mfd: ab8500-gpadc: Add support for the AB8540

This patch enables the GPADC to work on AB8540 based platforms.

Signed-off-by: Lee Jones <lee.jones@linaro.org>
Acked-by: Samuel Ortiz <sameo@linux.intel.com>
This commit is contained in:
Lee Jones 2013-02-11 10:38:00 +00:00
Родитель 7593209460
Коммит e4bffe8d8a
2 изменённых файлов: 308 добавлений и 57 удалений

Просмотреть файл

@ -37,6 +37,13 @@
#define AB8500_GPADC_AUTODATAL_REG 0x07 #define AB8500_GPADC_AUTODATAL_REG 0x07
#define AB8500_GPADC_AUTODATAH_REG 0x08 #define AB8500_GPADC_AUTODATAH_REG 0x08
#define AB8500_GPADC_MUX_CTRL_REG 0x09 #define AB8500_GPADC_MUX_CTRL_REG 0x09
#define AB8540_GPADC_MANDATA2L_REG 0x09
#define AB8540_GPADC_MANDATA2H_REG 0x0A
#define AB8540_GPADC_APEAAX_REG 0x10
#define AB8540_GPADC_APEAAT_REG 0x11
#define AB8540_GPADC_APEAAM_REG 0x12
#define AB8540_GPADC_APEAAH_REG 0x13
#define AB8540_GPADC_APEAAL_REG 0x14
/* /*
* OTP register offsets * OTP register offsets
@ -49,6 +56,10 @@
#define AB8500_GPADC_CAL_5 0x13 #define AB8500_GPADC_CAL_5 0x13
#define AB8500_GPADC_CAL_6 0x14 #define AB8500_GPADC_CAL_6 0x14
#define AB8500_GPADC_CAL_7 0x15 #define AB8500_GPADC_CAL_7 0x15
/* New calibration for 8540 */
#define AB8540_GPADC_OTP4_REG_7 0x38
#define AB8540_GPADC_OTP4_REG_6 0x39
#define AB8540_GPADC_OTP4_REG_5 0x3A
/* gpadc constants */ /* gpadc constants */
#define EN_VINTCORE12 0x04 #define EN_VINTCORE12 0x04
@ -67,6 +78,7 @@
#define GPADC_BUSY 0x01 #define GPADC_BUSY 0x01
#define EN_FALLING 0x10 #define EN_FALLING 0x10
#define EN_TRIG_EDGE 0x02 #define EN_TRIG_EDGE 0x02
#define EN_VBIAS_XTAL_TEMP 0x02
/* GPADC constants from AB8500 spec, UM0836 */ /* GPADC constants from AB8500 spec, UM0836 */
#define ADC_RESOLUTION 1024 #define ADC_RESOLUTION 1024
@ -85,8 +97,21 @@
#define ADC_CH_BKBAT_MIN 0 #define ADC_CH_BKBAT_MIN 0
#define ADC_CH_BKBAT_MAX 3200 #define ADC_CH_BKBAT_MAX 3200
/* GPADC constants from AB8540 spec */
#define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat*/
#define ADC_CH_IBAT_MAX 6000
#define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat*/
#define ADC_CH_IBAT_MAX_V 60
#define IBAT_VDROP_L (-56) /* mV */
#define IBAT_VDROP_H 56
/* This is used to not lose precision when dividing to get gain and offset */ /* This is used to not lose precision when dividing to get gain and offset */
#define CALIB_SCALE 1000 #define CALIB_SCALE 1000
/*
* Number of bits shift used to not lose precision
* when dividing to get ibat gain.
*/
#define CALIB_SHIFT_IBAT 20
/* Time in ms before disabling regulator */ /* Time in ms before disabling regulator */
#define GPADC_AUDOSUSPEND_DELAY 1 #define GPADC_AUDOSUSPEND_DELAY 1
@ -97,6 +122,7 @@ enum cal_channels {
ADC_INPUT_VMAIN = 0, ADC_INPUT_VMAIN = 0,
ADC_INPUT_BTEMP, ADC_INPUT_BTEMP,
ADC_INPUT_VBAT, ADC_INPUT_VBAT,
ADC_INPUT_IBAT,
NBR_CAL_INPUTS, NBR_CAL_INPUTS,
}; };
@ -107,8 +133,8 @@ enum cal_channels {
* @offset: Offset of the ADC channel * @offset: Offset of the ADC channel
*/ */
struct adc_cal_data { struct adc_cal_data {
u64 gain; s64 gain;
u64 offset; s64 offset;
}; };
/** /**
@ -180,6 +206,7 @@ int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE; gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
break; break;
case XTAL_TEMP:
case BAT_CTRL: case BAT_CTRL:
case BTEMP_BALL: case BTEMP_BALL:
case ACC_DETECT1: case ACC_DETECT1:
@ -198,6 +225,7 @@ int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
break; break;
case MAIN_BAT_V: case MAIN_BAT_V:
case VBAT_TRUE_MEAS:
/* For some reason we don't have calibrated data */ /* For some reason we don't have calibrated data */
if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) { if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX - res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
@ -241,6 +269,20 @@ int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
ADC_RESOLUTION; ADC_RESOLUTION;
break; break;
case IBAT_VIRTUAL_CHANNEL:
/* For some reason we don't have calibrated data */
if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) {
res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX -
ADC_CH_IBAT_MIN) * ad_value /
ADC_RESOLUTION;
break;
}
/* Here we can use the calibrated data */
res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain +
gpadc->cal_data[ADC_INPUT_IBAT].offset)
>> CALIB_SHIFT_IBAT;
break;
default: default:
dev_err(gpadc->dev, dev_err(gpadc->dev,
"unknown channel, not possible to convert\n"); "unknown channel, not possible to convert\n");
@ -303,10 +345,20 @@ EXPORT_SYMBOL(ab8500_gpadc_convert);
*/ */
int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
{
int raw_data;
raw_data = ab8500_gpadc_double_read_raw(gpadc, channel,
avg_sample, trig_edge, trig_timer, conv_type, NULL);
return raw_data;
}
int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
int *ibat)
{ {
int ret; int ret;
int looplimit = 0; int looplimit = 0;
u8 val, low_data, high_data; u8 val, low_data, high_data, low_data2, high_data2;
if (!gpadc) if (!gpadc)
return -ENODEV; return -ENODEV;
@ -359,7 +411,6 @@ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
default: default:
val = channel | AVG_16; val = channel | AVG_16;
break; break;
} }
if (conv_type == ADC_HW) if (conv_type == ADC_HW)
@ -383,8 +434,8 @@ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
ret = abx500_mask_and_set_register_interruptible(gpadc->dev, ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG, AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_FALLING, EN_FALLING); EN_FALLING, EN_FALLING);
} }
switch (channel) { switch (channel) {
case MAIN_CHARGER_C: case MAIN_CHARGER_C:
case USB_CHARGER_C: case USB_CHARGER_C:
@ -401,6 +452,55 @@ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
EN_BUF | EN_ICHAR, EN_BUF | EN_ICHAR,
EN_BUF | EN_ICHAR); EN_BUF | EN_ICHAR);
break; break;
case XTAL_TEMP:
if (conv_type == ADC_HW)
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_BUF | EN_TRIG_EDGE,
EN_BUF | EN_TRIG_EDGE);
else
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_BUF ,
EN_BUF);
break;
case VBAT_TRUE_MEAS:
if (conv_type == ADC_HW)
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_BUF | EN_TRIG_EDGE,
EN_BUF | EN_TRIG_EDGE);
else
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_BUF ,
EN_BUF);
break;
case BAT_CTRL_AND_IBAT:
case VBAT_MEAS_AND_IBAT:
case VBAT_TRUE_MEAS_AND_IBAT:
case BAT_TEMP_AND_IBAT:
if (conv_type == ADC_HW)
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_TRIG_EDGE,
EN_TRIG_EDGE);
else
ret = abx500_mask_and_set_register_interruptible(
gpadc->dev,
AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
EN_BUF,
0);
break;
case BTEMP_BALL: case BTEMP_BALL:
if (!is_ab8500_2p0_or_earlier(gpadc->parent)) { if (!is_ab8500_2p0_or_earlier(gpadc->parent)) {
if (conv_type == ADC_HW) if (conv_type == ADC_HW)
@ -471,21 +571,19 @@ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
/* wait for completion of conversion */ /* wait for completion of conversion */
if (conv_type == ADC_HW) { if (conv_type == ADC_HW) {
if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
2*HZ)) { 2 * HZ)) {
dev_err(gpadc->dev, dev_err(gpadc->dev,
"timeout didn't receive" "timeout didn't receive hw GPADC conv interrupt\n");
" hw GPADC conv interrupt\n"); ret = -EINVAL;
ret = -EINVAL; goto out;
goto out;
} }
} else { } else {
if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
msecs_to_jiffies(CONVERSION_TIME))) { msecs_to_jiffies(CONVERSION_TIME))) {
dev_err(gpadc->dev, dev_err(gpadc->dev,
"timeout didn't receive" "timeout didn't receive sw GPADC conv interrupt\n");
" sw GPADC conv interrupt\n"); ret = -EINVAL;
ret = -EINVAL; goto out;
goto out;
} }
} }
@ -523,6 +621,46 @@ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
goto out; goto out;
} }
} }
/* Check if double convertion is required */
if ((channel == BAT_CTRL_AND_IBAT) ||
(channel == VBAT_MEAS_AND_IBAT) ||
(channel == VBAT_TRUE_MEAS_AND_IBAT) ||
(channel == BAT_TEMP_AND_IBAT)) {
if (conv_type == ADC_HW) {
/* not supported */
ret = -ENOTSUPP;
dev_err(gpadc->dev,
"gpadc_conversion: only SW double conversion supported\n");
goto out;
} else {
/* Read the converted RAW data 2 */
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
&low_data2);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read sw low data 2 failed\n");
goto out;
}
ret = abx500_get_register_interruptible(gpadc->dev,
AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
&high_data2);
if (ret < 0) {
dev_err(gpadc->dev,
"gpadc_conversion: read sw high data 2 failed\n");
goto out;
}
if (ibat != NULL) {
*ibat = (high_data2 << 8) | low_data2;
} else {
dev_warn(gpadc->dev,
"gpadc_conversion: ibat not stored\n");
}
}
}
/* Disable GPADC */ /* Disable GPADC */
ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
@ -586,15 +724,27 @@ static int otp_cal_regs[] = {
AB8500_GPADC_CAL_7, AB8500_GPADC_CAL_7,
}; };
static int otp4_cal_regs[] = {
AB8540_GPADC_OTP4_REG_7,
AB8540_GPADC_OTP4_REG_6,
AB8540_GPADC_OTP4_REG_5,
};
static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
{ {
int i; int i;
int ret[ARRAY_SIZE(otp_cal_regs)]; int ret[ARRAY_SIZE(otp_cal_regs)];
u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
int vmain_high, vmain_low; int vmain_high, vmain_low;
int btemp_high, btemp_low; int btemp_high, btemp_low;
int vbat_high, vbat_low; int vbat_high, vbat_low;
int ibat_high, ibat_low;
s64 V_gain, V_offset, V2A_gain, V2A_offset;
struct ab8500 *ab8500;
ab8500 = gpadc->parent;
/* First we read all OTP registers and store the error code */ /* First we read all OTP registers and store the error code */
for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
@ -614,7 +764,7 @@ static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
* bt_h/l = btemp_high/low * bt_h/l = btemp_high/low
* vb_h/l = vbat_high/low * vb_h/l = vbat_high/low
* *
* Data bits: * Data bits 8500/9540:
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|....... * |.......|.......|.......|.......|.......|.......|.......|.......
* | | vm_h9 | vm_h8 * | | vm_h9 | vm_h8
@ -632,6 +782,35 @@ static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
* |.......|.......|.......|.......|.......|.......|.......|....... * |.......|.......|.......|.......|.......|.......|.......|.......
* *
* Data bits 8540:
* OTP2
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* |
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
* |.......|.......|.......|.......|.......|.......|.......|.......
* | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
* |.......|.......|.......|.......|.......|.......|.......|.......
*
* Data bits 8540:
* OTP4
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
* |.......|.......|.......|.......|.......|.......|.......|.......
* | | ib_h9 | ib_h8 | ib_h7
* |.......|.......|.......|.......|.......|.......|.......|.......
* | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
* |.......|.......|.......|.......|.......|.......|.......|.......
* | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
*
* *
* Ideal output ADC codes corresponding to injected input voltages * Ideal output ADC codes corresponding to injected input voltages
* during manufacturing is: * during manufacturing is:
@ -644,38 +823,96 @@ static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
* vbat_low: Vin = 2380mV / ADC ideal code = 33 * vbat_low: Vin = 2380mV / ADC ideal code = 33
*/ */
/* Calculate gain and offset for VMAIN if all reads succeeded */ if (is_ab8540(ab8500)) {
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { /* Calculate gain and offset for VMAIN if all reads succeeded*/
vmain_high = (((gpadc_cal[0] & 0x03) << 8) | if (!(ret[1] < 0 || ret[2] < 0)) {
((gpadc_cal[1] & 0x3F) << 2) | vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
((gpadc_cal[2] & 0xC0) >> 6)); ((gpadc_cal[2] & 0xC0) >> 6));
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low);
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low); 19500 - (CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 - } else {
(CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
} else {
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
} }
/* Read IBAT calibration Data */
for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
ret_otp4[i] = abx500_get_register_interruptible(
gpadc->dev, AB8500_OTP_EMUL,
otp4_cal_regs[i], &gpadc_otp4[i]);
if (ret_otp4[i] < 0)
dev_err(gpadc->dev,
"%s: read otp4 reg 0x%02x failed\n",
__func__, otp4_cal_regs[i]);
}
/* Calculate gain and offset for IBAT if all reads succeeded */
if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
((gpadc_otp4[1] & 0xFE) >> 1));
ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
((gpadc_otp4[2] & 0xF8) >> 3));
V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L)
<< CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) -
(((IBAT_VDROP_H - IBAT_VDROP_L) <<
CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
* ibat_high;
/*
* Result obtained is in mV (at a scale factor),
* we need to calculate gain and offset to get mA
*/
V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/
(ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN -
ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V)
<< CALIB_SHIFT_IBAT)
/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain;
gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset *
V2A_gain + V2A_offset;
} else {
gpadc->cal_data[ADC_INPUT_IBAT].gain = 0;
}
dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n",
gpadc->cal_data[ADC_INPUT_IBAT].gain,
gpadc->cal_data[ADC_INPUT_IBAT].offset);
} else {
/* Calculate gain and offset for VMAIN if all reads succeeded */
if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
((gpadc_cal[1] & 0x3F) << 2) |
((gpadc_cal[2] & 0xC0) >> 6));
vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
(19500 - 315) / (vmain_high - vmain_low);
gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
19500 - (CALIB_SCALE * (19500 - 315) /
(vmain_high - vmain_low)) * vmain_high;
} else {
gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
}
}
/* Calculate gain and offset for BTEMP if all reads succeeded */ /* Calculate gain and offset for BTEMP if all reads succeeded */
if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
btemp_high = (((gpadc_cal[2] & 0x01) << 9) | btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
(gpadc_cal[3] << 1) | (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
((gpadc_cal[4] & 0x80) >> 7));
btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
gpadc->cal_data[ADC_INPUT_BTEMP].gain = gpadc->cal_data[ADC_INPUT_BTEMP].gain =
CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 - gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
(CALIB_SCALE * (1300 - 21) / (CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
(btemp_high - btemp_low)) * btemp_high; * btemp_high;
} else { } else {
gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0; gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
} }
@ -687,7 +924,6 @@ static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE * gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
(4700 - 2380) / (vbat_high - vbat_low); (4700 - 2380) / (vbat_high - vbat_low);
gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 - gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
(CALIB_SCALE * (4700 - 2380) / (CALIB_SCALE * (4700 - 2380) /
(vbat_high - vbat_low)) * vbat_high; (vbat_high - vbat_low)) * vbat_high;

Просмотреть файл

@ -12,19 +12,32 @@
/* GPADC source: From datasheet(ADCSwSel[4:0] in GPADCCtrl2 /* GPADC source: From datasheet(ADCSwSel[4:0] in GPADCCtrl2
* and ADCHwSel[4:0] in GPADCCtrl3 ) */ * and ADCHwSel[4:0] in GPADCCtrl3 ) */
#define BAT_CTRL 0x01 #define BAT_CTRL 0x01
#define BTEMP_BALL 0x02 #define BTEMP_BALL 0x02
#define MAIN_CHARGER_V 0x03 #define MAIN_CHARGER_V 0x03
#define ACC_DETECT1 0x04 #define ACC_DETECT1 0x04
#define ACC_DETECT2 0x05 #define ACC_DETECT2 0x05
#define ADC_AUX1 0x06 #define ADC_AUX1 0x06
#define ADC_AUX2 0x07 #define ADC_AUX2 0x07
#define MAIN_BAT_V 0x08 #define MAIN_BAT_V 0x08
#define VBUS_V 0x09 #define VBUS_V 0x09
#define MAIN_CHARGER_C 0x0A #define MAIN_CHARGER_C 0x0A
#define USB_CHARGER_C 0x0B #define USB_CHARGER_C 0x0B
#define BK_BAT_V 0x0C #define BK_BAT_V 0x0C
#define DIE_TEMP 0x0D #define DIE_TEMP 0x0D
#define USB_ID 0x0E
#define XTAL_TEMP 0x12
#define VBAT_TRUE_MEAS 0x13
#define BAT_CTRL_AND_IBAT 0x1C
#define VBAT_MEAS_AND_IBAT 0x1D
#define VBAT_TRUE_MEAS_AND_IBAT 0x1E
#define BAT_TEMP_AND_IBAT 0x1F
/* Virtual channel used only for ibat convertion to ampere
* Battery current conversion (ibat) cannot be requested as a single conversion
* but it is always in combination with other input requests
*/
#define IBAT_VIRTUAL_CHANNEL 0xFF
#define SAMPLE_1 1 #define SAMPLE_1 1
#define SAMPLE_4 4 #define SAMPLE_4 4
@ -37,7 +50,6 @@
#define ADC_SW 0 #define ADC_SW 0
#define ADC_HW 1 #define ADC_HW 1
struct ab8500_gpadc; struct ab8500_gpadc;
struct ab8500_gpadc *ab8500_gpadc_get(char *name); struct ab8500_gpadc *ab8500_gpadc_get(char *name);
@ -51,6 +63,9 @@ static inline int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 channel)
int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type); u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type);
int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
int *ibat);
int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc,
u8 channel, int ad_value); u8 channel, int ad_value);