tc58cxgxsx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
static int tx58cxgxsxraix_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 0)
return -ERANGE;
@ -50,13 +63,13 @@ static int tc58cxgxsx_ooblayout_free(struct mtd_info *mtd, int section,
return 0;
}
static const struct mtd_ooblayout_ops tc58cxgxsx_ooblayout = {
.ecc = tc58cxgxsx_ooblayout_ecc,
.free = tc58cxgxsx_ooblayout_free,
static const struct mtd_ooblayout_ops tx58cxgxsxraix_ooblayout = {
.ecc = tx58cxgxsxraix_ooblayout_ecc,
.free = tx58cxgxsxraix_ooblayout_free,
};
static int tc58cxgxsx_ecc_get_status(struct spinand_device *spinand,
u8 status)
static int tx58cxgxsxraix_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 mbf = 0;
@ -94,105 +107,174 @@ static int tc58cxgxsx_ecc_get_status(struct spinand_device *spinand,
}
static const struct spinand_info toshiba_spinand_table[] = {
/* 3.3V 1Gb */
SPINAND_INFO("TC58CVG0S3", 0xC2,
/* 3.3V 1Gb (1st generation) */
SPINAND_INFO("TC58CVG0S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xC2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 3.3V 2Gb */
SPINAND_INFO("TC58CVG1S3", 0xCB,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 2Gb (1st generation) */
SPINAND_INFO("TC58CVG1S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 3.3V 4Gb */
SPINAND_INFO("TC58CVG2S0", 0xCD,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 4Gb (1st generation) */
SPINAND_INFO("TC58CVG2S0HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 3.3V 4Gb */
SPINAND_INFO("TC58CVG2S0", 0xED,
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 1.8V 1Gb */
SPINAND_INFO("TC58CYG0S3", 0xB2,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 1Gb (1st generation) */
SPINAND_INFO("TC58CYG0S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xB2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 1.8V 2Gb */
SPINAND_INFO("TC58CYG1S3", 0xBB,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 2Gb (1st generation) */
SPINAND_INFO("TC58CYG1S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
/* 1.8V 4Gb */
SPINAND_INFO("TC58CYG2S0", 0xBD,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 4Gb (1st generation) */
SPINAND_INFO("TC58CYG2S0HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
tc58cxgxsx_ecc_get_status)),
};
static int toshiba_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/*
* Toshiba SPI NAND read ID needs a dummy byte,
* so the first byte in id is garbage.
* 2nd generation serial nand has HOLD_D which is equivalent to
* QE_BIT.
*/
if (id[1] != SPINAND_MFR_TOSHIBA)
return 0;
ret = spinand_match_and_init(spinand, toshiba_spinand_table,
ARRAY_SIZE(toshiba_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
/* 3.3V 1Gb (2nd generation) */
SPINAND_INFO("TC58CVG0S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 2Gb (2nd generation) */
SPINAND_INFO("TC58CVG1S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xEB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 4Gb (2nd generation) */
SPINAND_INFO("TC58CVG2S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xED),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 8Gb (2nd generation) */
SPINAND_INFO("TH58CVG3S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4),
NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 1Gb (2nd generation) */
SPINAND_INFO("TC58CYG0S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 2Gb (2nd generation) */
SPINAND_INFO("TC58CYG1S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 4Gb (2nd generation) */
SPINAND_INFO("TC58CYG2S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 8Gb (2nd generation) */
SPINAND_INFO("TH58CYG3S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD4),
NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_x4_variants,
&update_cache_x4_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
};
static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = {
.detect = toshiba_spinand_detect,
};
const struct spinand_manufacturer toshiba_spinand_manufacturer = {
.id = SPINAND_MFR_TOSHIBA,
.name = "Toshiba",
.chips = toshiba_spinand_table,
.nchips = ARRAY_SIZE(toshiba_spinand_table),
.ops = &toshiba_spinand_manuf_ops,
};

Просмотреть файл

@ -75,7 +75,8 @@ static int w25m02gv_select_target(struct spinand_device *spinand,
}
static const struct spinand_info winbond_spinand_table[] = {
SPINAND_INFO("W25M02GV", 0xAB,
SPINAND_INFO("W25M02GV",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -84,7 +85,8 @@ static const struct spinand_info winbond_spinand_table[] = {
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_SELECT_TARGET(w25m02gv_select_target)),
SPINAND_INFO("W25N01GV", 0xAA,
SPINAND_INFO("W25N01GV",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -94,31 +96,6 @@ static const struct spinand_info winbond_spinand_table[] = {
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
};
/**
* winbond_spinand_detect - initialize device related part in spinand_device
* struct if it is a Winbond device.
* @spinand: SPI NAND device structure
*/
static int winbond_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Winbond SPI NAND read ID need a dummy byte,
* so the first byte in raw_id is dummy.
*/
if (id[1] != SPINAND_MFR_WINBOND)
return 0;
ret = spinand_match_and_init(spinand, winbond_spinand_table,
ARRAY_SIZE(winbond_spinand_table), id[2]);
if (ret)
return ret;
return 1;
}
static int winbond_spinand_init(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
@ -138,12 +115,13 @@ static int winbond_spinand_init(struct spinand_device *spinand)
}
static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
.detect = winbond_spinand_detect,
.init = winbond_spinand_init,
};
const struct spinand_manufacturer winbond_spinand_manufacturer = {
.id = SPINAND_MFR_WINBOND,
.name = "Winbond",
.chips = winbond_spinand_table,
.nchips = ARRAY_SIZE(winbond_spinand_table),
.ops = &winbond_spinand_manuf_ops,
};

Просмотреть файл

@ -24,79 +24,6 @@ config MTD_SPI_NOR_USE_4K_SECTORS
Please note that some tools/drivers/filesystems may not work with
4096 B erase size (e.g. UBIFS requires 15 KiB as a minimum).
config SPI_ASPEED_SMC
tristate "Aspeed flash controllers in SPI mode"
depends on ARCH_ASPEED || COMPILE_TEST
depends on HAS_IOMEM && OF
help
This enables support for the Firmware Memory controller (FMC)
in the Aspeed AST2500/AST2400 SoCs when attached to SPI NOR chips,
and support for the SPI flash memory controller (SPI) for
the host firmware. The implementation only supports SPI NOR.
config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST)
help
Enable support for the Cadence Quad SPI Flash controller.
Cadence QSPI is a specialized controller for connecting an SPI
Flash over 1/2/4-bit wide bus. Enable this option if you have a
device with a Cadence QSPI controller and want to access the
Flash as an MTD device.
config SPI_HISI_SFC
tristate "Hisilicon FMC SPI-NOR Flash Controller(SFC)"
depends on ARCH_HISI || COMPILE_TEST
depends on HAS_IOMEM
help
This enables support for HiSilicon FMC SPI-NOR flash controller.
config SPI_NXP_SPIFI
tristate "NXP SPI Flash Interface (SPIFI)"
depends on OF && (ARCH_LPC18XX || COMPILE_TEST)
depends on HAS_IOMEM
help
Enable support for the NXP LPC SPI Flash Interface controller.
SPIFI is a specialized controller for connecting serial SPI
Flash. Enable this option if you have a device with a SPIFI
controller and want to access the Flash as a mtd device.
config SPI_INTEL_SPI
tristate
config SPI_INTEL_SPI_PCI
tristate "Intel PCH/PCU SPI flash PCI driver (DANGEROUS)"
depends on X86 && PCI
select SPI_INTEL_SPI
help
This enables PCI support for the Intel PCH/PCU SPI controller in
master mode. This controller is present in modern Intel hardware
and is used to hold BIOS and other persistent settings. Using
this driver it is possible to upgrade BIOS directly from Linux.
Say N here unless you know what you are doing. Overwriting the
SPI flash may render the system unbootable.
To compile this driver as a module, choose M here: the module
will be called intel-spi-pci.
config SPI_INTEL_SPI_PLATFORM
tristate "Intel PCH/PCU SPI flash platform driver (DANGEROUS)"
depends on X86
select SPI_INTEL_SPI
help
This enables platform support for the Intel PCH/PCU SPI
controller in master mode. This controller is present in modern
Intel hardware and is used to hold BIOS and other persistent
settings. Using this driver it is possible to upgrade BIOS
directly from Linux.
Say N here unless you know what you are doing. Overwriting the
SPI flash may render the system unbootable.
To compile this driver as a module, choose M here: the module
will be called intel-spi-platform.
source "drivers/mtd/spi-nor/controllers/Kconfig"
endif # MTD_SPI_NOR

Просмотреть файл

@ -1,9 +1,20 @@
# SPDX-License-Identifier: GPL-2.0
spi-nor-objs := core.o sfdp.o
spi-nor-objs += atmel.o
spi-nor-objs += catalyst.o
spi-nor-objs += eon.o
spi-nor-objs += esmt.o
spi-nor-objs += everspin.o
spi-nor-objs += fujitsu.o
spi-nor-objs += gigadevice.o
spi-nor-objs += intel.o
spi-nor-objs += issi.o
spi-nor-objs += macronix.o
spi-nor-objs += micron-st.o
spi-nor-objs += spansion.o
spi-nor-objs += sst.o
spi-nor-objs += winbond.o
spi-nor-objs += xilinx.o
spi-nor-objs += xmc.o
obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
obj-$(CONFIG_SPI_CADENCE_QUADSPI) += cadence-quadspi.o
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
obj-$(CONFIG_SPI_INTEL_SPI_PCI) += intel-spi-pci.o
obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o

Просмотреть файл

@ -0,0 +1,46 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info atmel_parts[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at25sl321", INFO(0x1f4216, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
};
static void atmel_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
}
static const struct spi_nor_fixups atmel_fixups = {
.default_init = atmel_default_init,
};
const struct spi_nor_manufacturer spi_nor_atmel = {
.name = "atmel",
.parts = atmel_parts,
.nparts = ARRAY_SIZE(atmel_parts),
.fixups = &atmel_fixups,
};

Просмотреть файл

@ -0,0 +1,29 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info catalyst_parts[] = {
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO(16, 8, 16, 1,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c03", CAT25_INFO(32, 8, 16, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c09", CAT25_INFO(128, 8, 32, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c17", CAT25_INFO(256, 8, 32, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
};
const struct spi_nor_manufacturer spi_nor_catalyst = {
.name = "catalyst",
.parts = catalyst_parts,
.nparts = ARRAY_SIZE(catalyst_parts),
};

Просмотреть файл

@ -0,0 +1,75 @@
# SPDX-License-Identifier: GPL-2.0-only
config SPI_ASPEED_SMC
tristate "Aspeed flash controllers in SPI mode"
depends on ARCH_ASPEED || COMPILE_TEST
depends on HAS_IOMEM && OF
help
This enables support for the Firmware Memory controller (FMC)
in the Aspeed AST2500/AST2400 SoCs when attached to SPI NOR chips,
and support for the SPI flash memory controller (SPI) for
the host firmware. The implementation only supports SPI NOR.
config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST)
help
Enable support for the Cadence Quad SPI Flash controller.
Cadence QSPI is a specialized controller for connecting an SPI
Flash over 1/2/4-bit wide bus. Enable this option if you have a
device with a Cadence QSPI controller and want to access the
Flash as an MTD device.
config SPI_HISI_SFC
tristate "Hisilicon FMC SPI-NOR Flash Controller(SFC)"
depends on ARCH_HISI || COMPILE_TEST
depends on HAS_IOMEM
help
This enables support for HiSilicon FMC SPI-NOR flash controller.
config SPI_NXP_SPIFI
tristate "NXP SPI Flash Interface (SPIFI)"
depends on OF && (ARCH_LPC18XX || COMPILE_TEST)
depends on HAS_IOMEM
help
Enable support for the NXP LPC SPI Flash Interface controller.
SPIFI is a specialized controller for connecting serial SPI
Flash. Enable this option if you have a device with a SPIFI
controller and want to access the Flash as a mtd device.
config SPI_INTEL_SPI
tristate
config SPI_INTEL_SPI_PCI
tristate "Intel PCH/PCU SPI flash PCI driver (DANGEROUS)"
depends on X86 && PCI
select SPI_INTEL_SPI
help
This enables PCI support for the Intel PCH/PCU SPI controller in
master mode. This controller is present in modern Intel hardware
and is used to hold BIOS and other persistent settings. Using
this driver it is possible to upgrade BIOS directly from Linux.
Say N here unless you know what you are doing. Overwriting the
SPI flash may render the system unbootable.
To compile this driver as a module, choose M here: the module
will be called intel-spi-pci.
config SPI_INTEL_SPI_PLATFORM
tristate "Intel PCH/PCU SPI flash platform driver (DANGEROUS)"
depends on X86
select SPI_INTEL_SPI
help
This enables platform support for the Intel PCH/PCU SPI
controller in master mode. This controller is present in modern
Intel hardware and is used to hold BIOS and other persistent
settings. Using this driver it is possible to upgrade BIOS
directly from Linux.
Say N here unless you know what you are doing. Overwriting the
SPI flash may render the system unbootable.
To compile this driver as a module, choose M here: the module
will be called intel-spi-platform.

Просмотреть файл

@ -0,0 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
obj-$(CONFIG_SPI_CADENCE_QUADSPI) += cadence-quadspi.o
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
obj-$(CONFIG_SPI_INTEL_SPI_PCI) += intel-spi-pci.o
obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o

Просмотреть файл

@ -109,7 +109,7 @@ struct aspeed_smc_controller {
void __iomem *ahb_base; /* per-chip windows resource */
u32 ahb_window_size; /* full mapping window size */
struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */
struct aspeed_smc_chip *chips[]; /* pointers to attached chips */
};
/*
@ -354,7 +354,7 @@ static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
default:
WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
nor->addr_width);
/* FALLTHROUGH */
fallthrough;
case 3:
cmdaddr = addr & 0xFFFFFF;
cmdaddr |= cmd << 24;

3466
drivers/mtd/spi-nor/core.c Normal file

Разница между файлами не показана из-за своего большого размера Загрузить разницу

441
drivers/mtd/spi-nor/core.h Normal file
Просмотреть файл

@ -0,0 +1,441 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#ifndef __LINUX_MTD_SPI_NOR_INTERNAL_H
#define __LINUX_MTD_SPI_NOR_INTERNAL_H
#include "sfdp.h"
#define SPI_NOR_MAX_ID_LEN 6
enum spi_nor_option_flags {
SNOR_F_USE_FSR = BIT(0),
SNOR_F_HAS_SR_TB = BIT(1),
SNOR_F_NO_OP_CHIP_ERASE = BIT(2),
SNOR_F_READY_XSR_RDY = BIT(3),
SNOR_F_USE_CLSR = BIT(4),
SNOR_F_BROKEN_RESET = BIT(5),
SNOR_F_4B_OPCODES = BIT(6),
SNOR_F_HAS_4BAIT = BIT(7),
SNOR_F_HAS_LOCK = BIT(8),
SNOR_F_HAS_16BIT_SR = BIT(9),
SNOR_F_NO_READ_CR = BIT(10),
SNOR_F_HAS_SR_TB_BIT6 = BIT(11),
SNOR_F_HAS_4BIT_BP = BIT(12),
SNOR_F_HAS_SR_BP3_BIT6 = BIT(13),
};
struct spi_nor_read_command {
u8 num_mode_clocks;
u8 num_wait_states;
u8 opcode;
enum spi_nor_protocol proto;
};
struct spi_nor_pp_command {
u8 opcode;
enum spi_nor_protocol proto;
};
enum spi_nor_read_command_index {
SNOR_CMD_READ,
SNOR_CMD_READ_FAST,
SNOR_CMD_READ_1_1_1_DTR,
/* Dual SPI */
SNOR_CMD_READ_1_1_2,
SNOR_CMD_READ_1_2_2,
SNOR_CMD_READ_2_2_2,
SNOR_CMD_READ_1_2_2_DTR,
/* Quad SPI */
SNOR_CMD_READ_1_1_4,
SNOR_CMD_READ_1_4_4,
SNOR_CMD_READ_4_4_4,
SNOR_CMD_READ_1_4_4_DTR,
/* Octal SPI */
SNOR_CMD_READ_1_1_8,
SNOR_CMD_READ_1_8_8,
SNOR_CMD_READ_8_8_8,
SNOR_CMD_READ_1_8_8_DTR,
SNOR_CMD_READ_MAX
};
enum spi_nor_pp_command_index {
SNOR_CMD_PP,
/* Quad SPI */
SNOR_CMD_PP_1_1_4,
SNOR_CMD_PP_1_4_4,
SNOR_CMD_PP_4_4_4,
/* Octal SPI */
SNOR_CMD_PP_1_1_8,
SNOR_CMD_PP_1_8_8,
SNOR_CMD_PP_8_8_8,
SNOR_CMD_PP_MAX
};
/**
* struct spi_nor_erase_type - Structure to describe a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type.
* JEDEC JESD216B imposes erase sizes to be a power of 2.
* @size_shift: @size is a power of 2, the shift is stored in
* @size_shift.
* @size_mask: the size mask based on @size_shift.
* @opcode: the SPI command op code to erase the sector/block.
* @idx: Erase Type index as sorted in the Basic Flash Parameter
* Table. It will be used to synchronize the supported
* Erase Types with the ones identified in the SFDP
* optional tables.
*/
struct spi_nor_erase_type {
u32 size;
u32 size_shift;
u32 size_mask;
u8 opcode;
u8 idx;
};
/**
* struct spi_nor_erase_command - Used for non-uniform erases
* The structure is used to describe a list of erase commands to be executed
* once we validate that the erase can be performed. The elements in the list
* are run-length encoded.
* @list: for inclusion into the list of erase commands.
* @count: how many times the same erase command should be
* consecutively used.
* @size: the size of the sector/block erased by the command.
* @opcode: the SPI command op code to erase the sector/block.
*/
struct spi_nor_erase_command {
struct list_head list;
u32 count;
u32 size;
u8 opcode;
};
/**
* struct spi_nor_erase_region - Structure to describe a SPI NOR erase region
* @offset: the offset in the data array of erase region start.
* LSB bits are used as a bitmask encoding flags to
* determine if this region is overlaid, if this region is
* the last in the SPI NOR flash memory and to indicate
* all the supported erase commands inside this region.
* The erase types are sorted in ascending order with the
* smallest Erase Type size being at BIT(0).
* @size: the size of the region in bytes.
*/
struct spi_nor_erase_region {
u64 offset;
u64 size;
};
#define SNOR_ERASE_TYPE_MAX 4
#define SNOR_ERASE_TYPE_MASK GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0)
#define SNOR_LAST_REGION BIT(4)
#define SNOR_OVERLAID_REGION BIT(5)
#define SNOR_ERASE_FLAGS_MAX 6
#define SNOR_ERASE_FLAGS_MASK GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0)
/**
* struct spi_nor_erase_map - Structure to describe the SPI NOR erase map
* @regions: array of erase regions. The regions are consecutive in
* address space. Walking through the regions is done
* incrementally.
* @uniform_region: a pre-allocated erase region for SPI NOR with a uniform
* sector size (legacy implementation).
* @erase_type: an array of erase types shared by all the regions.
* The erase types are sorted in ascending order, with the
* smallest Erase Type size being the first member in the
* erase_type array.
* @uniform_erase_type: bitmask encoding erase types that can erase the
* entire memory. This member is completed at init by
* uniform and non-uniform SPI NOR flash memories if they
* support at least one erase type that can erase the
* entire memory.
*/
struct spi_nor_erase_map {
struct spi_nor_erase_region *regions;
struct spi_nor_erase_region uniform_region;
struct spi_nor_erase_type erase_type[SNOR_ERASE_TYPE_MAX];
u8 uniform_erase_type;
};
/**
* struct spi_nor_locking_ops - SPI NOR locking methods
* @lock: lock a region of the SPI NOR.
* @unlock: unlock a region of the SPI NOR.
* @is_locked: check if a region of the SPI NOR is completely locked
*/
struct spi_nor_locking_ops {
int (*lock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
int (*unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
int (*is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len);
};
/**
* struct spi_nor_flash_parameter - SPI NOR flash parameters and settings.
* Includes legacy flash parameters and settings that can be overwritten
* by the spi_nor_fixups hooks, or dynamically when parsing the JESD216
* Serial Flash Discoverable Parameters (SFDP) tables.
*
* @size: the flash memory density in bytes.
* @page_size: the page size of the SPI NOR flash memory.
* @hwcaps: describes the read and page program hardware
* capabilities.
* @reads: read capabilities ordered by priority: the higher index
* in the array, the higher priority.
* @page_programs: page program capabilities ordered by priority: the
* higher index in the array, the higher priority.
* @erase_map: the erase map parsed from the SFDP Sector Map Parameter
* Table.
* @quad_enable: enables SPI NOR quad mode.
* @set_4byte_addr_mode: puts the SPI NOR in 4 byte addressing mode.
* @convert_addr: converts an absolute address into something the flash
* will understand. Particularly useful when pagesize is
* not a power-of-2.
* @setup: configures the SPI NOR memory. Useful for SPI NOR
* flashes that have peculiarities to the SPI NOR standard
* e.g. different opcodes, specific address calculation,
* page size, etc.
* @locking_ops: SPI NOR locking methods.
*/
struct spi_nor_flash_parameter {
u64 size;
u32 page_size;
struct spi_nor_hwcaps hwcaps;
struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
struct spi_nor_erase_map erase_map;
int (*quad_enable)(struct spi_nor *nor);
int (*set_4byte_addr_mode)(struct spi_nor *nor, bool enable);
u32 (*convert_addr)(struct spi_nor *nor, u32 addr);
int (*setup)(struct spi_nor *nor, const struct spi_nor_hwcaps *hwcaps);
const struct spi_nor_locking_ops *locking_ops;
};
/**
* struct spi_nor_fixups - SPI NOR fixup hooks
* @default_init: called after default flash parameters init. Used to tweak
* flash parameters when information provided by the flash_info
* table is incomplete or wrong.
* @post_bfpt: called after the BFPT table has been parsed
* @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
* that do not support RDSFDP). Typically used to tweak various
* parameters that could not be extracted by other means (i.e.
* when information provided by the SFDP/flash_info tables are
* incomplete or wrong).
*
* Those hooks can be used to tweak the SPI NOR configuration when the SFDP
* table is broken or not available.
*/
struct spi_nor_fixups {
void (*default_init)(struct spi_nor *nor);
int (*post_bfpt)(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
void (*post_sfdp)(struct spi_nor *nor);
};
struct flash_info {
char *name;
/*
* This array stores the ID bytes.
* The first three bytes are the JEDIC ID.
* JEDEC ID zero means "no ID" (mostly older chips).
*/
u8 id[SPI_NOR_MAX_ID_LEN];
u8 id_len;
/* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 page_size;
u16 addr_width;
u32 flags;
#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
#define SST_WRITE BIT(2) /* use SST byte programming */
#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
#define USE_FSR BIT(7) /* use flag status register */
#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
#define SPI_NOR_HAS_TB BIT(9) /*
* Flash SR has Top/Bottom (TB) protect
* bit. Must be used with
* SPI_NOR_HAS_LOCK.
*/
#define SPI_NOR_XSR_RDY BIT(10) /*
* S3AN flashes have specific opcode to
* read the status register.
*/
#define SPI_NOR_4B_OPCODES BIT(11) /*
* Use dedicated 4byte address op codes
* to support memory size above 128Mib.
*/
#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
#define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
#define USE_CLSR BIT(14) /* use CLSR command */
#define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */
#define SPI_NOR_TB_SR_BIT6 BIT(16) /*
* Top/Bottom (TB) is bit 6 of
* status register. Must be used with
* SPI_NOR_HAS_TB.
*/
#define SPI_NOR_4BIT_BP BIT(17) /*
* Flash SR has 4 bit fields (BP0-3)
* for block protection.
*/
#define SPI_NOR_BP3_SR_BIT6 BIT(18) /*
* BP3 is bit 6 of status register.
* Must be used with SPI_NOR_4BIT_BP.
*/
/* Part specific fixup hooks. */
const struct spi_nor_fixups *fixups;
};
/* Used when the "_ext_id" is two bytes at most */
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 16) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = 6, \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = (_flags),
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff \
}, \
.id_len = 3, \
.sector_size = (8*_page_size), \
.n_sectors = (_n_sectors), \
.page_size = _page_size, \
.addr_width = 3, \
.flags = SPI_NOR_NO_FR | SPI_NOR_XSR_RDY,
/**
* struct spi_nor_manufacturer - SPI NOR manufacturer object
* @name: manufacturer name
* @parts: array of parts supported by this manufacturer
* @nparts: number of entries in the parts array
* @fixups: hooks called at various points in time during spi_nor_scan()
*/
struct spi_nor_manufacturer {
const char *name;
const struct flash_info *parts;
unsigned int nparts;
const struct spi_nor_fixups *fixups;
};
/* Manufacturer drivers. */
extern const struct spi_nor_manufacturer spi_nor_atmel;
extern const struct spi_nor_manufacturer spi_nor_catalyst;
extern const struct spi_nor_manufacturer spi_nor_eon;
extern const struct spi_nor_manufacturer spi_nor_esmt;
extern const struct spi_nor_manufacturer spi_nor_everspin;
extern const struct spi_nor_manufacturer spi_nor_fujitsu;
extern const struct spi_nor_manufacturer spi_nor_gigadevice;
extern const struct spi_nor_manufacturer spi_nor_intel;
extern const struct spi_nor_manufacturer spi_nor_issi;
extern const struct spi_nor_manufacturer spi_nor_macronix;
extern const struct spi_nor_manufacturer spi_nor_micron;
extern const struct spi_nor_manufacturer spi_nor_st;
extern const struct spi_nor_manufacturer spi_nor_spansion;
extern const struct spi_nor_manufacturer spi_nor_sst;
extern const struct spi_nor_manufacturer spi_nor_winbond;
extern const struct spi_nor_manufacturer spi_nor_xilinx;
extern const struct spi_nor_manufacturer spi_nor_xmc;
int spi_nor_write_enable(struct spi_nor *nor);
int spi_nor_write_disable(struct spi_nor *nor);
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable);
int spi_nor_write_ear(struct spi_nor *nor, u8 ear);
int spi_nor_wait_till_ready(struct spi_nor *nor);
int spi_nor_lock_and_prep(struct spi_nor *nor);
void spi_nor_unlock_and_unprep(struct spi_nor *nor);
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor);
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor);
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor);
int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr);
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
u8 *buf);
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u8 *buf);
int spi_nor_hwcaps_read2cmd(u32 hwcaps);
u8 spi_nor_convert_3to4_read(u8 opcode);
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
enum spi_nor_protocol proto);
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
u8 opcode);
struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region);
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
u8 erase_mask, u64 flash_size);
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
static struct spi_nor __maybe_unused *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
#endif /* __LINUX_MTD_SPI_NOR_INTERNAL_H */

34
drivers/mtd/spi-nor/eon.c Normal file
Просмотреть файл

@ -0,0 +1,34 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info eon_parts[] = {
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh16", INFO(0x1c7015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
{ "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
{ "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
};
const struct spi_nor_manufacturer spi_nor_eon = {
.name = "eon",
.parts = eon_parts,
.nparts = ARRAY_SIZE(eon_parts),
};

Просмотреть файл

@ -0,0 +1,25 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info esmt_parts[] = {
/* ESMT */
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_HAS_LOCK) },
{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_HAS_LOCK) },
{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_HAS_LOCK) },
};
const struct spi_nor_manufacturer spi_nor_esmt = {
.name = "esmt",
.parts = esmt_parts,
.nparts = ARRAY_SIZE(esmt_parts),
};

Просмотреть файл

@ -0,0 +1,27 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info everspin_parts[] = {
/* Everspin */
{ "mr25h128", CAT25_INFO(16 * 1024, 1, 256, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h256", CAT25_INFO(32 * 1024, 1, 256, 2,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3,
SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
};
const struct spi_nor_manufacturer spi_nor_everspin = {
.name = "everspin",
.parts = everspin_parts,
.nparts = ARRAY_SIZE(everspin_parts),
};

Просмотреть файл

@ -0,0 +1,20 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info fujitsu_parts[] = {
/* Fujitsu */
{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
};
const struct spi_nor_manufacturer spi_nor_fujitsu = {
.name = "fujitsu",
.parts = fujitsu_parts,
.nparts = ARRAY_SIZE(fujitsu_parts),
};

Просмотреть файл

@ -0,0 +1,59 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static void gd25q256_default_init(struct spi_nor *nor)
{
/*
* Some manufacturer like GigaDevice may use different
* bit to set QE on different memories, so the MFR can't
* indicate the quad_enable method for this case, we need
* to set it in the default_init fixup hook.
*/
nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
}
static struct spi_nor_fixups gd25q256_fixups = {
.default_init = gd25q256_default_init,
};
static const struct flash_info gigadevice_parts[] = {
{ "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25lq128d", INFO(0xc86018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK |
SPI_NOR_HAS_TB | SPI_NOR_TB_SR_BIT6)
.fixups = &gd25q256_fixups },
};
const struct spi_nor_manufacturer spi_nor_gigadevice = {
.name = "gigadevice",
.parts = gigadevice_parts,
.nparts = ARRAY_SIZE(gigadevice_parts),
};

Просмотреть файл

@ -0,0 +1,32 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info intel_parts[] = {
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
};
static void intel_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
}
static const struct spi_nor_fixups intel_fixups = {
.default_init = intel_default_init,
};
const struct spi_nor_manufacturer spi_nor_intel = {
.name = "intel",
.parts = intel_parts,
.nparts = ARRAY_SIZE(intel_parts),
.fixups = &intel_fixups,
};

Просмотреть файл

@ -0,0 +1,83 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static int
is25lp256_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
/*
* IS25LP256 supports 4B opcodes, but the BFPT advertises a
* BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
* Overwrite the address width advertised by the BFPT.
*/
if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
nor->addr_width = 4;
return 0;
}
static struct spi_nor_fixups is25lp256_fixups = {
.post_bfpt = is25lp256_post_bfpt_fixups,
};
static const struct flash_info issi_parts[] = {
/* ISSI */
{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES)
.fixups = &is25lp256_fixups },
{ "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp256", INFO(0x9d7019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES)
.fixups = &is25lp256_fixups },
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
};
static void issi_default_init(struct spi_nor *nor)
{
nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
}
static const struct spi_nor_fixups issi_fixups = {
.default_init = issi_default_init,
};
const struct spi_nor_manufacturer spi_nor_issi = {
.name = "issi",
.parts = issi_parts,
.nparts = ARRAY_SIZE(issi_parts),
.fixups = &issi_fixups,
};

Просмотреть файл

@ -0,0 +1,98 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
/*
* MX25L25635F supports 4B opcodes but MX25L25635E does not.
* Unfortunately, Macronix has re-used the same JEDEC ID for both
* variants which prevents us from defining a new entry in the parts
* table.
* We need a way to differentiate MX25L25635E and MX25L25635F, and it
* seems that the F version advertises support for Fast Read 4-4-4 in
* its BFPT table.
*/
if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
nor->flags |= SNOR_F_4B_OPCODES;
return 0;
}
static struct spi_nor_fixups mx25l25635_fixups = {
.post_bfpt = mx25l25635_post_bfpt_fixups,
};
static const struct flash_info macronix_parts[] = {
/* Macronix */
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
{ "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25r3235f", INFO(0xc22816, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
.fixups = &mx25l25635_fixups },
{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_4B_OPCODES) },
{ "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048,
SPI_NOR_QUAD_READ) },
};
static void macronix_default_init(struct spi_nor *nor)
{
nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
nor->params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode;
}
static const struct spi_nor_fixups macronix_fixups = {
.default_init = macronix_default_init,
};
const struct spi_nor_manufacturer spi_nor_macronix = {
.name = "macronix",
.parts = macronix_parts,
.nparts = ARRAY_SIZE(macronix_parts),
.fixups = &macronix_fixups,
};

Просмотреть файл

@ -0,0 +1,157 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info micron_parts[] = {
{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
SPI_NOR_4B_OPCODES) },
{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
SPI_NOR_4B_OPCODES) },
};
static const struct flash_info st_parts[] = {
{ "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64,
SPI_NOR_QUAD_READ) },
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64,
SPI_NOR_QUAD_READ) },
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512,
SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K |
USE_FSR | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512,
SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024,
SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6) },
{ "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6) },
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
NO_CHIP_ERASE) },
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
NO_CHIP_ERASE) },
{ "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
NO_CHIP_ERASE) },
{ "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096,
SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
NO_CHIP_ERASE) },
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
};
/**
* st_micron_set_4byte_addr_mode() - Set 4-byte address mode for ST and Micron
* flashes.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int st_micron_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
ret = spi_nor_set_4byte_addr_mode(nor, enable);
if (ret)
return ret;
return spi_nor_write_disable(nor);
}
static void micron_st_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
nor->params->quad_enable = NULL;
nor->params->set_4byte_addr_mode = st_micron_set_4byte_addr_mode;
}
static const struct spi_nor_fixups micron_st_fixups = {
.default_init = micron_st_default_init,
};
const struct spi_nor_manufacturer spi_nor_micron = {
.name = "micron",
.parts = micron_parts,
.nparts = ARRAY_SIZE(micron_parts),
.fixups = &micron_st_fixups,
};
const struct spi_nor_manufacturer spi_nor_st = {
.name = "st",
.parts = st_parts,
.nparts = ARRAY_SIZE(st_parts),
.fixups = &micron_st_fixups,
};

1204
drivers/mtd/spi-nor/sfdp.c Normal file

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,98 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#ifndef __LINUX_MTD_SFDP_H
#define __LINUX_MTD_SFDP_H
/* Basic Flash Parameter Table */
/*
* JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
* They are indexed from 1 but C arrays are indexed from 0.
*/
#define BFPT_DWORD(i) ((i) - 1)
#define BFPT_DWORD_MAX 16
struct sfdp_bfpt {
u32 dwords[BFPT_DWORD_MAX];
};
/* The first version of JESD216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216 9
/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
#define BFPT_DWORD1_DTR BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
/* 15th DWORD. */
/*
* (from JESD216 rev B)
* Quad Enable Requirements (QER):
* - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
* reads based on instruction. DQ3/HOLD# functions are hold during
* instruction phase.
* - 001b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* Writing only one byte to the status register has the side-effect of
* clearing status register 2, including the QE bit. The 100b code is
* used if writing one byte to the status register does not modify
* status register 2.
* - 010b: QE is bit 6 of status register 1. It is set via Write Status with
* one data byte where bit 6 is one.
* [...]
* - 011b: QE is bit 7 of status register 2. It is set via Write status
* register 2 instruction 3Eh with one data byte where bit 7 is one.
* [...]
* The status register 2 is read using instruction 3Fh.
* - 100b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* In contrast to the 001b code, writing one byte to the status
* register does not modify status register 2.
* - 101b: QE is bit 1 of status register 2. Status register 1 is read using
* Read Status instruction 05h. Status register2 is read using
* instruction 35h. QE is set via Write Status instruction 01h with
* two data bytes where bit 1 of the second byte is one.
* [...]
*/
#define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
struct sfdp_parameter_header {
u8 id_lsb;
u8 minor;
u8 major;
u8 length; /* in double words */
u8 parameter_table_pointer[3]; /* byte address */
u8 id_msb;
};
int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params);
#endif /* __LINUX_MTD_SFDP_H */

Просмотреть файл

@ -0,0 +1,95 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info spansion_parts[] = {
/* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | USE_CLSR) },
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
};
static void spansion_post_sfdp_fixups(struct spi_nor *nor)
{
if (nor->params->size <= SZ_16M)
return;
nor->flags |= SNOR_F_4B_OPCODES;
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = nor->info->sector_size;
}
static const struct spi_nor_fixups spansion_fixups = {
.post_sfdp = spansion_post_sfdp_fixups,
};
const struct spi_nor_manufacturer spi_nor_spansion = {
.name = "spansion",
.parts = spansion_parts,
.nparts = ARRAY_SIZE(spansion_parts),
.fixups = &spansion_fixups,
};

Разница между файлами не показана из-за своего большого размера Загрузить разницу

151
drivers/mtd/spi-nor/sst.c Normal file
Просмотреть файл

@ -0,0 +1,151 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info sst_parts[] = {
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8,
SECT_4K | SST_WRITE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16,
SECT_4K | SST_WRITE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32,
SECT_4K | SST_WRITE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64,
SECT_4K | SST_WRITE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1,
SECT_4K | SST_WRITE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2,
SECT_4K | SST_WRITE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4,
SECT_4K | SST_WRITE) },
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8,
SECT_4K | SST_WRITE) },
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16,
SECT_4K | SST_WRITE) },
{ "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
};
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t actual = 0;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
ret = spi_nor_write_enable(nor);
if (ret)
goto out;
nor->sst_write_second = false;
/* Start write from odd address. */
if (to % 2) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = spi_nor_write_data(nor, to, 1, buf);
if (ret < 0)
goto out;
WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
to++;
actual++;
}
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = spi_nor_write_data(nor, to, 2, buf + actual);
if (ret < 0)
goto out;
WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
ret = spi_nor_write_disable(nor);
if (ret)
goto out;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
/* Write out trailing byte if it exists. */
if (actual != len) {
ret = spi_nor_write_enable(nor);
if (ret)
goto out;
nor->program_opcode = SPINOR_OP_BP;
ret = spi_nor_write_data(nor, to, 1, buf + actual);
if (ret < 0)
goto out;
WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto out;
actual += 1;
ret = spi_nor_write_disable(nor);
}
out:
*retlen += actual;
spi_nor_unlock_and_unprep(nor);
return ret;
}
static void sst_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
}
static void sst_post_sfdp_fixups(struct spi_nor *nor)
{
if (nor->info->flags & SST_WRITE)
nor->mtd._write = sst_write;
}
static const struct spi_nor_fixups sst_fixups = {
.default_init = sst_default_init,
.post_sfdp = sst_post_sfdp_fixups,
};
const struct spi_nor_manufacturer spi_nor_sst = {
.name = "sst",
.parts = sst_parts,
.nparts = ARRAY_SIZE(sst_parts),
.fixups = &sst_fixups,
};

Просмотреть файл

@ -0,0 +1,112 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info winbond_parts[] = {
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK |
SPI_NOR_HAS_TB) },
{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25q32jwm", INFO(0xef8016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) },
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
};
/**
* winbond_set_4byte_addr_mode() - Set 4-byte address mode for Winbond flashes.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int winbond_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
ret = spi_nor_set_4byte_addr_mode(nor, enable);
if (ret || enable)
return ret;
/*
* On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
* Register to be set to 1, so all 3-byte-address reads come from the
* second 16M. We must clear the register to enable normal behavior.
*/
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
ret = spi_nor_write_ear(nor, 0);
if (ret)
return ret;
return spi_nor_write_disable(nor);
}
static void winbond_default_init(struct spi_nor *nor)
{
nor->params->set_4byte_addr_mode = winbond_set_4byte_addr_mode;
}
static const struct spi_nor_fixups winbond_fixups = {
.default_init = winbond_default_init,
};
const struct spi_nor_manufacturer spi_nor_winbond = {
.name = "winbond",
.parts = winbond_parts,
.nparts = ARRAY_SIZE(winbond_parts),
.fixups = &winbond_fixups,
};

Просмотреть файл

@ -0,0 +1,94 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info xilinx_parts[] = {
/* Xilinx S3AN Internal Flash */
{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
};
/*
* This code converts an address to the Default Address Mode, that has non
* power of two page sizes. We must support this mode because it is the default
* mode supported by Xilinx tools, it can access the whole flash area and
* changing over to the Power-of-two mode is irreversible and corrupts the
* original data.
* Addr can safely be unsigned int, the biggest S3AN device is smaller than
* 4 MiB.
*/
static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
{
u32 offset, page;
offset = addr % nor->page_size;
page = addr / nor->page_size;
page <<= (nor->page_size > 512) ? 10 : 9;
return page | offset;
}
static int xilinx_nor_setup(struct spi_nor *nor,
const struct spi_nor_hwcaps *hwcaps)
{
int ret;
ret = spi_nor_xread_sr(nor, nor->bouncebuf);
if (ret)
return ret;
nor->erase_opcode = SPINOR_OP_XSE;
nor->program_opcode = SPINOR_OP_XPP;
nor->read_opcode = SPINOR_OP_READ;
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
/*
* This flashes have a page size of 264 or 528 bytes (known as
* Default addressing mode). It can be changed to a more standard
* Power of two mode where the page size is 256/512. This comes
* with a price: there is 3% less of space, the data is corrupted
* and the page size cannot be changed back to default addressing
* mode.
*
* The current addressing mode can be read from the XRDSR register
* and should not be changed, because is a destructive operation.
*/
if (nor->bouncebuf[0] & XSR_PAGESIZE) {
/* Flash in Power of 2 mode */
nor->page_size = (nor->page_size == 264) ? 256 : 512;
nor->mtd.writebufsize = nor->page_size;
nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
nor->mtd.erasesize = 8 * nor->page_size;
} else {
/* Flash in Default addressing mode */
nor->params->convert_addr = s3an_convert_addr;
nor->mtd.erasesize = nor->info->sector_size;
}
return 0;
}
static void xilinx_post_sfdp_fixups(struct spi_nor *nor)
{
nor->params->setup = xilinx_nor_setup;
}
static const struct spi_nor_fixups xilinx_fixups = {
.post_sfdp = xilinx_post_sfdp_fixups,
};
const struct spi_nor_manufacturer spi_nor_xilinx = {
.name = "xilinx",
.parts = xilinx_parts,
.nparts = ARRAY_SIZE(xilinx_parts),
.fixups = &xilinx_fixups,
};

23
drivers/mtd/spi-nor/xmc.c Normal file
Просмотреть файл

@ -0,0 +1,23 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
static const struct flash_info xmc_parts[] = {
/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
};
const struct spi_nor_manufacturer spi_nor_xmc = {
.name = "xmc",
.parts = xmc_parts,
.nparts = ARRAY_SIZE(xmc_parts),
};

Просмотреть файл

@ -1059,7 +1059,7 @@ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
* be a result of power cut during erasure.
*/
ai->maybe_bad_peb_count += 1;
/* fall through */
fallthrough;
case UBI_IO_BAD_HDR:
/*
* If we're facing a bad VID header we have to drop *all*

Просмотреть файл

@ -1342,10 +1342,10 @@ static int bytes_str_to_int(const char *str)
switch (*endp) {
case 'G':
result *= 1024;
/* fall through */
fallthrough;
case 'M':
result *= 1024;
/* fall through */
fallthrough;
case 'K':
result *= 1024;
if (endp[1] == 'i' && endp[2] == 'B')

Просмотреть файл

@ -8,6 +8,7 @@
#include <linux/types.h>
#include <linux/uio.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/device.h>
#include <linux/of.h>
@ -194,10 +195,43 @@ struct mtd_debug_info {
const char *partid;
};
/**
* struct mtd_part - MTD partition specific fields
*
* @node: list node used to add an MTD partition to the parent partition list
* @offset: offset of the partition relatively to the parent offset
* @flags: original flags (before the mtdpart logic decided to tweak them based
* on flash constraints, like eraseblock/pagesize alignment)
*
* This struct is embedded in mtd_info and contains partition-specific
* properties/fields.
*/
struct mtd_part {
struct list_head node;
u64 offset;
u32 flags;
};
/**
* struct mtd_master - MTD master specific fields
*
* @partitions_lock: lock protecting accesses to the partition list. Protects
* not only the master partition list, but also all
* sub-partitions.
* @suspended: et to 1 when the device is suspended, 0 otherwise
*
* This struct is embedded in mtd_info and contains master-specific
* properties/fields. The master is the root MTD device from the MTD partition
* point of view.
*/
struct mtd_master {
struct mutex partitions_lock;
unsigned int suspended : 1;
};
struct mtd_info {
u_char type;
uint32_t flags;
uint32_t orig_flags; /* Flags as before running mtd checks */
uint64_t size; // Total size of the MTD
/* "Major" erase size for the device. Naïve users may take this
@ -339,8 +373,52 @@ struct mtd_info {
int usecount;
struct mtd_debug_info dbg;
struct nvmem_device *nvmem;
/*
* Parent device from the MTD partition point of view.
*
* MTD masters do not have any parent, MTD partitions do. The parent
* MTD device can itself be a partition.
*/
struct mtd_info *parent;
/* List of partitions attached to this MTD device */
struct list_head partitions;
union {
struct mtd_part part;
struct mtd_master master;
};
};
static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
{
while (mtd->parent)
mtd = mtd->parent;
return mtd;
}
static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
{
while (mtd->parent) {
ofs += mtd->part.offset;
mtd = mtd->parent;
}
return ofs;
}
static inline bool mtd_is_partition(const struct mtd_info *mtd)
{
return mtd->parent;
}
static inline bool mtd_has_partitions(const struct mtd_info *mtd)
{
return !list_empty(&mtd->partitions);
}
int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobecc);
int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
@ -392,13 +470,16 @@ static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
loff_t ofs, size_t len)
{
if (!mtd->_max_bad_blocks)
struct mtd_info *master = mtd_get_master(mtd);
if (!master->_max_bad_blocks)
return -ENOTSUPP;
if (mtd->size < (len + ofs) || ofs < 0)
return -EINVAL;
return mtd->_max_bad_blocks(mtd, ofs, len);
return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
len);
}
int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
@ -439,8 +520,10 @@ int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
static inline void mtd_sync(struct mtd_info *mtd)
{
if (mtd->_sync)
mtd->_sync(mtd);
struct mtd_info *master = mtd_get_master(mtd);
if (master->_sync)
master->_sync(master);
}
int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
@ -452,13 +535,31 @@ int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
static inline int mtd_suspend(struct mtd_info *mtd)
{
return mtd->_suspend ? mtd->_suspend(mtd) : 0;
struct mtd_info *master = mtd_get_master(mtd);
int ret;
if (master->master.suspended)
return 0;
ret = master->_suspend ? master->_suspend(master) : 0;
if (ret)
return ret;
master->master.suspended = 1;
return 0;
}
static inline void mtd_resume(struct mtd_info *mtd)
{
if (mtd->_resume)
mtd->_resume(mtd);
struct mtd_info *master = mtd_get_master(mtd);
if (!master->master.suspended)
return;
if (master->_resume)
master->_resume(master);
master->master.suspended = 0;
}
static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
@ -538,7 +639,9 @@ static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
static inline int mtd_has_oob(const struct mtd_info *mtd)
{
return mtd->_read_oob && mtd->_write_oob;
struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
return master->_read_oob && master->_write_oob;
}
static inline int mtd_type_is_nand(const struct mtd_info *mtd)
@ -548,7 +651,9 @@ static inline int mtd_type_is_nand(const struct mtd_info *mtd)
static inline int mtd_can_have_bb(const struct mtd_info *mtd)
{
return !!mtd->_block_isbad;
struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
return !!master->_block_isbad;
}
/* Kernel-side ioctl definitions */

Просмотреть файл

@ -105,7 +105,6 @@ extern void deregister_mtd_parser(struct mtd_part_parser *parser);
module_driver(__mtd_part_parser, register_mtd_parser, \
deregister_mtd_parser)
int mtd_is_partition(const struct mtd_info *mtd);
int mtd_add_partition(struct mtd_info *master, const char *name,
long long offset, long long length);
int mtd_del_partition(struct mtd_info *master, int partno);

Просмотреть файл

@ -1064,6 +1064,8 @@ struct nand_legacy {
* @lock: lock protecting the suspended field. Also used to
* serialize accesses to the NAND device.
* @suspended: set to 1 when the device is suspended, 0 when it's not.
* @suspend: [REPLACEABLE] specific NAND device suspend operation
* @resume: [REPLACEABLE] specific NAND device resume operation
* @bbt: [INTERN] bad block table pointer
* @bbt_td: [REPLACEABLE] bad block table descriptor for flash
* lookup.
@ -1077,6 +1079,8 @@ struct nand_legacy {
* @manufacturer: [INTERN] Contains manufacturer information
* @manufacturer.desc: [INTERN] Contains manufacturer's description
* @manufacturer.priv: [INTERN] Contains manufacturer private information
* @lock_area: [REPLACEABLE] specific NAND chip lock operation
* @unlock_area: [REPLACEABLE] specific NAND chip unlock operation
*/
struct nand_chip {
@ -1117,6 +1121,8 @@ struct nand_chip {
struct mutex lock;
unsigned int suspended : 1;
int (*suspend)(struct nand_chip *chip);
void (*resume)(struct nand_chip *chip);
uint8_t *oob_poi;
struct nand_controller *controller;
@ -1136,6 +1142,9 @@ struct nand_chip {
const struct nand_manufacturer *desc;
void *priv;
} manufacturer;
int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
};
extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
@ -1215,7 +1224,7 @@ static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
* struct nand_flash_dev - NAND Flash Device ID Structure
* @name: a human-readable name of the NAND chip
* @dev_id: the device ID (the second byte of the full chip ID array)
* @mfr_id: manufecturer ID part of the full chip ID array (refers the same
* @mfr_id: manufacturer ID part of the full chip ID array (refers the same
* memory address as ``id[0]``)
* @dev_id: device ID part of the full chip ID array (refers the same memory
* address as ``id[1]``)

Просмотреть файл

@ -11,23 +11,6 @@
#include <linux/mtd/mtd.h>
#include <linux/spi/spi-mem.h>
/*
* Manufacturer IDs
*
* The first byte returned from the flash after sending opcode SPINOR_OP_RDID.
* Sometimes these are the same as CFI IDs, but sometimes they aren't.
*/
#define SNOR_MFR_ATMEL CFI_MFR_ATMEL
#define SNOR_MFR_GIGADEVICE 0xc8
#define SNOR_MFR_INTEL CFI_MFR_INTEL
#define SNOR_MFR_ST CFI_MFR_ST /* ST Micro */
#define SNOR_MFR_MICRON CFI_MFR_MICRON /* Micron */
#define SNOR_MFR_ISSI CFI_MFR_PMC
#define SNOR_MFR_MACRONIX CFI_MFR_MACRONIX
#define SNOR_MFR_SPANSION CFI_MFR_AMD
#define SNOR_MFR_SST CFI_MFR_SST
#define SNOR_MFR_WINBOND 0xef /* Also used by some Spansion */
/*
* Note on opcode nomenclature: some opcodes have a format like
* SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
@ -128,7 +111,9 @@
#define SR_BP0 BIT(2) /* Block protect 0 */
#define SR_BP1 BIT(3) /* Block protect 1 */
#define SR_BP2 BIT(4) /* Block protect 2 */
#define SR_BP3 BIT(5) /* Block protect 3 */
#define SR_TB_BIT5 BIT(5) /* Top/Bottom protect */
#define SR_BP3_BIT6 BIT(6) /* Block protect 3 */
#define SR_TB_BIT6 BIT(6) /* Top/Bottom protect */
#define SR_SRWD BIT(7) /* SR write protect */
/* Spansion/Cypress specific status bits */
@ -137,6 +122,8 @@
#define SR1_QUAD_EN_BIT6 BIT(6)
#define SR_BP_SHIFT 2
/* Enhanced Volatile Configuration Register bits */
#define EVCR_QUAD_EN_MICRON BIT(7) /* Micron Quad I/O */
@ -225,110 +212,6 @@ static inline u8 spi_nor_get_protocol_width(enum spi_nor_protocol proto)
return spi_nor_get_protocol_data_nbits(proto);
}
enum spi_nor_option_flags {
SNOR_F_USE_FSR = BIT(0),
SNOR_F_HAS_SR_TB = BIT(1),
SNOR_F_NO_OP_CHIP_ERASE = BIT(2),
SNOR_F_READY_XSR_RDY = BIT(3),
SNOR_F_USE_CLSR = BIT(4),
SNOR_F_BROKEN_RESET = BIT(5),
SNOR_F_4B_OPCODES = BIT(6),
SNOR_F_HAS_4BAIT = BIT(7),
SNOR_F_HAS_LOCK = BIT(8),
SNOR_F_HAS_16BIT_SR = BIT(9),
SNOR_F_NO_READ_CR = BIT(10),
SNOR_F_HAS_SR_TB_BIT6 = BIT(11),
};
/**
* struct spi_nor_erase_type - Structure to describe a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type.
* JEDEC JESD216B imposes erase sizes to be a power of 2.
* @size_shift: @size is a power of 2, the shift is stored in
* @size_shift.
* @size_mask: the size mask based on @size_shift.
* @opcode: the SPI command op code to erase the sector/block.
* @idx: Erase Type index as sorted in the Basic Flash Parameter
* Table. It will be used to synchronize the supported
* Erase Types with the ones identified in the SFDP
* optional tables.
*/
struct spi_nor_erase_type {
u32 size;
u32 size_shift;
u32 size_mask;
u8 opcode;
u8 idx;
};
/**
* struct spi_nor_erase_command - Used for non-uniform erases
* The structure is used to describe a list of erase commands to be executed
* once we validate that the erase can be performed. The elements in the list
* are run-length encoded.
* @list: for inclusion into the list of erase commands.
* @count: how many times the same erase command should be
* consecutively used.
* @size: the size of the sector/block erased by the command.
* @opcode: the SPI command op code to erase the sector/block.
*/
struct spi_nor_erase_command {
struct list_head list;
u32 count;
u32 size;
u8 opcode;
};
/**
* struct spi_nor_erase_region - Structure to describe a SPI NOR erase region
* @offset: the offset in the data array of erase region start.
* LSB bits are used as a bitmask encoding flags to
* determine if this region is overlaid, if this region is
* the last in the SPI NOR flash memory and to indicate
* all the supported erase commands inside this region.
* The erase types are sorted in ascending order with the
* smallest Erase Type size being at BIT(0).
* @size: the size of the region in bytes.
*/
struct spi_nor_erase_region {
u64 offset;
u64 size;
};
#define SNOR_ERASE_TYPE_MAX 4
#define SNOR_ERASE_TYPE_MASK GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0)
#define SNOR_LAST_REGION BIT(4)
#define SNOR_OVERLAID_REGION BIT(5)
#define SNOR_ERASE_FLAGS_MAX 6
#define SNOR_ERASE_FLAGS_MASK GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0)
/**
* struct spi_nor_erase_map - Structure to describe the SPI NOR erase map
* @regions: array of erase regions. The regions are consecutive in
* address space. Walking through the regions is done
* incrementally.
* @uniform_region: a pre-allocated erase region for SPI NOR with a uniform
* sector size (legacy implementation).
* @erase_type: an array of erase types shared by all the regions.
* The erase types are sorted in ascending order, with the
* smallest Erase Type size being the first member in the
* erase_type array.
* @uniform_erase_type: bitmask encoding erase types that can erase the
* entire memory. This member is completed at init by
* uniform and non-uniform SPI NOR flash memories if they
* support at least one erase type that can erase the
* entire memory.
*/
struct spi_nor_erase_map {
struct spi_nor_erase_region *regions;
struct spi_nor_erase_region uniform_region;
struct spi_nor_erase_type erase_type[SNOR_ERASE_TYPE_MAX];
u8 uniform_erase_type;
};
/**
* struct spi_nor_hwcaps - Structure for describing the hardware capabilies
* supported by the SPI controller (bus master).
@ -404,61 +287,7 @@ struct spi_nor_hwcaps {
#define SNOR_HWCAPS_ALL (SNOR_HWCAPS_READ_MASK | \
SNOR_HWCAPS_PP_MASK)
struct spi_nor_read_command {
u8 num_mode_clocks;
u8 num_wait_states;
u8 opcode;
enum spi_nor_protocol proto;
};
struct spi_nor_pp_command {
u8 opcode;
enum spi_nor_protocol proto;
};
enum spi_nor_read_command_index {
SNOR_CMD_READ,
SNOR_CMD_READ_FAST,
SNOR_CMD_READ_1_1_1_DTR,
/* Dual SPI */
SNOR_CMD_READ_1_1_2,
SNOR_CMD_READ_1_2_2,
SNOR_CMD_READ_2_2_2,
SNOR_CMD_READ_1_2_2_DTR,
/* Quad SPI */
SNOR_CMD_READ_1_1_4,
SNOR_CMD_READ_1_4_4,
SNOR_CMD_READ_4_4_4,
SNOR_CMD_READ_1_4_4_DTR,
/* Octal SPI */
SNOR_CMD_READ_1_1_8,
SNOR_CMD_READ_1_8_8,
SNOR_CMD_READ_8_8_8,
SNOR_CMD_READ_1_8_8_DTR,
SNOR_CMD_READ_MAX
};
enum spi_nor_pp_command_index {
SNOR_CMD_PP,
/* Quad SPI */
SNOR_CMD_PP_1_1_4,
SNOR_CMD_PP_1_4_4,
SNOR_CMD_PP_4_4_4,
/* Octal SPI */
SNOR_CMD_PP_1_1_8,
SNOR_CMD_PP_1_8_8,
SNOR_CMD_PP_8_8_8,
SNOR_CMD_PP_MAX
};
/* Forward declaration that will be used in 'struct spi_nor_flash_parameter' */
/* Forward declaration that is used in 'struct spi_nor_controller_ops' */
struct spi_nor;
/**
@ -489,68 +318,13 @@ struct spi_nor_controller_ops {
int (*erase)(struct spi_nor *nor, loff_t offs);
};
/**
* struct spi_nor_locking_ops - SPI NOR locking methods
* @lock: lock a region of the SPI NOR.
* @unlock: unlock a region of the SPI NOR.
* @is_locked: check if a region of the SPI NOR is completely locked
*/
struct spi_nor_locking_ops {
int (*lock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
int (*unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
int (*is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len);
};
/**
* struct spi_nor_flash_parameter - SPI NOR flash parameters and settings.
* Includes legacy flash parameters and settings that can be overwritten
* by the spi_nor_fixups hooks, or dynamically when parsing the JESD216
* Serial Flash Discoverable Parameters (SFDP) tables.
*
* @size: the flash memory density in bytes.
* @page_size: the page size of the SPI NOR flash memory.
* @hwcaps: describes the read and page program hardware
* capabilities.
* @reads: read capabilities ordered by priority: the higher index
* in the array, the higher priority.
* @page_programs: page program capabilities ordered by priority: the
* higher index in the array, the higher priority.
* @erase_map: the erase map parsed from the SFDP Sector Map Parameter
* Table.
* @quad_enable: enables SPI NOR quad mode.
* @set_4byte: puts the SPI NOR in 4 byte addressing mode.
* @convert_addr: converts an absolute address into something the flash
* will understand. Particularly useful when pagesize is
* not a power-of-2.
* @setup: configures the SPI NOR memory. Useful for SPI NOR
* flashes that have peculiarities to the SPI NOR standard
* e.g. different opcodes, specific address calculation,
* page size, etc.
* @locking_ops: SPI NOR locking methods.
*/
struct spi_nor_flash_parameter {
u64 size;
u32 page_size;
struct spi_nor_hwcaps hwcaps;
struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
struct spi_nor_erase_map erase_map;
int (*quad_enable)(struct spi_nor *nor);
int (*set_4byte)(struct spi_nor *nor, bool enable);
u32 (*convert_addr)(struct spi_nor *nor, u32 addr);
int (*setup)(struct spi_nor *nor, const struct spi_nor_hwcaps *hwcaps);
const struct spi_nor_locking_ops *locking_ops;
};
/**
* struct flash_info - Forward declaration of a structure used internally by
* spi_nor_scan()
/*
* Forward declarations that are used internally by the core and manufacturer
* drivers.
*/
struct flash_info;
struct spi_nor_manufacturer;
struct spi_nor_flash_parameter;
/**
* struct spi_nor - Structure for defining a the SPI NOR layer
@ -562,6 +336,7 @@ struct flash_info;
* layer is not DMA-able
* @bouncebuf_size: size of the bounce buffer
* @info: spi-nor part JDEC MFR id and other info
* @manufacturer: spi-nor manufacturer
* @page_size: the page size of the SPI NOR
* @addr_width: number of address bytes
* @erase_opcode: the opcode for erasing a sector
@ -578,6 +353,7 @@ struct flash_info;
* The structure includes legacy flash parameters and
* settings that can be overwritten by the spi_nor_fixups
* hooks, or dynamically when parsing the SFDP tables.
* @dirmap: pointers to struct spi_mem_dirmap_desc for reads/writes.
* @priv: the private data
*/
struct spi_nor {
@ -588,6 +364,7 @@ struct spi_nor {
u8 *bouncebuf;
size_t bouncebuf_size;
const struct flash_info *info;
const struct spi_nor_manufacturer *manufacturer;
u32 page_size;
u8 addr_width;
u8 erase_opcode;
@ -602,40 +379,16 @@ struct spi_nor {
const struct spi_nor_controller_ops *controller_ops;
struct spi_nor_flash_parameter params;
struct spi_nor_flash_parameter *params;
struct {
struct spi_mem_dirmap_desc *rdesc;
struct spi_mem_dirmap_desc *wdesc;
} dirmap;
void *priv;
};
static u64 __maybe_unused
spi_nor_region_is_last(const struct spi_nor_erase_region *region)
{
return region->offset & SNOR_LAST_REGION;
}
static u64 __maybe_unused
spi_nor_region_end(const struct spi_nor_erase_region *region)
{
return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
}
static void __maybe_unused
spi_nor_region_mark_end(struct spi_nor_erase_region *region)
{
region->offset |= SNOR_LAST_REGION;
}
static void __maybe_unused
spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
{
region->offset |= SNOR_OVERLAID_REGION;
}
static bool __maybe_unused spi_nor_has_uniform_erase(const struct spi_nor *nor)
{
return !!nor->params.erase_map.uniform_erase_type;
}
static inline void spi_nor_set_flash_node(struct spi_nor *nor,
struct device_node *np)
{

Просмотреть файл

@ -32,9 +32,9 @@
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_READID_OP(ndummy, buf, len) \
#define SPINAND_READID_OP(naddr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_ADDR(naddr, 0, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
@ -176,37 +176,46 @@ struct spinand_device;
* @data: buffer containing the id bytes. Currently 4 bytes large, but can
* be extended if required
* @len: ID length
*
* struct_spinand_id->data contains all bytes returned after a READ_ID command,
* including dummy bytes if the chip does not emit ID bytes right after the
* READ_ID command. The responsibility to extract real ID bytes is left to
* struct_manufacurer_ops->detect().
*/
struct spinand_id {
u8 data[SPINAND_MAX_ID_LEN];
int len;
};
enum spinand_readid_method {
SPINAND_READID_METHOD_OPCODE,
SPINAND_READID_METHOD_OPCODE_ADDR,
SPINAND_READID_METHOD_OPCODE_DUMMY,
};
/**
* struct spinand_devid - SPI NAND device id structure
* @id: device id of current chip
* @len: number of bytes in device id
* @method: method to read chip id
* There are 3 possible variants:
* SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
* after read_id opcode.
* SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
* read_id opcode + 1-byte address.
* SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
* read_id opcode + 1 dummy byte.
*/
struct spinand_devid {
const u8 *id;
const u8 len;
const enum spinand_readid_method method;
};
/**
* struct manufacurer_ops - SPI NAND manufacturer specific operations
* @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
* the core calls the struct_manufacurer_ops->detect() hook of each
* registered manufacturer until one of them return 1. Note that
* the first thing to check in this hook is that the manufacturer ID
* in struct_spinand_device->id matches the manufacturer whose
* ->detect() hook has been called. Should return 1 if there's a
* match, 0 if the manufacturer ID does not match and a negative
* error code otherwise. When true is returned, the core assumes
* that properties of the NAND chip (spinand->base.memorg and
* spinand->base.eccreq) have been filled
* @init: initialize a SPI NAND device
* @cleanup: cleanup a SPI NAND device
*
* Each SPI NAND manufacturer driver should implement this interface so that
* NAND chips coming from this vendor can be detected and initialized properly.
* NAND chips coming from this vendor can be initialized properly.
*/
struct spinand_manufacturer_ops {
int (*detect)(struct spinand_device *spinand);
int (*init)(struct spinand_device *spinand);
void (*cleanup)(struct spinand_device *spinand);
};
@ -215,11 +224,16 @@ struct spinand_manufacturer_ops {
* struct spinand_manufacturer - SPI NAND manufacturer instance
* @id: manufacturer ID
* @name: manufacturer name
* @devid_len: number of bytes in device ID
* @chips: supported SPI NANDs under current manufacturer
* @nchips: number of SPI NANDs available in chips array
* @ops: manufacturer operations
*/
struct spinand_manufacturer {
u8 id;
char *name;
const struct spinand_info *chips;
const size_t nchips;
const struct spinand_manufacturer_ops *ops;
};
@ -270,6 +284,7 @@ struct spinand_ecc_info {
};
#define SPINAND_HAS_QE_BIT BIT(0)
#define SPINAND_HAS_CR_FEAT_BIT BIT(1)
/**
* struct spinand_info - Structure used to describe SPI NAND chips
@ -291,7 +306,7 @@ struct spinand_ecc_info {
*/
struct spinand_info {
const char *model;
u16 devid;
struct spinand_devid devid;
u32 flags;
struct nand_memory_organization memorg;
struct nand_ecc_req eccreq;
@ -305,6 +320,13 @@ struct spinand_info {
unsigned int target);
};
#define SPINAND_ID(__method, ...) \
{ \
.id = (const u8[]){ __VA_ARGS__ }, \
.len = sizeof((u8[]){ __VA_ARGS__ }), \
.method = __method, \
}
#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
{ \
.read_cache = __read, \
@ -451,9 +473,10 @@ static inline void spinand_set_of_node(struct spinand_device *spinand,
nanddev_set_of_node(&spinand->base, np);
}
int spinand_match_and_init(struct spinand_device *dev,
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u16 devid);
unsigned int table_size,
enum spinand_readid_method rdid_method);
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
int spinand_select_target(struct spinand_device *spinand, unsigned int target);