powerpc/mm: Move THP headers around
We support THP only with book3s_64 and 64K page size. Move THP details to hash64-64k.h to clarify the same. Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit is contained in:
Родитель
26a344aea4
Коммит
e34aa03ca4
|
@ -170,6 +170,132 @@ static inline int hugepd_ok(hugepd_t hpd)
|
|||
|
||||
#endif /* CONFIG_HUGETLB_PAGE */
|
||||
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
|
||||
unsigned long addr,
|
||||
pmd_t *pmdp,
|
||||
unsigned long clr,
|
||||
unsigned long set);
|
||||
static inline char *get_hpte_slot_array(pmd_t *pmdp)
|
||||
{
|
||||
/*
|
||||
* The hpte hindex is stored in the pgtable whose address is in the
|
||||
* second half of the PMD
|
||||
*
|
||||
* Order this load with the test for pmd_trans_huge in the caller
|
||||
*/
|
||||
smp_rmb();
|
||||
return *(char **)(pmdp + PTRS_PER_PMD);
|
||||
|
||||
|
||||
}
|
||||
/*
|
||||
* The linux hugepage PMD now include the pmd entries followed by the address
|
||||
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
|
||||
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
|
||||
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
|
||||
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
|
||||
*
|
||||
* The last three bits are intentionally left to zero. This memory location
|
||||
* are also used as normal page PTE pointers. So if we have any pointers
|
||||
* left around while we collapse a hugepage, we need to make sure
|
||||
* _PAGE_PRESENT bit of that is zero when we look at them
|
||||
*/
|
||||
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
|
||||
{
|
||||
return (hpte_slot_array[index] >> 3) & 0x1;
|
||||
}
|
||||
|
||||
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
|
||||
int index)
|
||||
{
|
||||
return hpte_slot_array[index] >> 4;
|
||||
}
|
||||
|
||||
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
|
||||
unsigned int index, unsigned int hidx)
|
||||
{
|
||||
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
|
||||
* page. The hugetlbfs page table walking and mangling paths are totally
|
||||
* separated form the core VM paths and they're differentiated by
|
||||
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
|
||||
*
|
||||
* pmd_trans_huge() is defined as false at build time if
|
||||
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
|
||||
* time in such case.
|
||||
*
|
||||
* For ppc64 we need to differntiate from explicit hugepages from THP, because
|
||||
* for THP we also track the subpage details at the pmd level. We don't do
|
||||
* that for explicit huge pages.
|
||||
*
|
||||
*/
|
||||
static inline int pmd_trans_huge(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
|
||||
}
|
||||
|
||||
static inline int pmd_trans_splitting(pmd_t pmd)
|
||||
{
|
||||
if (pmd_trans_huge(pmd))
|
||||
return pmd_val(pmd) & _PAGE_SPLITTING;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int pmd_large(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return ((pmd_val(pmd) & 0x3) != 0x0);
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mksplitting(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMD_SAME
|
||||
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
||||
{
|
||||
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
|
||||
}
|
||||
|
||||
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
|
||||
unsigned long addr, pmd_t *pmdp)
|
||||
{
|
||||
unsigned long old;
|
||||
|
||||
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
|
||||
return 0;
|
||||
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
|
||||
return ((old & _PAGE_ACCESSED) != 0);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
||||
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
||||
pmd_t *pmdp)
|
||||
{
|
||||
|
||||
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
|
||||
return;
|
||||
|
||||
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
|
||||
|
|
|
@ -2,6 +2,55 @@
|
|||
#define _ASM_POWERPC_BOOK3S_64_HASH_H
|
||||
#ifdef __KERNEL__
|
||||
|
||||
/*
|
||||
* Common bits between 4K and 64K pages in a linux-style PTE.
|
||||
* These match the bits in the (hardware-defined) PowerPC PTE as closely
|
||||
* as possible. Additional bits may be defined in pgtable-hash64-*.h
|
||||
*
|
||||
* Note: We only support user read/write permissions. Supervisor always
|
||||
* have full read/write to pages above PAGE_OFFSET (pages below that
|
||||
* always use the user access permissions).
|
||||
*
|
||||
* We could create separate kernel read-only if we used the 3 PP bits
|
||||
* combinations that newer processors provide but we currently don't.
|
||||
*/
|
||||
#define _PAGE_PRESENT 0x00001 /* software: pte contains a translation */
|
||||
#define _PAGE_USER 0x00002 /* matches one of the PP bits */
|
||||
#define _PAGE_BIT_SWAP_TYPE 2
|
||||
#define _PAGE_EXEC 0x00004 /* No execute on POWER4 and newer (we invert) */
|
||||
#define _PAGE_GUARDED 0x00008
|
||||
/* We can derive Memory coherence from _PAGE_NO_CACHE */
|
||||
#define _PAGE_COHERENT 0x0
|
||||
#define _PAGE_NO_CACHE 0x00020 /* I: cache inhibit */
|
||||
#define _PAGE_WRITETHRU 0x00040 /* W: cache write-through */
|
||||
#define _PAGE_DIRTY 0x00080 /* C: page changed */
|
||||
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
|
||||
#define _PAGE_RW 0x00200 /* software: user write access allowed */
|
||||
#define _PAGE_HASHPTE 0x00400 /* software: pte has an associated HPTE */
|
||||
#define _PAGE_BUSY 0x00800 /* software: PTE & hash are busy */
|
||||
#define _PAGE_F_GIX 0x07000 /* full page: hidx bits */
|
||||
#define _PAGE_F_GIX_SHIFT 12
|
||||
#define _PAGE_F_SECOND 0x08000 /* Whether to use secondary hash or not */
|
||||
#define _PAGE_SPECIAL 0x10000 /* software: special page */
|
||||
|
||||
/*
|
||||
* THP pages can't be special. So use the _PAGE_SPECIAL
|
||||
*/
|
||||
#define _PAGE_SPLITTING _PAGE_SPECIAL
|
||||
|
||||
/*
|
||||
* We need to differentiate between explicit huge page and THP huge
|
||||
* page, since THP huge page also need to track real subpage details
|
||||
*/
|
||||
#define _PAGE_THP_HUGE _PAGE_4K_PFN
|
||||
|
||||
/*
|
||||
* set of bits not changed in pmd_modify.
|
||||
*/
|
||||
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
|
||||
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
|
||||
_PAGE_THP_HUGE)
|
||||
|
||||
#ifdef CONFIG_PPC_64K_PAGES
|
||||
#include <asm/book3s/64/hash-64k.h>
|
||||
#else
|
||||
|
@ -57,36 +106,6 @@
|
|||
#define HAVE_ARCH_UNMAPPED_AREA
|
||||
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
|
||||
#endif /* CONFIG_PPC_MM_SLICES */
|
||||
/*
|
||||
* Common bits between 4K and 64K pages in a linux-style PTE.
|
||||
* These match the bits in the (hardware-defined) PowerPC PTE as closely
|
||||
* as possible. Additional bits may be defined in pgtable-hash64-*.h
|
||||
*
|
||||
* Note: We only support user read/write permissions. Supervisor always
|
||||
* have full read/write to pages above PAGE_OFFSET (pages below that
|
||||
* always use the user access permissions).
|
||||
*
|
||||
* We could create separate kernel read-only if we used the 3 PP bits
|
||||
* combinations that newer processors provide but we currently don't.
|
||||
*/
|
||||
#define _PAGE_PRESENT 0x00001 /* software: pte contains a translation */
|
||||
#define _PAGE_USER 0x00002 /* matches one of the PP bits */
|
||||
#define _PAGE_BIT_SWAP_TYPE 2
|
||||
#define _PAGE_EXEC 0x00004 /* No execute on POWER4 and newer (we invert) */
|
||||
#define _PAGE_GUARDED 0x00008
|
||||
/* We can derive Memory coherence from _PAGE_NO_CACHE */
|
||||
#define _PAGE_COHERENT 0x0
|
||||
#define _PAGE_NO_CACHE 0x00020 /* I: cache inhibit */
|
||||
#define _PAGE_WRITETHRU 0x00040 /* W: cache write-through */
|
||||
#define _PAGE_DIRTY 0x00080 /* C: page changed */
|
||||
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
|
||||
#define _PAGE_RW 0x00200 /* software: user write access allowed */
|
||||
#define _PAGE_HASHPTE 0x00400 /* software: pte has an associated HPTE */
|
||||
#define _PAGE_BUSY 0x00800 /* software: PTE & hash are busy */
|
||||
#define _PAGE_F_GIX 0x07000 /* full page: hidx bits */
|
||||
#define _PAGE_F_GIX_SHIFT 12
|
||||
#define _PAGE_F_SECOND 0x08000 /* Whether to use secondary hash or not */
|
||||
#define _PAGE_SPECIAL 0x10000 /* software: special page */
|
||||
|
||||
/* No separate kernel read-only */
|
||||
#define _PAGE_KERNEL_RW (_PAGE_RW | _PAGE_DIRTY) /* user access blocked by key */
|
||||
|
@ -105,24 +124,6 @@
|
|||
|
||||
/* Hash table based platforms need atomic updates of the linux PTE */
|
||||
#define PTE_ATOMIC_UPDATES 1
|
||||
|
||||
/*
|
||||
* THP pages can't be special. So use the _PAGE_SPECIAL
|
||||
*/
|
||||
#define _PAGE_SPLITTING _PAGE_SPECIAL
|
||||
|
||||
/*
|
||||
* We need to differentiate between explicit huge page and THP huge
|
||||
* page, since THP huge page also need to track real subpage details
|
||||
*/
|
||||
#define _PAGE_THP_HUGE _PAGE_4K_PFN
|
||||
|
||||
/*
|
||||
* set of bits not changed in pmd_modify.
|
||||
*/
|
||||
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
|
||||
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
|
||||
_PAGE_THP_HUGE)
|
||||
#define _PTE_NONE_MASK _PAGE_HPTEFLAGS
|
||||
/*
|
||||
* The mask convered by the RPN must be a ULL on 32-bit platforms with
|
||||
|
@ -231,11 +232,6 @@
|
|||
|
||||
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, unsigned long pte, int huge);
|
||||
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
|
||||
unsigned long addr,
|
||||
pmd_t *pmdp,
|
||||
unsigned long clr,
|
||||
unsigned long set);
|
||||
extern unsigned long htab_convert_pte_flags(unsigned long pteflags);
|
||||
/* Atomic PTE updates */
|
||||
static inline unsigned long pte_update(struct mm_struct *mm,
|
||||
|
@ -361,127 +357,6 @@ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
|
|||
#define __HAVE_ARCH_PTE_SAME
|
||||
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
|
||||
|
||||
static inline char *get_hpte_slot_array(pmd_t *pmdp)
|
||||
{
|
||||
/*
|
||||
* The hpte hindex is stored in the pgtable whose address is in the
|
||||
* second half of the PMD
|
||||
*
|
||||
* Order this load with the test for pmd_trans_huge in the caller
|
||||
*/
|
||||
smp_rmb();
|
||||
return *(char **)(pmdp + PTRS_PER_PMD);
|
||||
|
||||
|
||||
}
|
||||
/*
|
||||
* The linux hugepage PMD now include the pmd entries followed by the address
|
||||
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
|
||||
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
|
||||
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
|
||||
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
|
||||
*
|
||||
* The last three bits are intentionally left to zero. This memory location
|
||||
* are also used as normal page PTE pointers. So if we have any pointers
|
||||
* left around while we collapse a hugepage, we need to make sure
|
||||
* _PAGE_PRESENT bit of that is zero when we look at them
|
||||
*/
|
||||
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
|
||||
{
|
||||
return (hpte_slot_array[index] >> 3) & 0x1;
|
||||
}
|
||||
|
||||
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
|
||||
int index)
|
||||
{
|
||||
return hpte_slot_array[index] >> 4;
|
||||
}
|
||||
|
||||
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
|
||||
unsigned int index, unsigned int hidx)
|
||||
{
|
||||
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
/*
|
||||
*
|
||||
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
|
||||
* page. The hugetlbfs page table walking and mangling paths are totally
|
||||
* separated form the core VM paths and they're differentiated by
|
||||
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
|
||||
*
|
||||
* pmd_trans_huge() is defined as false at build time if
|
||||
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
|
||||
* time in such case.
|
||||
*
|
||||
* For ppc64 we need to differntiate from explicit hugepages from THP, because
|
||||
* for THP we also track the subpage details at the pmd level. We don't do
|
||||
* that for explicit huge pages.
|
||||
*
|
||||
*/
|
||||
static inline int pmd_trans_huge(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
|
||||
}
|
||||
|
||||
static inline int pmd_trans_splitting(pmd_t pmd)
|
||||
{
|
||||
if (pmd_trans_huge(pmd))
|
||||
return pmd_val(pmd) & _PAGE_SPLITTING;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
static inline int pmd_large(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return ((pmd_val(pmd) & 0x3) != 0x0);
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mksplitting(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMD_SAME
|
||||
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
||||
{
|
||||
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
|
||||
}
|
||||
|
||||
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
|
||||
unsigned long addr, pmd_t *pmdp)
|
||||
{
|
||||
unsigned long old;
|
||||
|
||||
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
|
||||
return 0;
|
||||
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
|
||||
return ((old & _PAGE_ACCESSED) != 0);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
||||
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
||||
pmd_t *pmdp)
|
||||
{
|
||||
|
||||
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
|
||||
return;
|
||||
|
||||
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
|
||||
}
|
||||
|
||||
/* Generic accessors to PTE bits */
|
||||
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
|
||||
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
|
||||
|
|
|
@ -154,6 +154,11 @@ static inline void pmd_clear(pmd_t *pmdp)
|
|||
*pmdp = __pmd(0);
|
||||
}
|
||||
|
||||
static inline pte_t pmd_pte(pmd_t pmd)
|
||||
{
|
||||
return __pte(pmd_val(pmd));
|
||||
}
|
||||
|
||||
#define pmd_none(pmd) (!pmd_val(pmd))
|
||||
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|
||||
|| (pmd_val(pmd) & PMD_BAD_BITS))
|
||||
|
@ -389,252 +394,4 @@ void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
|
|||
void pgtable_cache_init(void);
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
/*
|
||||
* THP pages can't be special. So use the _PAGE_SPECIAL
|
||||
*/
|
||||
#define _PAGE_SPLITTING _PAGE_SPECIAL
|
||||
|
||||
/*
|
||||
* We need to differentiate between explicit huge page and THP huge
|
||||
* page, since THP huge page also need to track real subpage details
|
||||
*/
|
||||
#define _PAGE_THP_HUGE _PAGE_4K_PFN
|
||||
|
||||
/*
|
||||
* set of bits not changed in pmd_modify.
|
||||
*/
|
||||
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
|
||||
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
|
||||
_PAGE_THP_HUGE)
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
/*
|
||||
* The linux hugepage PMD now include the pmd entries followed by the address
|
||||
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
|
||||
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
|
||||
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
|
||||
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
|
||||
*
|
||||
* The last three bits are intentionally left to zero. This memory location
|
||||
* are also used as normal page PTE pointers. So if we have any pointers
|
||||
* left around while we collapse a hugepage, we need to make sure
|
||||
* _PAGE_PRESENT bit of that is zero when we look at them
|
||||
*/
|
||||
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
|
||||
{
|
||||
return (hpte_slot_array[index] >> 3) & 0x1;
|
||||
}
|
||||
|
||||
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
|
||||
int index)
|
||||
{
|
||||
return hpte_slot_array[index] >> 4;
|
||||
}
|
||||
|
||||
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
|
||||
unsigned int index, unsigned int hidx)
|
||||
{
|
||||
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
|
||||
}
|
||||
|
||||
struct page *realmode_pfn_to_page(unsigned long pfn);
|
||||
|
||||
static inline char *get_hpte_slot_array(pmd_t *pmdp)
|
||||
{
|
||||
/*
|
||||
* The hpte hindex is stored in the pgtable whose address is in the
|
||||
* second half of the PMD
|
||||
*
|
||||
* Order this load with the test for pmd_trans_huge in the caller
|
||||
*/
|
||||
smp_rmb();
|
||||
return *(char **)(pmdp + PTRS_PER_PMD);
|
||||
|
||||
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
|
||||
pmd_t *pmdp, unsigned long old_pmd);
|
||||
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
|
||||
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
|
||||
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
|
||||
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
||||
pmd_t *pmdp, pmd_t pmd);
|
||||
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
|
||||
pmd_t *pmd);
|
||||
/*
|
||||
*
|
||||
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
|
||||
* page. The hugetlbfs page table walking and mangling paths are totally
|
||||
* separated form the core VM paths and they're differentiated by
|
||||
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
|
||||
*
|
||||
* pmd_trans_huge() is defined as false at build time if
|
||||
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
|
||||
* time in such case.
|
||||
*
|
||||
* For ppc64 we need to differntiate from explicit hugepages from THP, because
|
||||
* for THP we also track the subpage details at the pmd level. We don't do
|
||||
* that for explicit huge pages.
|
||||
*
|
||||
*/
|
||||
static inline int pmd_trans_huge(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
|
||||
}
|
||||
|
||||
static inline int pmd_trans_splitting(pmd_t pmd)
|
||||
{
|
||||
if (pmd_trans_huge(pmd))
|
||||
return pmd_val(pmd) & _PAGE_SPLITTING;
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern int has_transparent_hugepage(void);
|
||||
#else
|
||||
static inline void hpte_do_hugepage_flush(struct mm_struct *mm,
|
||||
unsigned long addr, pmd_t *pmdp,
|
||||
unsigned long old_pmd)
|
||||
{
|
||||
|
||||
WARN(1, "%s called with THP disabled\n", __func__);
|
||||
}
|
||||
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||||
|
||||
static inline int pmd_large(pmd_t pmd)
|
||||
{
|
||||
/*
|
||||
* leaf pte for huge page, bottom two bits != 00
|
||||
*/
|
||||
return ((pmd_val(pmd) & 0x3) != 0x0);
|
||||
}
|
||||
|
||||
static inline pte_t pmd_pte(pmd_t pmd)
|
||||
{
|
||||
return __pte(pmd_val(pmd));
|
||||
}
|
||||
|
||||
static inline pmd_t pte_pmd(pte_t pte)
|
||||
{
|
||||
return __pmd(pte_val(pte));
|
||||
}
|
||||
|
||||
static inline pte_t *pmdp_ptep(pmd_t *pmd)
|
||||
{
|
||||
return (pte_t *)pmd;
|
||||
}
|
||||
|
||||
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
|
||||
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
|
||||
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
|
||||
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
|
||||
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
|
||||
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
|
||||
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
|
||||
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
|
||||
|
||||
#define __HAVE_ARCH_PMD_WRITE
|
||||
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
|
||||
|
||||
static inline pmd_t pmd_mkhuge(pmd_t pmd)
|
||||
{
|
||||
/* Do nothing, mk_pmd() does this part. */
|
||||
return pmd;
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
|
||||
}
|
||||
|
||||
static inline pmd_t pmd_mksplitting(pmd_t pmd)
|
||||
{
|
||||
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMD_SAME
|
||||
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
||||
{
|
||||
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
||||
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmdp,
|
||||
pmd_t entry, int dirty);
|
||||
|
||||
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
|
||||
unsigned long addr,
|
||||
pmd_t *pmdp,
|
||||
unsigned long clr,
|
||||
unsigned long set);
|
||||
|
||||
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
|
||||
unsigned long addr, pmd_t *pmdp)
|
||||
{
|
||||
unsigned long old;
|
||||
|
||||
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
|
||||
return 0;
|
||||
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
|
||||
return ((old & _PAGE_ACCESSED) != 0);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
||||
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmdp);
|
||||
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
||||
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmdp);
|
||||
|
||||
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
|
||||
extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
|
||||
unsigned long addr, pmd_t *pmdp);
|
||||
|
||||
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
||||
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
||||
pmd_t *pmdp)
|
||||
{
|
||||
|
||||
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
|
||||
return;
|
||||
|
||||
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
|
||||
}
|
||||
|
||||
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
|
||||
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmdp);
|
||||
|
||||
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
|
||||
unsigned long address, pmd_t *pmdp);
|
||||
#define pmdp_collapse_flush pmdp_collapse_flush
|
||||
|
||||
#define __HAVE_ARCH_PGTABLE_DEPOSIT
|
||||
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
||||
pgtable_t pgtable);
|
||||
#define __HAVE_ARCH_PGTABLE_WITHDRAW
|
||||
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
|
||||
|
||||
#define __HAVE_ARCH_PMDP_INVALIDATE
|
||||
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
||||
pmd_t *pmdp);
|
||||
|
||||
#define pmd_move_must_withdraw pmd_move_must_withdraw
|
||||
struct spinlock;
|
||||
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
|
||||
struct spinlock *old_pmd_ptl)
|
||||
{
|
||||
/*
|
||||
* Archs like ppc64 use pgtable to store per pmd
|
||||
* specific information. So when we switch the pmd,
|
||||
* we should also withdraw and deposit the pgtable
|
||||
*/
|
||||
return true;
|
||||
}
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */
|
||||
|
|
|
@ -429,6 +429,7 @@ static void native_hpte_invalidate(unsigned long slot, unsigned long vpn,
|
|||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
static void native_hugepage_invalidate(unsigned long vsid,
|
||||
unsigned long addr,
|
||||
unsigned char *hpte_slot_array,
|
||||
|
@ -482,6 +483,15 @@ static void native_hugepage_invalidate(unsigned long vsid,
|
|||
}
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
#else
|
||||
static void native_hugepage_invalidate(unsigned long vsid,
|
||||
unsigned long addr,
|
||||
unsigned char *hpte_slot_array,
|
||||
int psize, int ssize, int local)
|
||||
{
|
||||
WARN(1, "%s called without THP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline int __hpte_actual_psize(unsigned int lp, int psize)
|
||||
{
|
||||
|
|
|
@ -359,7 +359,7 @@ struct page *pud_page(pud_t pud)
|
|||
struct page *pmd_page(pmd_t pmd)
|
||||
{
|
||||
if (pmd_trans_huge(pmd) || pmd_huge(pmd))
|
||||
return pfn_to_page(pmd_pfn(pmd));
|
||||
return pte_page(pmd_pte(pmd));
|
||||
return virt_to_page(pmd_page_vaddr(pmd));
|
||||
}
|
||||
|
||||
|
|
|
@ -396,6 +396,7 @@ static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
|
|||
BUG_ON(lpar_rc != H_SUCCESS);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
/*
|
||||
* Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
|
||||
* to make sure that we avoid bouncing the hypervisor tlbie lock.
|
||||
|
@ -494,6 +495,15 @@ static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
|
|||
__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
|
||||
index, psize, ssize);
|
||||
}
|
||||
#else
|
||||
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
|
||||
unsigned long addr,
|
||||
unsigned char *hpte_slot_array,
|
||||
int psize, int ssize, int local)
|
||||
{
|
||||
WARN(1, "%s called without THP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void pSeries_lpar_hpte_removebolted(unsigned long ea,
|
||||
int psize, int ssize)
|
||||
|
|
Загрузка…
Ссылка в новой задаче