[AVR32] Make I/O access macros work with external devices

Fix the I/O access macros so that they work with externally connected
devices accessed in little-endian mode over any bus width:

* Use a set of macros to define I/O port- and memory operations
  borrowed from MIPS.
* Allow subarchitecture to specify address- and data-mangling
* Implement at32ap-specific port mangling (with build-time
  configurable bus width. Only one bus width at a time supported
  for now.)
* Rewrite iowriteN and friends to use write[bwl] and friends
  (not the __raw counterparts.)

This has been tested using pata_pcmcia to access a CompactFlash card
connected to the EBI (16-bit bus width.)

Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
This commit is contained in:
Haavard Skinnemoen 2007-02-12 16:28:56 +01:00
Родитель 92b728c147
Коммит e3e7d8d4ea
3 изменённых файлов: 247 добавлений и 153 удалений

Просмотреть файл

@ -2,6 +2,30 @@ if PLATFORM_AT32AP
menu "Atmel AVR32 AP options"
choice
prompt "AT32AP7000 static memory bus width"
depends on CPU_AT32AP7000
default AP7000_16_BIT_SMC
help
Define the width of the AP7000 external static memory interface.
This is used to determine how to mangle the address and/or data
when doing little-endian port access.
The current code can only support a single external memory bus
width for all chip selects, excluding the flash (which is using
raw access and is thus not affected by any of this.)
config AP7000_32_BIT_SMC
bool "32 bit"
config AP7000_16_BIT_SMC
bool "16 bit"
config AP7000_8_BIT_SMC
bool "8 bit"
endchoice
endmenu
endif
endif # PLATFORM_AT32AP

Просмотреть файл

@ -0,0 +1,39 @@
#ifndef __ASM_AVR32_ARCH_AT32AP_IO_H
#define __ASM_AVR32_ARCH_AT32AP_IO_H
/* For "bizarre" halfword swapping */
#include <linux/byteorder/swabb.h>
#if defined(CONFIG_AP7000_32_BIT_SMC)
# define __swizzle_addr_b(addr) (addr ^ 3UL)
# define __swizzle_addr_w(addr) (addr ^ 2UL)
# define __swizzle_addr_l(addr) (addr)
# define ioswabb(a, x) (x)
# define ioswabw(a, x) (x)
# define ioswabl(a, x) (x)
# define __mem_ioswabb(a, x) (x)
# define __mem_ioswabw(a, x) swab16(x)
# define __mem_ioswabl(a, x) swab32(x)
#elif defined(CONFIG_AP7000_16_BIT_SMC)
# define __swizzle_addr_b(addr) (addr ^ 1UL)
# define __swizzle_addr_w(addr) (addr)
# define __swizzle_addr_l(addr) (addr)
# define ioswabb(a, x) (x)
# define ioswabw(a, x) (x)
# define ioswabl(a, x) swahw32(x)
# define __mem_ioswabb(a, x) (x)
# define __mem_ioswabw(a, x) swab16(x)
# define __mem_ioswabl(a, x) swahb32(x)
#else
# define __swizzle_addr_b(addr) (addr)
# define __swizzle_addr_w(addr) (addr)
# define __swizzle_addr_l(addr) (addr)
# define ioswabb(a, x) (x)
# define ioswabw(a, x) swab16(x)
# define ioswabl(a, x) swab32(x)
# define __mem_ioswabb(a, x) (x)
# define __mem_ioswabw(a, x) (x)
# define __mem_ioswabl(a, x) (x)
#endif
#endif /* __ASM_AVR32_ARCH_AT32AP_IO_H */

Просмотреть файл

@ -1,13 +1,15 @@
#ifndef __ASM_AVR32_IO_H
#define __ASM_AVR32_IO_H
#include <linux/kernel.h>
#include <linux/string.h>
#ifdef __KERNEL__
#include <linux/types.h>
#include <asm/addrspace.h>
#include <asm/byteorder.h>
#include <asm/arch/io.h>
/* virt_to_phys will only work when address is in P1 or P2 */
static __inline__ unsigned long virt_to_phys(volatile void *address)
{
@ -36,205 +38,236 @@ extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
static inline void writeb(unsigned char b, volatile void __iomem *addr)
static inline void __raw_writeb(u8 v, volatile void __iomem *addr)
{
*(volatile unsigned char __force *)addr = b;
*(volatile u8 __force *)addr = v;
}
static inline void writew(unsigned short b, volatile void __iomem *addr)
static inline void __raw_writew(u16 v, volatile void __iomem *addr)
{
*(volatile unsigned short __force *)addr = b;
*(volatile u16 __force *)addr = v;
}
static inline void writel(unsigned int b, volatile void __iomem *addr)
static inline void __raw_writel(u32 v, volatile void __iomem *addr)
{
*(volatile unsigned int __force *)addr = b;
*(volatile u32 __force *)addr = v;
}
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
static inline unsigned char readb(const volatile void __iomem *addr)
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
return *(const volatile unsigned char __force *)addr;
return *(const volatile u8 __force *)addr;
}
static inline unsigned short readw(const volatile void __iomem *addr)
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
return *(const volatile unsigned short __force *)addr;
return *(const volatile u16 __force *)addr;
}
static inline unsigned int readl(const volatile void __iomem *addr)
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
return *(const volatile unsigned int __force *)addr;
return *(const volatile u32 __force *)addr;
}
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define writesb(p, d, l) __raw_writesb((unsigned int)p, d, l)
#define writesw(p, d, l) __raw_writesw((unsigned int)p, d, l)
#define writesl(p, d, l) __raw_writesl((unsigned int)p, d, l)
/* Convert I/O port address to virtual address */
#ifndef __io
# define __io(p) ((void *)phys_to_uncached(p))
#endif
#define readsb(p, d, l) __raw_readsb((unsigned int)p, d, l)
#define readsw(p, d, l) __raw_readsw((unsigned int)p, d, l)
#define readsl(p, d, l) __raw_readsl((unsigned int)p, d, l)
/*
* Not really sure about the best way to slow down I/O on
* AVR32. Defining it as a no-op until we have an actual test case.
*/
#define SLOW_DOWN_IO do { } while (0)
#define __BUILD_MEMORY_SINGLE(pfx, bwl, type) \
static inline void \
pfx##write##bwl(type val, volatile void __iomem *addr) \
{ \
volatile type *__addr; \
type __val; \
\
__addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \
__val = pfx##ioswab##bwl(__addr, val); \
\
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
*__addr = __val; \
} \
\
static inline type pfx##read##bwl(const volatile void __iomem *addr) \
{ \
volatile type *__addr; \
type __val; \
\
__addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \
\
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
__val = *__addr; \
return pfx##ioswab##bwl(__addr, __val); \
}
#define __BUILD_IOPORT_SINGLE(pfx, bwl, type, p, slow) \
static inline void pfx##out##bwl##p(type val, unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
__addr = __io(__swizzle_addr_##bwl(port)); \
__val = pfx##ioswab##bwl(__addr, val); \
\
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
*__addr = __val; \
slow; \
} \
\
static inline type pfx##in##bwl##p(unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
__addr = __io(__swizzle_addr_##bwl(port)); \
\
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
\
__val = *__addr; \
slow; \
\
return pfx##ioswab##bwl(__addr, __val); \
}
#define __BUILD_MEMORY_PFX(bus, bwl, type) \
__BUILD_MEMORY_SINGLE(bus, bwl, type)
#define BUILDIO_MEM(bwl, type) \
__BUILD_MEMORY_PFX(, bwl, type) \
__BUILD_MEMORY_PFX(__mem_, bwl, type)
#define __BUILD_IOPORT_PFX(bus, bwl, type) \
__BUILD_IOPORT_SINGLE(bus, bwl, type, ,) \
__BUILD_IOPORT_SINGLE(bus, bwl, type, _p, SLOW_DOWN_IO)
#define BUILDIO_IOPORT(bwl, type) \
__BUILD_IOPORT_PFX(, bwl, type) \
__BUILD_IOPORT_PFX(__mem_, bwl, type)
BUILDIO_MEM(b, u8)
BUILDIO_MEM(w, u16)
BUILDIO_MEM(l, u32)
BUILDIO_IOPORT(b, u8)
BUILDIO_IOPORT(w, u16)
BUILDIO_IOPORT(l, u32)
#define readb_relaxed readb
#define readw_relaxed readw
#define readl_relaxed readl
#define __BUILD_MEMORY_STRING(bwl, type) \
static inline void writes##bwl(volatile void __iomem *addr, \
const void *data, unsigned int count) \
{ \
const type *__data = data; \
\
while (count--) \
__mem_write##bwl(*__data++, addr); \
} \
\
static inline void reads##bwl(const volatile void __iomem *addr, \
void *data, unsigned int count) \
{ \
type *__data = data; \
\
while (count--) \
*__data++ = __mem_read##bwl(addr); \
}
#define __BUILD_IOPORT_STRING(bwl, type) \
static inline void outs##bwl(unsigned long port, const void *data, \
unsigned int count) \
{ \
const type *__data = data; \
\
while (count--) \
__mem_out##bwl(*__data++, port); \
} \
\
static inline void ins##bwl(unsigned long port, void *data, \
unsigned int count) \
{ \
type *__data = data; \
\
while (count--) \
*__data++ = __mem_in##bwl(port); \
}
#define BUILDSTRING(bwl, type) \
__BUILD_MEMORY_STRING(bwl, type) \
__BUILD_IOPORT_STRING(bwl, type)
BUILDSTRING(b, u8)
BUILDSTRING(w, u16)
BUILDSTRING(l, u32)
/*
* io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be
*/
#ifndef ioread8
#define ioread8(p) ({ unsigned int __v = __raw_readb(p); __v; })
#define ioread8(p) ((unsigned int)readb(p))
#define ioread16(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(p)); __v; })
#define ioread16be(p) ({ unsigned int __v = be16_to_cpu(__raw_readw(p)); __v; })
#define ioread16(p) ((unsigned int)readw(p))
#define ioread16be(p) ((unsigned int)__raw_readw(p))
#define ioread32(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(p)); __v; })
#define ioread32be(p) ({ unsigned int __v = be32_to_cpu(__raw_readl(p)); __v; })
#define ioread32(p) ((unsigned int)readl(p))
#define ioread32be(p) ((unsigned int)__raw_readl(p))
#define iowrite8(v,p) __raw_writeb(v, p)
#define iowrite8(v,p) writeb(v, p)
#define iowrite16(v,p) __raw_writew(cpu_to_le16(v), p)
#define iowrite16be(v,p) __raw_writew(cpu_to_be16(v), p)
#define iowrite16(v,p) writew(v, p)
#define iowrite16be(v,p) __raw_writew(v, p)
#define iowrite32(v,p) __raw_writel(cpu_to_le32(v), p)
#define iowrite32be(v,p) __raw_writel(cpu_to_be32(v), p)
#define iowrite32(v,p) writel(v, p)
#define iowrite32be(v,p) __raw_writel(v, p)
#define ioread8_rep(p,d,c) __raw_readsb(p,d,c)
#define ioread16_rep(p,d,c) __raw_readsw(p,d,c)
#define ioread32_rep(p,d,c) __raw_readsl(p,d,c)
#define ioread8_rep(p,d,c) readsb(p,d,c)
#define ioread16_rep(p,d,c) readsw(p,d,c)
#define ioread32_rep(p,d,c) readsl(p,d,c)
#define iowrite8_rep(p,s,c) __raw_writesb(p,s,c)
#define iowrite16_rep(p,s,c) __raw_writesw(p,s,c)
#define iowrite32_rep(p,s,c) __raw_writesl(p,s,c)
#define iowrite8_rep(p,s,c) writesb(p,s,c)
#define iowrite16_rep(p,s,c) writesw(p,s,c)
#define iowrite32_rep(p,s,c) writesl(p,s,c)
#endif
/*
* These two are only here because ALSA _thinks_ it needs them...
*/
static inline void memcpy_fromio(void * to, const volatile void __iomem *from,
unsigned long count)
{
char *p = to;
while (count) {
count--;
*p = readb(from);
p++;
from++;
}
volatile const char __iomem *addr = from;
while (count--)
*p++ = readb(addr++);
}
static inline void memcpy_toio(volatile void __iomem *to, const void * from,
unsigned long count)
{
const char *p = from;
while (count) {
count--;
writeb(*p, to);
p++;
to++;
}
volatile char __iomem *addr = to;
while (count--)
writeb(*p++, addr++);
}
static inline void memset_io(volatile void __iomem *addr, unsigned char val,
unsigned long count)
{
memset((void __force *)addr, val, count);
}
volatile char __iomem *p = addr;
/*
* Bad read/write accesses...
*/
extern void __readwrite_bug(const char *fn);
while (count--)
writeb(val, p++);
}
#define IO_SPACE_LIMIT 0xffffffff
/* Convert I/O port address to virtual address */
#define __io(p) ((void __iomem *)phys_to_uncached(p))
/*
* IO port access primitives
* -------------------------
*
* The AVR32 doesn't have special IO access instructions; all IO is memory
* mapped. Note that these are defined to perform little endian accesses
* only. Their primary purpose is to access PCI and ISA peripherals.
*
* Note that for a big endian machine, this implies that the following
* big endian mode connectivity is in place.
*
* The machine specific io.h include defines __io to translate an "IO"
* address to a memory address.
*
* Note that we prevent GCC re-ordering or caching values in expressions
* by introducing sequence points into the in*() definitions. Note that
* __raw_* do not guarantee this behaviour.
*
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
*/
#define outb(v, p) __raw_writeb(v, __io(p))
#define outw(v, p) __raw_writew(cpu_to_le16(v), __io(p))
#define outl(v, p) __raw_writel(cpu_to_le32(v), __io(p))
#define inb(p) __raw_readb(__io(p))
#define inw(p) le16_to_cpu(__raw_readw(__io(p)))
#define inl(p) le32_to_cpu(__raw_readl(__io(p)))
static inline void __outsb(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outb(*(u8 *)addr, port);
addr++;
}
}
static inline void __insb(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u8 *)addr = inb(port);
addr++;
}
}
static inline void __outsw(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outw(*(u16 *)addr, port);
addr += 2;
}
}
static inline void __insw(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u16 *)addr = inw(port);
addr += 2;
}
}
static inline void __outsl(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outl(*(u32 *)addr, port);
addr += 4;
}
}
static inline void __insl(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u32 *)addr = inl(port);
addr += 4;
}
}
#define outsb(port, addr, count) __outsb(port, addr, count)
#define insb(port, addr, count) __insb(port, addr, count)
#define outsw(port, addr, count) __outsw(port, addr, count)
#define insw(port, addr, count) __insw(port, addr, count)
#define outsl(port, addr, count) __outsl(port, addr, count)
#define insl(port, addr, count) __insl(port, addr, count)
extern void __iomem *__ioremap(unsigned long offset, size_t size,
unsigned long flags);
extern void __iounmap(void __iomem *addr);
@ -292,6 +325,4 @@ extern void __iounmap(void __iomem *addr);
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */
#endif /* __ASM_AVR32_IO_H */